
An Architecture and Framework for Steerable
Interface Systems

Anthony Levas, Claudio Pinhanez, Gopal Pingali, Rick Kjeldsen, Mark Podlaseck,
Noi Sukaviriya

IBM T.J. Watson Research Center
Hawthorne, New York, USA
http://www.research.ibm.com/ed/

Abstract. Steerable Interfaces are emerging as a new paradigm used in realizing
the vision of embodied interaction in ubiquitous computing environments. Such
interfaces steer relevant input and output capabilities around space, to serve the
user when and where they are needed. We present an architecture and a pro-
gramming framework that enable the development of Steerable Interface appli-
cations. The distributed multi-layer architecture provides applications with ab-
stractions to services of several novel components – for instance, steerable pro-
jection, steerable visual interaction detection, and geometric reasoning. The
programming framework facilitates integration of the various services while
hiding the complexity of sequencing and synchronizing the underlying compo-
nents.

1 Introduction

Weiser [1] characterizes “good” technology as being invisible and highlights the trend
in ubiquitous computing towards “invisible” computers. The quote, “Invisible tech-
nology stays out of the way of the task - like a good pencil stays out of the way of
writing”, stresses the importance of technology allowing the user to focus on the task
at hand, and allowing them to take advantage of tacit and contextual knowledge, while
unencumbered by the technology itself. As a principle for building invisible interfaces,
he remarked, “the unit of design should be social people in their environment, plus
your device”. As the focus of interaction moves away from the desktop focusing on
the individual, his relationship to the physical world and the objects that inhabit it,
new technologies will be needed to afford effective interaction.

Dourish [2] has elaborated the notion of embodiment1, and argues that Tangible [3]
and Social Computing [2] are aspects of the same perspective he calls Embodied In-
teraction, which we believe forms a compelling basis for studying and building inter-
actions in ubiquitous environments. In his view “Embodied interaction provides
conceptual tools for understanding how the interface might move into the background

1 “embodiment …denotes a form of participative status, …and is about the fact that things are

embedded in the world and the ways in which their reality depends on being embedded.”

In: Proc. of Ubiquitous Computing 2003 (Ubicomp'03). Seattle, Washington.

ceptual tools for understanding how the interface might move into the background
without disappearing altogether.” [2]. Rehman et al. [4] argue that the trend towards
invisible computers have left the user without meaningful cognitive models of system
function and behavior. They propose a solution can be found in the use of the “Many,
many [input/output] displays” Mark Weiser [1] predicted would be available in ubiq-
uitous environments of the future. Rehman addressed this problem using head
mounted displays and cameras to present information to users in a contextually appro-
priate manner. We share the common view expressed by Dourish and Rehman that it
is important to afford natural interaction to the user when and where they need it in the
environment without disappearing altogether. However, we feel that wiring the envi-
ronment with many displays is difficult and that wearing head mounted gear or carry-
ing around devices is encumbering. Our work focuses on a new paradigm we are de-
veloping called Steerable Interfaces (SI) [5]. The main principle here is to use devices
that can steer relevant input and output capabilities to the user in the environment,
when and where they are needed. This obviates the need to carry or wear devices or to
outfit the environment with many displays or other devices.

Steerable Interface technology enables the computer interface to dynamically reach
into the environment and interact with the user based on where he is and what he
needs. For example, an interactive display may be projected onto a nearby table that
allows the user to manipulate a projected control (e.g. slider) to change some feature
of the environment. Physical objects may be dynamically annotated with projected
information regarding their use and endowed with behavior through steerable input
provided by visual gesture recognition devices. This would allow the user to manipu-
late them in a tangible manner to achieve a desired goal. Instead of having many inter-
active displays of varying sizes, projected displays may be resized to suit the needs of
the interaction, perhaps small for private notification or large for interacting with
colleagues. A projection could also concurrently simulate many interactive displays on
a given surface by partitioning its overall space into smaller displays that have the
appearance of being separate.

The computer no longer needs to be thought of as a device that is viewed through a
fixed screen found in a static location, but as a device that can “reach” into our “real”
world to interact with us. One may view this as embodying the computer such that it
has a dynamic presence in our world and can interact with us in a goal directed man-
ner. Nothing, however, prevents us from creating “bad” interfaces using this technol-
ogy other than grounding our work in principles developed through the study of Em-
bodied Interaction.

Pinhanez [6] describes the Everywhere Displays (ED) Projector, a projector with an
associated rotating mirror that enables images to be projected onto virtually any sur-
face while correcting for oblique projection distortion. Kjeldsen et al. [7,11] discuss
adding Steerable Interaction capabilities to the ED, through a steerable vision system
that can recognize hand gestures. Pinhanez et al. [8] and Sukaviriya et al. [9,10] de-
scribe several applications that highlight the use and advantages of SI’s. Pingali et
al.[5] have defined the concept of SI and described its characteristics and articulated

the enabling technologies. This extends the use to the acoustic domain through the use
of steerable microphone arrays [12] for input and steerable audio output [13]. Lai et
al., [14] have developed a prototype of an adaptive, personalizable workspace, called
BlueSpace, using this technology. This workspace application has received significant
publicity in the media to date.

This paper focuses on an architecture and programming framework that supports the
development of Steerable Interfaces. This paper is organized as follows. Section 2
describes the requirements that drove the architectural design as well as the resulting
architecture. Section 3 discusses the requirements and design of the software devel-
opment framework. Section 4 illustrates the use of the Java Application Development
Environment and highlights productivity gains. Section 5 demonstrates system use
through an example application. Section 6 concludes with a discussion on what we
have learned and directions for future work.

2 System Architecture

Our primary goal here is the development of an architecture that facilitates the devel-
opment of effective tools and techniques for building and delivering Steerable Inter-
faces, as well as the exploration of new modes of interaction for ubiquitous computing
environments. This ranges from the design and development of specific technologies,
for example in projection and visual interaction, as well as the combination of tech-
nologies to form new interaction capabilities.

Analysis of our primary goal resulted in the following set of requirements for an archi-
tecture that enables Steerable Interfaces:

• Support communication among the multiple hardware and software components
used in Steerable Interface systems.

• Insure that components support the definition of an interaction that is independ-
ent of the location where the interaction is delivered. Allow the same interaction
to be delivered to any available location in the environment.

• Provide a clear abstraction between function and implementation of components
to facilitate experimenting with new ways to deliver underlying function without
affecting applications that use the component.

• Insure components operate independently as well as work together.
• Facilitate the easy addition of new components to extend functionality.
• Afford both asynchronous and synchronous operation of components from lay-

ers above.
• Enable development using different languages and development approaches.
• Support a distributed architecture.
• Insure adequate performance.

Figure 1 shows our architecture for Steerable Interfaces. It is a three-tier architecture
composed of a Services Layer, an Integration Layer and an Application Logic Layer,
as explained below.

2.1 The Services Layer

The Services layer consists of a set of modules that represent independent components
of a Steerable Interface system. Each of these modules exposes a set of core capabili-
ties through an HTTP/XML Application Programming Interface (API). Modules in
the Services Layer have no “direct” knowledge or dependence on other modules in
that layer. The modules share a common XML language called the Everywhere Dis-
plays Markup Language (EDML) along with a specialized dialect for communication
with each module in this layer. Applications written in any language can directly
communicate with each module in this layer using EDML, as indicated by the first
arrow on the left in figure 1, labeled EDML. EDML allows us to explore developing
applications using a variety of different approaches by providing language independ-
ence. Multiple modules of each type can be instantiated and operated at the same time.

Figure 1. An architecture for steerable interfaces.

The core EDML definition includes commands for establishing communication with a
module, starting and stopping their respective services, and commanding or querying
modules. Basic EDML action commands fall into 3 logical pairs: Use/Release are
used for definition/allocation and de-allocation of objects (e.g. Buttons, Images, etc.).
Set/Get are used for setting or retrieving values of objects and Activate/Deactivate for
activation and deactivation of “Used” (allocated) objects.

All modules in the services layer respond to XML commands asynchronously, i.e.,
once an XML command is received through an HTTP “POST” message, the HTTP
communication is first completed before the request is processed. The sender tags
each message and upon completion of the command the component returns an XML
message along with the identifying tag, indicating either that it has successfully com-
pleted or that an error was encountered. We chose this approach as opposed to using a
Remote Procedure Call (RPC) approach such as RMI, CORBA or SOAP to facilitate
asynchronous communication where the caller does not wait for the completion of the
command. Brumitt et al. [15] and Arnstein et al. [16] have elaborated on problems
related to RPC style communication in ubiquitous computing environments and have
chosen a similar asynchronous approach. Also, using the HTTP protocol allows us to
more easily implement a distributed system and configure the machines on which a
service runs.

The Services Layer has six types of components that have been implemented to pro-
vide an initial basis for applications that use Steerable Interfaces. The Vision, Projec-
tion and Steerable Camera interfaces afford steerable visual input and output, while
the 3D Environment Modeling, User Localization and Geometric Reasoning compo-
nents enable tracking of individuals in the space and reasoning about individuals and
the spatial relationships they have with interaction surfaces in the environment. These
last three components have been included because they are especially useful in achiev-
ing adaptation of the interface to user and environmental context. Brumitt et al. [17]
have articulated a common view regarding the importance of geometry and geometric
reasoning in their EasyLiving [18] project. In our system, the tracking, modeling, and
reasoning components provide critical contextual information that allows us to direct
the interactive display onto the appropriate surfaces that are most effective for the
interaction required. For instance, occlusion, which is often a problem in steerable
interfaces, can be detected by geometrically reasoning about the position of the user
and the projected surface. If occlusion is determined to occur, the projected interac-
tion can be redirected and the content adapted. We will show how this is particularly
useful in the example in Section 6.

The Projection component EDML API, called PJML, provides the declarative repre-
sentation of the extents of display images along with their spatial arrangement in a
known frame of reference. The basic PJML action commands enable the instantiation,
activation and deactivation of this declarative information. The projection surfaces
and associated real world parameters are known only to this component and are also
referred to by the application symbolically by name. This leaves the responsibility of
mapping the declaratively defined visual widgets to relevant surfaces, as well as the

intrinsic implementation, completely to this component. Two basic widgets have cur-
rently been defined for this component. An Image is basically a bitmap that can be
projected onto a surface. A Stream is a rectangular region defining a portion of the
display buffer on the machine that is running the Projection component. This region
can be dynamic visual imagery that is then mapped onto the surface designated via
PJML.

The Steerable Camera component EDML API, called CAML exposes an interface
that allows the application to steer the camera to a named location and adjust all the
relevant parameters, such as, zoom, focus and gain to access video data. As in the case
of the other modules this is a general-purpose component that can be used by applica-
tions to capture and use video data as is required.

The Vision Interface component EDML API, called VIML, provides two very impor-
tant functions. First, it enables the declarative description of the widgets of a specific
visual interface interaction along with their spatial arrangement in a known frame of
reference. The basic VIML action commands enable the instantiation, activation and
deactivation of this declarative description. The interaction surfaces and associated
real world parameters are known only to this component and are referred to by the
application symbolically, by name. This leaves the responsibility of mapping the de-
clarative interface description to relevant surfaces completely to this component. Sec-
ond, it provides a mechanism for returning events to applications that relate to the
users manipulation of a widget - such as triggering a button press. All the necessary
usage and environmental details are hidden from the application developer, who is
concerned only with the arrival of an event associated with a specific widget. The
component implementation is free to change allowing us to explore alternative ap-
proaches for recognizing gestures.

We have currently defined and implemented three vision interface widgets, a Button, a
Slider, and a Track Area. Buttons are simple visual objects that are triggered when
“touched”. Sliders allow a user to adjust a continuous single dimension parameter by
moving their finger along a designated rectangular region. Track Areas allow a user to
adjust a continuous two dimension parameter (X,Y) by moving a finger within a rec-
tangular region. The Projector component can endow widgets with a visual appear-
ance by projecting imagery that coincides with the position of the widget in the cam-
era’s field of view, but this is not a necessity. Widgets can be tangible objects, such as
real Buttons, or Sliders, or even pictures of widgets. This component’s responsibility
is to provide the basic functions for recognizing gestures in a ubiquitous computing
environment.

Figure 2 graphically illustrates the mapping process that occurs when an application
combines the function of the Projection component, the Vision Interface component
and the Steerable Camera component to create an interactive display in the real world.
The Definition process highlights that a specific interaction has a single declarative
display and interaction area. During the Mapping phase the Projection and Steerable
Camera components steer their associated devices to the surfaces named in the defini-

tion. H and Hv are the homogeneous transformations that define the mapping of the
display and interaction areas to projection and interaction surfaces respectively. These
transformations for defining surfaces are derived from a calibration that is first per-
formed on the respective host machines upon which the Vision Interface, the Steerable
Camera, and Projector components are running.

The 3D Environment Modeling component is a modeling toolkit for creating and
manipulating an environment model to support steerable interfaces. It is in many ways
a simplified version of standard 3D modeling software. It supports basic geometric
objects built out of planar surfaces and cubes and allows importing more complex
models. However, the toolkit provides additional objects such as projectors and pro-
jection display surfaces and annotation capabilities that are specifically required for

Figure 2. The process of mapping the declarative display and interaction area
definitions onto real world surfaces.

Definition

Integration

Mapping

steerable interfaces. Almost every object in the model can be annotated. This makes it
possible to attach semantics to objects such as optical properties of a surface and its
preferred usage. The toolkit stores the model in XML format, with objects as tags and
annotations as attributes. This format allows the model to be easily defined and ma-
nipulated by applications in the architecture. The modeling toolkit is also designed to
be accessible to the Geometric Reasoning component described below.

The User Localization component keeps track of the 3D position of a user’s head in
relation to the environment model. In our current implementation, we use multiple
cameras with overlapping views to triangulate and estimate this position. Our system
tracks user position to an accuracy within a few inches and operates at video frame
rate. This allows us to reason quite effectively about the appropriate surface for dis-
playing the interface and about user occlusion of the display, as discussed above. The
EDML API for the User Localization component is called TRML, and provides a
basic structure for queries about the user’s presence, position, and orientation in the
environment.

The purpose of the Geometric Reasoning component is to facilitate intelligent selec-
tion of the appropriate display and interaction surfaces based on criteria such as prox-
imity to the user and non-occlusion of the surface by the user or by other objects.
Applications or other modules can query the geometric reasoning engine through the
EDML API, called GRML. The API currently supports two types of queries. The first
type of query is a property look-up action. The geometric reasoning engine returns all
the properties of a specified display surface given the location of the user in the envi-
ronment. The user location is typically obtained by the application from the User
Localization component described above. Other possibilities include simulated user
positions for planning and testing purposes. In the second type of query, the reasoning
engine receives a user position and a set of criteria, specified as desired ranges of
display surface properties, and returns all surfaces that satisfy those criteria. Properties
of a display surface include:

1. Physical size of the display surface.
2. Absolute orientation angle between the surface normal and a horizontal plane.
3. Distance between the center of the user’s head and the center of a surface.
4. Position of the user relative to the display surface, defined as the two angles to

the user’s head in a local spherical coordinate system attached to the display sur-
face. This indicates if the user is to the left or to the right of a surface.

5. Position relative to the user, defined as the two angles to the display surface in a
local spherical coordinate system attached to the user’s head.

6. Occlusion percentage, defined as the percentage of the total area of the surface
that is occluded with respect to a specified projector position and orientation.

7. An occlusion mask, which is a bitmap that indicates the parts of a display sur-
face occluded by other objects in the model or by the user.

2.2 The Integration Layer

The Services Layer described above has been designed to meet some of the important
requirements listed at the beginning of section 2. Each component in the Services
layer has a very specialized function in a particular aspect of a ubiquitous computing
environment. Through EDML, the layer provides one level of abstraction between
function and implementation of components to facilitate replacing the underlying
components that realize a function without affecting applications that use the compo-
nent.

However, coordination of these components to deliver new functionality is beyond the
scope of the Services Layer. Hence, we defined an Integration Layer that has a built-in
set of classes to facilitate the integration of the underlying components in the Services
Layer. We decided that JAVA would be a powerful programming language to use in
defining this set of classes for developing ubiquitous applications. Our goals here
were to provide a set of basic classes that could be used by an Application Framework
to provide a set of concepts that would facilitate development. The requirements we
derived for this layer are:

• Provide a JAVA based API for all EDML objects and associated commands
• Facilitate communication with the services layer by providing a set of special-

ized servers to handle message input and output as well as events returned
• Handle event propagation back to the appropriate widgets
• Provide simulation capability for each service, enabling development without

the need to be connected to the precious resources of the space
• Handle synchronous and asynchronous message passing and callbacks as well as

coordination or synchronization of sets of asynchronous calls

Figure 1 illustrates the classes that were built to satisfy these requirements. The Serv-
ers block consists of a set of classes for generating servers (as well as specific server
instances) that handle serialization of messages sent to each component, insuring that
the order of arrival is the same as the order of transmission. This is quite important in
cases where one command to a component must precede another. In addition, these
servers also handle messages returned from components signaling success or failure in
execution of the requests and events returned from the vision interface for propagation
to the application.

The PostOffice class allows the JAVA based EDML commands to either run syn-
chronously, that is, wait for the return result of the requested command, or asynchro-
nously, with the ability to get a callback upon completion of the command. The Post-
Office uses a simple mechanism, similar to the concept of “Return Receipt” common
in real post offices. The idea is that each request is tagged with a unique ID. If a syn-
chronous call is requested, the calling thread issues a wait, and proceeds only after the
post office notifies it of the receipt of a “return receipt” that has the unique ID. Simi-
larly, asynchronous calls would just proceed, but would have a callback method called
upon receipt of the “return receipt” that had the appropriate unique ID. Note that mes-
sages could share a common “return receipt” ID, in which case a thread could wait for

the completion of a set of asynchronous commands, a very useful and frequently used
feature.

The EDML Classes allowed a JAVA program to easily construct all the objects de-
fined by EDML and to issue synchronous or asynchronous calls to the components in
the Service Layer. Visual interaction widgets are subclasses of JAVA swing classes.
For example, buttons are a subclass of JButton, so they would inherit all their
capabilities, again a very useful feature, which we will discuss in the next section.
Similarly, display widgets are inherited from relevant swing classes. For example, an
Image is a subclass of Jlabel. To invoke the behavior of a Button the Event Manager
simply needs to call the doClick method of the Button. The advantage of this approach
is that the same functionality can be triggered through several means.

For example, consider a media player application that can be moved to different sur-
faces in space, allowing the user to play, stop, rewind etc., by touching projected but-
tons. Our approach allows this media player application to be controlled either
through gestures recognized through the camera based Vision Interface, or simply
through an alternate on-screen GUI.

To facilitate development, we have also incorporated Simulators to the integration
layer framework. Simulators allow application development to proceed without the
need to actually be in the physical space. Each component has a corresponding simu-
lator class that could be used to simulate receipt of messages and returns that would
normally be generated by the actual component. Also, an event simulator is available
for transmitting simulated events, which is again, very useful in developing and de-
bugging an application. Several levels of debug traces can be switched on and off,
providing a complete trace of the system.

The second arrow from the left, labeled JAVA (EDML Adapter API) in Figure 1
indicates the path that a JAVA application could take by calling the set of JAVA
EDML classes. Taking this direct path to the EDML classes, however, can be tedious
and requires coordination of numerous calls and a significant amount of code to create
simple applications. Note that an application that generates an interactive display
would have to individually coordinate all of the components in the layer below. In
particular, rapid prototyping can be hard to achieve using the EDML JAVA classes
directly. To address this problem, we have developed a framework to simplify the
development of Steerable Interface applications, as we will shortly discuss in Sec-
tion 3.

2.3 The Application Logic Layer

The Integration Layer facilitates communication with the Services layer and coordina-
tion of multiple services, as described above. The final layer in our architecture is an
Application Logic Layer where an actual application is instantiated, resulting in the
instantiation of the corresponding classes in the Integration Layer. The framework for

developing such an application is discussed below. This framework was used in a
JAVA Application Development Environment that enables graphical composition of
the GUI to significantly simplify the whole process of development.

3 Steerable Interface Application Programming Framework

We developed a programming framework consisting of a set of classes that conceptu-
ally and practically simplify the task of application development. The current frame-
work consists of over 130 classes including classes in the Integration layer. However,
the framework enables applications to be written using as few as 4 or 5 classes. We
now outline the major classes that simplify application development.

The primary class for creating an interactive display is called Interaction. It contains
all the necessary information required by the Vision Interface, the Projector and the
Steerable Camera to create a declarative definition of display widgets (e.g. images and
streams) as well as vision interface widgets (e.g. buttons, and sliders) on a given sur-
face. In addition, it contains the procedural information defining the behavior trig-
gered by user interaction. It contains at least 20 instances of EDML objects that spec-
ify attributes such as the projection and vision surfaces, the container object that hold
the display and interaction widgets, along with the widgets themselves, and many
other parameters. It basically encapsulates everything needed for one projected inter-
active dialog. It would take many JAVA calls to instantiate an Interaction, and re-
quires detailed knowledge of layout to provide coordinates for these objects, and to
fill out the many parameters. This process is akin to building a traditional GUI, only
more complex due to the coordination of a greater number of components. Fortu-
nately, Application Development Environments (ADE) have solved this problem
before, through the use of graphical GUI construction tools. Using the Composition
Editor (a JAVA bean editor) in our ADE, an Interaction can be completely defined
graphically. Stubs for actions to perform are also generated in the process and need to
be fleshed out to define the behavior. An application developer would use this tool to
generate a number of interactions for a particular application. We will describe the
development process in Section 4.

The main driver for an application is the Application class. The set of Interactions
used by the application are added to an Application instance. The Application instance
contains the logic of an application and can maintain the relevant application state
required in making any decisions. An Application can define a new SequenceMan-
ager that is responsible for sequencing the order that Interactions are presented or
instantiate one from an existing set of available managers. A simple SequenceManager
may call a method in the Application or the current interaction to compute the next
Interaction to instantiate.

Once the Application is ready to instantiate an Interaction, it automatically passes it to
the InteractionManager, which is responsible for orchestrating all the EDML calls

that are necessary for bringing the interaction to life. Figure 1 shows this path that
completes a description of the three ways that we have to generate Steerable Inter-
faces. Using this approach requires knowledge of only a few Framework classes and
simplifies the task of application development, especially when using the Composition
Editor described in Section 4.

A few other classes are useful for tracking a user in the environment and triggering
behavior based on position. A Tracker class is provided that monitors the position of
the user in the environment at a specified frequency. It uses the Observer/Observed
pattern to publish location information to all subscribers. A Zone class defines a re-
gion in space and is an Observer of the Tracker class. It has several methods that fire
when a user enters a Zone or leaves a Zone. This class currently has 2 subclasses that
implement Circular Zones and Rectangular Zones. Zones can be added to Applica-
tions to automatically trigger behavior appropriate to a location in space.

Finally, a class called TrackerGUI allows simulation of the movement of a user in the
environment through a mouse-based GUI and a simple graphical representation of the
physical space. In this case, the Tracker simply gets its tracking information from the
TrackerGUI as opposed to the User Localization component. We stress the impor-
tance of simulation in frameworks for ubiquitous computing environments. Not only
does it allow development to proceed without requiring the resources of the space, but
it also helps in debugging the overall complex solution and track down bugs in the
underlying components. Much of the Integration Layer and application Development
Framework was developed before the Services Layer components were completed and
debugged. Also, debugging and integration of the whole architecture was significantly
simplified. In Section 5, we will describe how all the classes described above were
used to implement an interactive advertising display one might encounter in a retail
store.

4 Java Application Development Environment (ED-JADE)

Based on the framework described in Section 3, we developed a Java Application
Development Environment that enables graphical composition of Steerable Interface
applications. Figure 3 shows the Composition Editor, available in our ADE, that we
used to create Interactions. The left-hand column of the GUI contains JAVA Swing
classes we have sub-classed. The center region is the design window. The dialog on
the design window is a visual representation of the interaction we are building. An
application developer would populate this dialog with Images and Streams that would
be available in the dialog by simply clicking on the appropriate widget and dragging it
onto the dialog. Similarly, the developer would select interaction widgets from the
palette and place them in the appropriate location. A property editor is available for
editing all the relevant fields in the interaction. The property editor, for instance, could
be used to define the image that is projected for the Button or the Track Area. In addi-
tion, a default display surface could be specified indicating where this dialog should

appear in the environment. Using this approach a developer can quickly define the
widgets and their spatial relationships without resorting to code.

5 An Example Application

Figure 4 illustrates one example application that was developed using the framework
described in the previous sections. This application is a very simple demonstration of
the use of a steerable interface in a department store of the future. This example inter-
face combines steerable projection, gesture recognition, user tracking, geometric rea-
soning, and environment modeling capabilities described in Section 2. In the top left
picture an advertisement is presented to the general public as they pass by and tries to
lure them toward the display by indicating the word “GIFT” in a large font. As a
shopper approaches, the application detects the presence of the shopper and adds
some smaller text which is now viewable from this new position saying “A GIFT of
beauty” just for you (Fig. 4 – top left). As the shopper approaches even closer a new

Figure 3. The Composition Editor in our JAVA Application Development Environment.

image is presented showing the potential free gifts available, along with a button that
can be pressed to obtain a detailed description of the gifts possible (fig. 4 – top right).
However, in this situation the shopper is in a position that occludes the display. The
application reasons about the occlusion and moves the display to a new unoccluded
surface near the customer and adapts the interface by positioning the button to a loca-
tion that is easily accessible (Fig. 4 – bottom left). The shopper, being interested in
seeing more details, presses the button and is presented with an additional description
of what they can get for free (Fig 4 – bottom right).

The whole application above was developed with less than 200 lines of code using the
application framework and the ADE described in the previous section. In this case,
since the interaction could be handled within a single surface (about a 4 foot square
projection area) only one Interaction needed to be defined. To implement this applica-
tion, all we had to do was to instantiate an Application class object and define and add

Figure 4. An interactive display demonstration for a product in a retail store.

an Interaction containing three rectangular zones. A simple observer class was written
and added to the Tracker. Its function was specifically to detect occlusion based on
customer position and adapt the image appropriately.

To deploy the application in a space, the Vision Interface, Projection and Steerable
Camera components were calibrated to one single surface of our laboratory environ-
ment using the calibration GUI tools of the respective components. The position of the
surface was also entered in the database of the 3D Environment Modeling component.
The application runs continuously, once started, luring those that pass by in our lab to
interact with it.

6 Discussion and Conclusions

We have presented an architecture and a programming framework for Steerable Inter-
faces and illustrated their utility through an example application. We believe that our
architecture successfully meets the requirements of a Steerable Interface system archi-
tecture as outlined in Section 2. The XML approach to the Services Layer results in a
distributed architecture that allows the various components to exist on different ma-
chines. This approach also facilitates replacement of individual components and ex-
ploration of alternate means of achieving the same functionality. The Integration
Layer enables coordination, sequencing, and synchronization of the modules provided
by the Services Layer, and provides means of simulating these Services. Finally, the
Application Programming Framework allows easy development of applications while
hiding the complexity of the Services and Integration layers.

Several developers in our group and in other groups have used this architecture and
programming framework in different environments. The architecture has enabled
eloquent demonstrations of the new styles of interaction offered by the Steerable Inter-
faces paradigm. However, we recognize that this is still a first attempt at an architec-
ture to support this new paradigm. Below, we summarize some of our observations
based on the experience gained thus far in using it.

We have found that the design of the Services Layer and associated communication
approach described here has indeed enabled the exploration of several alternative
approaches to application development. For example, some of our colleagues have
used JavaScript in conjunction with Microsoft’s XML/HTTP ActiveX objects to
communicate with this layer. Others have used MacroMedia’s Flash to link to this
layer, while a group at a collaborating university has used JAVA to directly generate
XML. Some members of our group rely mostly on developing applications using the
JAVA EDML API, while others use the application development Framework exten-
sively.

The extensive use of simulation has been very important in allowing development of
the components to proceed in parallel as well as being able to develop applications

with out requiring a lot of time in the actual physical space or use of associated re-
sources like the projector and camera. It has been our experience that application
development for ubiquitous computing environments in general will have to rely heav-
ily on such simulations.

We realize that adaptability is a critical concern for Steerable Interface systems. The
ability to effectively use contextual information to determine the most appropriate
surface for interaction as well as adapting the content based on this context is crucial.
The support for geometric modeling and reasoning in our architecture has allowed us
to develop several applications that exhibit such adaptability. In particular, we are able
to address one of the most important issues in Steerable Interfaces, namely occlusion.

We have worked with other colleagues to develop a prototype workspace environment
called BlueSpace[14] using the framework described in this paper. This environment
has been demonstrated extensively at several research centers around the world. Re-
cently, this system was demonstrated extensively for nine days at CeBIT 2003 in
Hanover, Germany and proved to be quite robust. The Steerable Interface technology
was very well received by the business community, the media and by every day people
that attended – a positive indication of the potential of this paradigm.

In future, we plan to continue to evolve this architecture to support the growing needs
of Steerable Interface applications. At the Services Layer, we plan to incorporate the
features of the latest projection devices, as this is an area that is advancing quickly.
Adding steerable audio input and output functionality for voice and sound are another
area we plan to explore. This will focus our attention on issues related to multi-
modality in our architecture. At the Integration Layer, we also plan to extend and test
the architecture to address the coordination of numerous steerable input and output
units over large spaces. Support for remote monitoring, control, and diagnosis are
other challenging architectural issues. Other issues of interest go beyond the architec-
ture to the underlying science and technologies for Steerable Interfaces. Simplifying
or minimizing the need for calibration is a very important area to ensure that these
kinds of applications abound. Understanding human perception of surfaces and ob-
jects that are being projected upon will allow the selection and adaptation of surfaces
based on their characteristics as well as the projection characteristics. Finally, looking
at novel gestural interaction paradigms that are better matched with ubiquitous com-
puting environments is a topic we will pursue.

References

1. Weiser, M.: Bulding Invisible Interface. Keynote: User Interface, Systems, and Technolo-
gies (UIST) conference, November, 1994, slides: http://www.ubiq.com/hypertext/weiser/
UbiHome.html

2. Dourish, P. Where the Action Is. MIT Press, Cambridge Massachusetts (2001)
3. Ishii, H., Ulmer, B.: Tangible Bits:Towards Seemless Interfaces between People, Bits and

Atoms. In: Proc. of CHI'97. Atlanta, Georgia. 1997. pp. 234-241

4. Rehman, K., Stajano, F., Coulouris, G.: The Interfacing with Invisible Computers. Nordi-
CHI, October 19-23, 2002, Arhus, Denmark.

5. Pingali, G., Pinhanez, C., Levas, A., Kjeldsen, R., Podlaseck, M., Chen, H., Sukaviriya, N.:
Steerable Interfaces for Pervasive Computing Spaces. PerCom 2003, Ft. Worth, Texas

6. Pinhanez, C., The Everywhere Displays Projector: A Device to Create Ubiquitous Graphi-
cal Images. Proc. Of Ubicomp 2001, Atlanta, Georgia, September, 2001.

7. Kjeldsen, R., Pinhanez, C., Pingali, G., Hartman, J., Levas, A., Podlaseck, M., Interacting
with Steerable Projected Displays. International Conference on Automatic Face & Gesture
Recognition, May, 2002, Washington, D.C.

8. Pinhanez, C., Kjeldsen, R., Levas, A., Pingali, G., Podlaseck, M., Sukaviriya, N.: Using
Computer Vision in Steerable Applications. Submitted to ICCV 03

9. Sukaviriya, N., Podlaseck, M., Kjeldsen, R., Levas, A., Pingali, G, Pinhanez, C.: Embed-
ding Interactions in a retail Store Environment: The Design and Lessons Learned. To ap-
pear in INTERACT03 Ninth IFIP TC13 International Conference on Human-Computer
Interaction, September 2003

10. Sukaviriya, N., Podlaseck, M., Kjeldsen, R., Levas, A., Pingali, G, Pinhanez, C.: Augment-
ing a Retail Environment Using Steerable Interactive Displays. In Proceedings of CHI 2003
Conference on Human Factors in Computing Systems, April 2003.

11. Kjeldsen, R., Levas, A., Pinhanez, C.: Dynamically Reconfigurable Vision-Based User
Interfaces. 3rd Intl. Conf. on Computer Vision Systems, April 2003, Graz, Austria.

12. Silverman, H., Patterson, W., Flanagan, J. and Rabinkin, D. “A Digital Signal Processing
System for Source Location and Sound Capture by Large Microphone Arrays”, In Proceed-
ingsof International Conference on Acoustics Speech and Signal Processing ICASSP 97,
Munich, Germany, April 1997.

13. Pompei. F. J.: The Audio Spotlight. Journal of the Audio Engineering Society, Vol. 47, pp.
726-731, October 1999.

14. Lai, J., Levas, A., Chou, P., Pinhanez, C., Viveros, M.: BlueSpace: Personalizing Work-
space Through Awareness and Adaptability. In International Journal of Human-Computer
Studies, vol. 57(5): 415-428, 2002.

15. Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S.: EasyLiving: Technologies for
Intelligent Environments, In HUC, pages12-29, 2000.

16. Arnstein, L. et al., Systems Support for Ubiquitous Computing: A case Study of Two Im-
plementations of Labscape. Proceedings of the First International Conference on Pervasive
Computing, 2002, Springer-Verlag, Germany

17. Brumitt, B., Krumm, J., Meyers, B., Shafer, S.:Ubiquitous Computing & the Role of Ge-
ometry. In IEEE Personal Communications, August 2000.

18. Shafer et al. The Easy Living Intelligent Environment System. In Proc. of CHI Workshop
on Research Directions in Situated Computing, April 2000.

