Skip to main content

Approximating the Achromatic Number Problem on Bipartite Graphs

  • Conference paper
Book cover Algorithms - ESA 2003 (ESA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2832))

Included in the following conference series:

Abstract

The achromatic number of a graph is the largest number of colors needed to legally color the vertices of the graph so that adjacent vertices get different colors and for every pair of distinct colors c 1,c 2 there exists at least one edge whose endpoints are colored by c 1,c 2. We give a greedy O(n 4/5) ratio approximation for the problem of finding the achromatic number of a bipartite graph with n vertices. The previous best known ratio was n ·loglog n / log n [12]. We also establish the first non-constant hardness of approximation ratio for the achromatic number problem; in particular, this hardness result also gives the first such result for bipartite graphs. We show that unless NP has a randomized quasi-polynomial algorithm, it is not possible to approximate achromatic number on bipartite graph within a factor of (ln n)1/4 − ε. The methods used for proving the hardness result build upon the combination of one-round, two-provers techniques and zero-knowledge techniques inspired by Feige et.al. [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodlaender, H.L.: Achromatic number is NP-complete for cographs and interval graphs. Inform. Process. Lett. 31(3), 135–138 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cairnie, N., Edwards, K.: Some results on the achromatic number. J. Graph Theory 26(3), 129–136 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaudhary, A., Vishwanathan, S.: Approximation algorithms for the achromatic number. In: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 558–563 (1997)

    Google Scholar 

  4. Edwards, K.: The harmonious chromatic number and the achromatic number. Surveys in combinatorics, London, 13–47 (1997)

    Google Scholar 

  5. Farber, M., Hahn, G., Hell, P., Miller, D.: Concerning the achromatic number of graphs. J. Combin. Theory Ser. B 40(1), 21–39 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feige, U., Halldórsson, M., Kortsarz, G., Srinivasan, A.: Approximating the domatic number. Accepted to Siam J. on Computing conditioned on a revision

    Google Scholar 

  7. Halldórsson, M.M.: Approximating the minimum maximal independence number. Inform. Process. Lett. 46(4), 169–172 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hastad, J.: Clique is Hard to Approximate within n to the power 1-epsilon. Acta Mathematica 182, 105–142 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hell, P., Miller, D.J.: On forbidden quotients and the achromatic number. In: Proceedings of the 5th British Combinatorial Conference, pp. 283–292 (1975); Congressus Numerantium, No. XV. Utilitas Math. (1976)

    Google Scholar 

  10. Hell, P., Miller, D.J.: Achromatic numbers and graph operations. Discrete Math. 108(1-3), 297–305 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hughes, F., MacGillivray, G.: The achromatic number of graphs: a survey and some new results. Bull. Inst. Combin. Appl. 19, 27–56 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Kortsarz, G., Krauthgamer, R.: On approximating the achromatic number. Siam Journal on Discrete Mathematics 14(3), 408–422

    Google Scholar 

  13. Krysta, P., Loryś, K.: Efficient approximation algorithms for the achromatic number. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 402–413. Springer, Heidelberg (1999)

    Google Scholar 

  14. Máté, A.: A lower estimate for the achromatic number of irreducible graphs. Discrete Math. 33(2), 171–183 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38(3), 364–372 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kortsarz, G., Shende, S. (2003). Approximating the Achromatic Number Problem on Bipartite Graphs. In: Di Battista, G., Zwick, U. (eds) Algorithms - ESA 2003. ESA 2003. Lecture Notes in Computer Science, vol 2832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39658-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39658-1_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20064-2

  • Online ISBN: 978-3-540-39658-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics