
A Lower Bound for Cake Cutting

Jǐŕı Sgall� and Gerhard J. Woeginger

1 Mathematical Institute of the Academy of Sciences of the Czech Republic,
Žitná 25, CZ-11567 Praha 1, The Czech Republic.sgall@math.cas.cz

2 Department of Mathematics, University of Twente, P.O. Box 217, 7500 AE
Enschede, The Netherlands. g.j.woeginger@math.utwente.nl

Abstract. We prove that in a certain cake cutting model, every fair cake
division protocol for n players must use Ω(n log n) cuts in the worst case.
Up to a small constant factor, our lower bound matches a corresponding
upper bound in the same model by Even & Paz from 1984.

1 Introduction

In the cake cutting problem, there are n ≥ 2 players and a cake C that is to be
divided among the players. Without much loss of generality and in agreement
with the cake cutting literature, we will assume throughout the paper that C =
[0, 1] is the unit-interval and the cuts divide the cake into its subintervals. Every
player p (1 ≤ p ≤ n) has his own private measure µp on sufficiently many subsets
of C. These measures µp are assumed to be well-behaved; this means that they
are:

– Defined on all finite unions of intervals.
– Non-negative: For all X ⊆ C, µp(X) ≥ 0.
– Additive: For all disjoint subsets X, X ′ ⊆ C, µp(X ∪ X ′) = µp(X) + µp(X ′)
– Divisible: For all X ⊆ C and 0 ≤ λ ≤ 1, there exists X ′ ⊆ X with µp(X ′) =

λ · µp(X).
– Normalized: µp(C) = 1.

All these assumptions are standard assumptions in the cake cutting literature,
sometimes subsumed in a concise statement that each µp is a probability measure
defined on Lebesgue measurable sets and absolutely continuous with respect to
Lebesgue measure. We stress that the divisibility of µp forbids concentration of
the measure in one or more isolated points. As one consequence of this, corre-
sponding open and closed intervals have the same measure, and thus we do not
need to be overly formal about the endpoints of intervals.

A cake division protocol is an interactive procedure for the players that guides
and controls the division process of the cake C. Typically it consists of cut re-
quests like “Cut cake piece Z into two equal pieces, according to your measure!”
and evaluation queries like “Is your measure of cake piece Z1 less, greater, or
� Partially supported by Institute for Theoretical Computer Science, Prague (project

LN00A056 of MŠMT ČR) and grant A1019901 of GA AV ČR.

G. Di Battista and U. Zwick (Eds.): ESA 2003, LNCS 2832, pp. 459–469, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



460 J. Sgall and G.J. Woeginger

equal to your measure of cake piece Z2?”. A cake division protocol is not a priori
aware of the measures µp, but it will learn something about them during its
execution. A strategy of a player is an adaptive sequence of moves consistent
with a given protocol. A cake division protocol is fair, if every player p has a
strategy that guarantees him a piece of size at least µp(C)/n according to his
own measure µp. So, even in case n−1 players would all plot up against a single
player and would coordinate their moves, then this single player will still be able
to get his share of µp(C)/n. This is called simple fair division in the literature.

In the 1940s, the Polish mathematicians Banach and Knaster designed a
simple fair cake division protocol that uses O(n2) cuts in the worst case; this
protocol was explained and discussed in 1948 by Steinhaus [8]. In 1984, Even &
Paz [2] used a divide-and-conquer approach to construct a better deterministic
protocol that only uses O(n log n) cuts in the worst case. Remarkably, Even &
Paz [2] also design a randomized protocol that uses an expected number of O(n)
cuts. For more information on this fair cake cutting problem and on many of
its variants, we refer the reader to the books by Brams & Taylor [1] and by
Robertson & Webb [7].

The problem of establishing lower bounds for cake cutting goes at least back
to Banach (see [8]). Even & Paz [2] explicitly conjecture that there does not exist
a fair deterministic protocol with O(n) cuts. Robertson & Webb [7] support and
strengthen this conjecture by saying they “would place their money against
finding a substantial improvement on the n log2 n [upper] bound”.

One basic difficulty in proving lower bounds for cake cutting is that most
papers derive upper bound results and to do that, they simply describe a certain
procedure that performs certain steps, and then establish certain nice properties
for it, but they do not provide a formal definition or a framework. Even & Paz
[2] give a proof that for n ≥ 3, no protocol with n−1 cuts exists; since n−1 cuts
are the smallest possible number, such protocols would need to be rather special
(in particular they assign a single subinterval to each player) and not much
formalism is needed. Only recently, Robertson & Webb [6,7] give a more precise
definition of a protocol that covers all the protocols given in the literature. This
definition avoids some pathological protocols, but it is still quite general and no
super-linear lower bounds are known.

A recent paper [4] by Magdon-Ismail, Busch & Krishnamoorthy proves an
Ω(n log n) lower bound for a certain non-standard cake cutting model: The lower
bound does not hold for the number of performed cuts or evaluation queries, but
for the number of comparisons needed to administer these cuts.

Contribution and organization of this paper. We formally define a certain re-
striction of Robertson-Webb cake cutting model in Section 2. The restrictions
are that (i) each player receives a single subinterval of the cake and (ii) the
evaluation queries are counted towards the complexity of the protocol together
with cuts. Our model is also general enough to cover the O(n log n) cut deter-
ministic protocol of Even & Paz [2], and we believe that it is fairly natural.
We discuss some of the restrictions and drawbacks of our model, and we put it
into context with other results from the cake cutting literature. In Section 3 we



A Lower Bound for Cake Cutting 461

then show that in our model, every deterministic fair cake division protocol for
n players must use Ω(n log n) cuts in the worst case. This result yields the first
super-linear lower bound on the number of cuts for simple fair division (in our
restricted model), and it also provides a matching lower bound for the result in
[2]. Section 4 gives the discussion and open problems.

2 The Restricted Cake Cutting Model

A general assumption in the cake cutting literature is that at the beginning of
an execution a protocol has absolutely no knowledge about the measures µp,
except that they are defined on intervals, non-negative, additive, divisible, and
normalized. The protocol issues queries to the players, the players react, the
protocols observes their reactions, issues more queries, observes more reactions,
and so on, and so on, and so on, and in the end the protocol assigns the cake
pieces to the players.

Definition of Robertson-Webb model and our restricted model. We recall that the
cake C is represented by the unit interval. For a real number α with 0 ≤ α ≤ 1,
the α-point of a player p is the infimum of all numbers x for which µp([0, x]) = α
and µp([x, 1]) = 1 − α holds.

In Robertson-Webb model, the following two types of queries are allowed.

Cut(p; α): Player p cuts the cake at his α-point (where 0 ≤ α ≤ 1). The
value x of the α-point is returned to the protocol.

Eval(p; x): Player p evaluates the value of the cut x, where x is one of the
cuts previously performed by the protocol. The value µp(x) is returned
to the protocol.

The protocol can also assign an interval to a player; by doing this several times,
a player may end up with a finite union of intervals.

Assign(p; xi, xj): Player p is assigned the interval [xi, xj ], where xi ≤ xj

are two cuts previously performed by the protocol or 0 or 1.

The complexity of a protocol is given by the number of cuts performed in the
worst case, i.e., evaluation queries may be issued for free.

In our restricted model, the additional two restrictions are:

Assign(p; xi, xj) is used only once for each p. Hence, in the restricted
model every player ends up with a single (contiguous) subinterval of the
cake.

The complexity of a protocol is given by the number of cuts plus eval-
uation queries, i.e., each evaluation query contributes to the complexity
the same as a cut. Note that this also covers counting only the number
of cuts in protocols that do not use evaluation queries at all.



462 J. Sgall and G.J. Woeginger

Discussion of the restricted model. The currently best deterministic protocol for
exact fair division of Even & Paz [2] does not need evaluation queries and assigns
single intervals; we provide a matching bound within these restrictions.

Nevertheless, both restrictions of our model are essential. Protocols in [3,5,
6,10], esp. those that achieve not exactly but only approximately fair division,
do use evaluation queries, sometimes even a quadratic number of them. The
randomized protocol of Even & Paz [2] also uses evaluation queries in addition
to expected O(n) cuts; the expected number of evaluation queries is Θ(n log n).

We feel that the other restriction, that every player must receive a single,
contiguous subinterval of the cake, is perhaps even stronger. By imposing this
restriction, it seems that we severely cut down the set of possible protocols; in
particular, for some instances, the solution is essentially unique (see our lower
bound). Note, however, that all known discrete cake cutting protocols from
the literature produce solutions where every player ends up with a contiguous
subinterval. For instance, all the protocols in [2,3,5,6,8,9,10] have this property.
In particular, the divide-and-conquer protocols of Even & Paz [2], both deter-
ministic and randomized, assign single contiguous subinterval to each player, as
noted above.

Discussion of Robertson-Webb model. Robertson-Webb model restricts the for-
mat of queries to cuts at α points and evaluation queries. This restriction is
severe, but it is crucial and essentially unavoidable. Such a restriction must be
imposed in one form or the other, just to prevent certain uninteresting types of
‘cheating’ protocols from showing up with a linear number of cuts. Consider the
following ‘cheating’ protocol:

(Phase 1).
Every player makes a cut that encodes his i/n-points with 1 ≤ i ≤ n− 1
(just fix any bijective encoding of n − 1 real numbers from [0, 1] into a
single number from [0, 1]).
(Phase 2).
The protocol executes the Banach-Knaster protocol in the background
(Banach-Knaster [8] is a fair protocol that only needs to know the po-
sitions of the i/n-points). That is, the protocol determines the relevant
cuts without performing them.
(Phase 3).
The protocol tells the players to perform the relevant n − 1 cuts for the
Banach-Knaster solution. If a player does not perform the cut that he
announced during the first phase, he is punished and receives an empty
piece (and his piece is added to the piece of some other player).

Clearly, every honest player will receive a piece of size at least 1/n. Clearly, the
protocol also works in the friendly environment where every player truthfully
executes the orders of the protocol. And clearly, the protocol uses only 2n − 1
cuts—a linear number of cuts. Moreover, there are (straightforward) implemen-
tations of this protocol where every player ends up with a single subinterval



A Lower Bound for Cake Cutting 463

of the cake. In cake cutting models that allow announcements of arbitrary real
numbers, the cuts in (Phase 1) can be replaced by direct announcements of the
i/n-point positions; this yields fair protocols with only n − 1 cuts.

These ‘cheating’ protocols are artificial, unnatural and uninteresting, and it
is hard to accept them as valid protocols. In Robertson-Webb model they cannot
occur, since they violate the form of queries. (One could try to argue that the
players might disobey the queries and announce any real number. However,
this fails, since the definition of a protocol enforces that a player that honestly
answers allowed queries should get a fair share.)

Second important issue is that in the Robertson-Webb model it is sufficient
to assume that all players are honest, i.e., execute the commands “Cut at an
α-point” and evaluation queries truthfully. Under this assumption all of them
get a fair share. Often in the literature, a protocol has no means of enforcing
a truthful implementation of these cuts by the players, since the players may
cheat, and lie, and try to manipulate the protocol; the requirement is than that
any honest player gets a fair share, regardless of the actions of the other players.
In Robertson-Webb model, any protocol that works for honest players can be
easily modified to the general case as follows. As long as the answers of a player
are consistent with some measure, the protocol works with no change, as it
assigns a fair share according to this measure (and if the player has a different
measure, he lied and has no right to complain). If an inconsistency is revealed
(e.g., a violation of non-negativity), the protocol has to be modified to ignore
the answers from this player (or rather replace them by some trivial consistent
choices).

Of course, in general, the honesty of players is not a restriction on the proto-
col, but a restriction on the environment. Thus it is of no concern for our lower
bound argument which uses only honest players.

In some details our description of the model is different than that of Robert-
son & Webb. Their formulation in place of evaluation queries is that after per-
forming the cut, its value in all the players’ measures becomes known. This
covers all the possible evaluation queries, so it is clearly equivalent if we do not
count the number of these queries. However, the number of evaluations may is
an interesting parameter, which is why we chose this formulation.

Robertson & Webb also allow cut requests of the form “cut this piece into
two pieces with a given ratio of their measures”. This is very useful for an easy
formulation of recursive divide-and-conquer protocols. Again, once free evalua-
tion queries are allowed, this is no more general, as we know all the measures of
all the existing pieces. Even if we count evaluation queries, we can first evaluate
the cuts that created the piece, so such a non-standard cut is replaced by two
evaluations and standard cut at some α-point.

Finally, instead cutting at the α-point, Robertson & Webb allow an honest
player to return any x with µp([0, x]) = α, i.e., we require the answer which
is the minimum of the honest answers according to Robertson & Webb. This
is a restriction if the instance contains non-trivial intervals of measure zero for
some players, otherwise the answer is unique. However, any such instance can



464 J. Sgall and G.J. Woeginger

be replaced by a sequence of instances with measures that are very close to the
original ones and have non-zero density everywhere. If done carefully, all the
α-points in the sequence of modified instances converge to the α-points in the
original sequence. Thus the restriction to a particularly chosen honest answer
is not essential as well; on the other hand, it keeps the description of our lower
bound much simpler.

3 The Proof of the Lower Bound

In this section, we will prove the following theorem by means of an adversary
argument in a decision tree.

Theorem 1. In the restricted cake cutting model of Section 2 (where each player
is assigned a single interval), every deterministic fair cake division protocol for
n players uses at least Ω(n log n) cuts and/or evaluation queries in the worst
case.

The adversary continuously observes the actions of the deterministic proto-
col, and he reacts by fixing the measures of the players appropriately.

Let us start by describing the specific cake measures µp that the we uses in
the input instances. Let ε < 1/n4 be some small, positive real number. For i =
1, . . . , n we denote by Xi ⊂ [0, 1] the set consisting of the n points i/(n+1)+k ·ε
with 1 ≤ k ≤ n. Moreover, we let X =

⋃
0≤i≤n Xi. For p = 1, . . . , n, by definition

the player p has his 0-point at position 0. The positions of the i/n-points with
1 ≤ i ≤ n are fixed by the adversary during the execution of the protocol: The
i/n-points of all players are taken from Xi, and distinct players receive distinct
i/n-points. As one consequence, all the i/n-points of all players will lie strictly
to the left of all the (i + 1)/n-points of all players.

All the cake value for player p is concentrated in tiny intervals Ip,i of length
ε that are centered around his i/n-points: For i = 0, . . . , n, the measure of player
p has a sharp peak with value i/(n2 +n) immediately to the left of his i/n-point
and a sharp peak with value (n − i)/(n2 + n) immediately to the right of his
i/n-point. Note that the measure between the i/n-point and the (i + 1)/n-point
indeed adds up to 1/n. Moreover, the measures of the two peaks around every
i/n-point add up to 1/(n + 1), and the intervals that support these peaks for
different players are always disjoint, with the exception of the intervals Ip,0 that
are the same for all the players. We do not explicitly describe the shape of the
peaks; it can be arbitrary, but determined in advance and the same for each
player.

For every player p, the portions of the cake between interval Ip,i and interval
Ip,i+1 have measure 0 and hence are worthless to p. By our definition of α-points,
every α-point of player p will fall into one of his intervals Ip,i with 0 ≤ i ≤ n.
If a player p cuts the cake at some point x ∈ Ip,i, then we denote by cp(x) the
corresponding i/n-point of player p.



A Lower Bound for Cake Cutting 465

Lemma 1. Let x be a cut that was done by player s, and let y ≥ x be another cut
that was done by player t. Let J = [x, y] and J ′ = [cs(x), ct(y)]. If µp(J ) ≥ 1/n
holds for some player p, then also µp(J ′) ≥ 1/n.

Proof. (Case 1) If s = p and t = p, then let Ip,j and Ip,k be the intervals
that contain the points cp(x) and cp(y), respectively. Then µp(J ) ≥ 1/n implies
k ≥ j + 1. The measure µp(J ′) is at least the measure (n − j)/(n2 + n) of the
peak immediately to the right of the j/n-point plus the measure k/(n2 + n)
immediately to the left of the k/n-point, and these two values add up to at least
1/n.

(Case 2) If s = p and t �= p, then let Ip,j be the interval that contains cp(x).
Then µp(J ) ≥ 1/n implies that J and J ′ both contain Ip,j+1, and again µp(J ′)
is at least 1/n. Note that the argument works also if j = 0.

(Case 3) The case s �= p and t = p is symmetric to the second case above.
(Case 4) If s �= p and t �= p, then the interval between x and cs(x) and the

interval between y and ct(y) both have measure 0 for player p. By moving these
two cuts, we do not change the value of J for p. �	

We call a protocol primitive, if in all of its cut operations Cut(p; α) the value
α is of the form i/n with 0 ≤ i ≤ n.

Lemma 2. For every protocol P in the restricted model, there exists a primitive
protocol P ′ in the restricted model, such that for every cake cutting instance I
of the restricted form described above,

– P and P ′ make the same number of cuts on I,
– if P applied to instance I assigns to player p a piece J of measure µp(J ) ≥

1/n, then also P ′ applied to instance I assigns to player p a piece J ′ of
measure µp(J ′) ≥ 1/n.

Proof. Protocol P ′ imitates protocol P. Whenever P requests player p to cut at
his α-point x with 0 < α < 1, then P ′ computes the unique integer k with

k

n + 1
< α ≤ k + 1

n + 1

Then P ′ requests player p to cut the cake at his k/n-point. Note that by the
choice of k, this k/n-point equals cp(x). The value of the cuts at x and cp(x) is the
same for all the players other than p, thus any following answer to an evaluation
query is the same in P ′ and P. Furthermore, since the shape of the peaks is
predetermined and the same for all the players, from the cut of P ′ at cp(x) we
can determine the original cut of P at x. Consequently P ′ can simulate all the
decisions of P. When assigning pieces, each original cut x of P is replaced by the
corresponding cut cp(x) of P ′. Clearly, both protocols make the same number of
cuts, and Lemma 1 yields that if P is fair, then also P ′ is fair. �	

Hence, from now on we may concentrate on some fixed primitive protocol
P∗, and on the situation where all cuts are from the set X. The strategy of the



466 J. Sgall and G.J. Woeginger

adversary is based on a permutation π of the integers 1, . . . , n; this permutation
π is kept secret and not known to the protocol P∗.

Now assume that at some point in time protocol P∗ asks player p to perform
a cut at his i/n-point. Then the adversary fixes the measures as follows:

– If π(p) < i, then the adversary assigns the i/n-point of player p to the
smallest point in the set Xi that has not been used before.

– If π(p) > i, then the adversary assigns the i/n-point of player p to the largest
point in the set Xi that has not been used before.

– If π(p) = i, then the adversary assigns the i/n-point of player p to the ith
smallest point in the set Xi.

Consequently, any possible assignment of i/n-points to points in Xi has the
following form: The player q with π(q) = i sits at the ith smallest point. The
i − 1 players with π(p) ≤ i − 1 are at the first (smallest) i − 1 points, and the
n − i players with π(p) ≥ i + 1 are at the last (largest) n − i points. The precise
ordering within the first i − 1 and within the last n − i players depends on the
behavior of the protocol P∗. When protocol P∗ terminates, then the adversary
fixes the ordering of the remaining i/n-points arbitrarily (but in agreement with
the above rules).

Lemma 3. If π(p) ≤ i ≤ π(q) and p �= q, then in the ordering fixed by the
adversary the i/n-point of player p strictly precedes the i/n-point of player q.

Proof. Immediately follows from the adversary strategy above. �	
If the protocol P∗ asks a player p an evaluation query on an existing cut at

i/n-point of player p′, the current assignment of i/n-points to points in Xi and
the permutation π determine if the i/n-point of player p is smaller or larger than
that of p′ (for all the possible resulting assignment obeying the rules above). This
is all that is necessary to determine the value of the cut, and thus the adversary
can generate an honest answer to the query.

At the end, the primitive protocol P∗ must assign intervals to players: P∗

selects n−1 of the performed cuts, say the cuts at positions 0 ≤ y1 ≤ y2 ≤ · · · ≤
yn−1 ≤ 1; moreover, we define y0 = 0 and yn = 1. Then for i = 1, . . . , n, the
interval [yi−1, yi] goes to player φ(i), where φ is a permutation of 1, . . . , n.

Lemma 4. If the primitive protocol P∗ is fair, then

(a) yi ∈ Xi holds for 1 ≤ i ≤ n − 1.
(b) The interval [yi−1, yi] contains the (i−1)/n-point and the i/n-point of player

φ(i), for every 1 ≤ i ≤ n.

Proof. (a) If y1 is at an 0/n-point of some player, then y1 = 0 and piece [y0, y1]
has measure 0 for player φ(1). If yn−1 ∈ Xn, then piece [yn−1, yn] has measure at
most 1/(n + 1) for player φ(n). If yi−1 ∈ Xj and yi ∈ Xj for some 2 ≤ i ≤ n − 1
and 1 ≤ j ≤ n − 1, then player φ(i) receives the piece [yi−1, yi] of measure at
most 1/(n + 1). This leaves the claimed situation as the only possibility.



A Lower Bound for Cake Cutting 467

(b) Player φ(i) receives the cake interval [yi−1, yi]. By the statement in (a),
this interval can not cover player φ(i)’s measure-peaks around j/n-points with
j < i − 1 or with j > i. The two peaks around the (i − 1)/n-point of player φ(i)
yield only a measure of 1/(n + 1); thus the interval cannot avoid the i/n-point.
A symmetric argument shows that the interval cannot avoid the (i − 1)/n-point
of player φ(i). �	

Lemma 5. For any permutation σ �= id of the numbers 1 . . . n, there exists some
1 ≤ i ≤ n with σ(i + 1) ≤ i ≤ σ(i).

Proof. Take the minimum i with σ(i + 1) ≤ i. �	
Finally, we claim that φ = π−1. Suppose otherwise. Then π ◦ φ �= id and by

Lemma 5 there exists an i such that

π(φ(i + 1)) ≤ i ≤ π(φ(i)).

Let p := φ(i + 1) and q := φ(i), let zp denote the i/n-point of player p, and
let zq denote the i/n-point of player q. Lemma 3 yields zp < zq. According to
Lemma 4.(b), point zp must be contained in [yi, yi+1] and point zq must be
contained in [yi−1, yi]. But this implies zp ≥ yi ≥ zq and blatantly contradicts
zp < zq.

This contradiction shows that the assignment permutation ρ of protocol P∗

must be equal to the inverse permutation of π. Hence, for each permutation
π the primitive protocol must reach a different leaf in the underlying decision
tree. After an evaluation query Eval(p; x), where x is a result of Cut(p′; i/n), for
p �= p′ and 1 ≤ i < n, the protocol is returned one of only two possible answers,
namely i/(n + 1) or (i + 1)/(n + 1), indicating if Cut(p; i/n) is before or after x
in Xi (if p = p′ or i ∈ {0, n}, the answer is unique and trivial). After every query
Cut(p; i/n), the primitive protocol is returned one point of Xi: namely the first
unused point if π(p) < i, the last unused point if π(p) > i, or the ith point if
π(p) = i. Since the values in Xi are known in advance, the whole protocol can
be represented by a tree with a binary node for each possible evaluation query
and a ternary node for each possible cut. The depth of a leaf in the tree is the
number of cuts and evaluation queries performed for an instance corresponding
to a given permutation. Since there are n! permutations, the maximal depth of a
leaf corresponding to some permutation must be at least log3(n!) = Ω(n log n).
This completes the proof of Theorem 1.

4 Discussion

One contribution of this paper is a discussion of various models and assumptions
for cake cutting (that appeared in the literature in some concise and implicit
form) and a definition of a restricted model that covers the best protocols known.

The main result is a lower bound of Ω(n log n) on the number of cuts and
evaluation queries needed for simple fair division in this restricted n-player cake



468 J. Sgall and G.J. Woeginger

cutting model. The model clearly has its weak points (see, again, the discussion in
Section 2), and it would be interesting to provide similar bounds in less restricted
models. In particular, we suggest the two open problems, related to the two
restrictions in our model.

Assigning More Subintervals

Problem 1. How many cuts are needed if no evaluation queries are allowed (but
any player can be assigned several intervals)?

Our lower bound argument seems to break down even for ‘slight’ relaxations of
the assumption about a single interval: On the instances from our lower bound,
one can easily in O(n) cuts assign to each player two of the intervals of size
ε that support his measure and this is clearly sufficient. And we do not even
know how to make the lower bound work for the case where the cake is a circle,
that is, for the cake that results from identifying the points 0 and 1 in the unit
interval or equivalently when a single player can receive a share of two intervals,
one containing 0 and one containing 1. (Anyway, the circle is considered a non-
standard cake and is not treated anywhere in the classical cake cutting literature
[1,7].)

The restriction to a single subinterval share for each player seems very signif-
icant in our lower bound technique. On the other hand, all the protocols known
to us obey this restriction.

Evaluation Queries

Problem 2. How many cuts are needed if any player is required to receive a single
subinterval (but evaluation queries are allowed and free)?

With evaluation queries, our lower bound breaks, since the decision tree is no
longer ternary. After performing a cut, we may learn that π(p) < i or π(p) > i,
in which case we gain no additional information. However, once we find i such
that π(p) = i, the protocol finds out all values of p′ satisfying π(p′) < i and we
can recurse on the two subinstances. We can use this to give a protocol that uses
only O(n log log n) cuts (and free evaluation queries) and works on the instances
from our lower bound.

The currently best deterministic protocol for exact fair division of Even &
Paz [2] does not need evaluation queries. However, other protocols in [3,5,6,10],
in particular those that achieve not exactly but only approximately fair division,
do use evaluation queries. Also the randomized protocol of Even & Paz [2] with
expected O(n) cuts uses expected Θ(n log n) evaluation queries. Thus it would
be very desirable to prove a lower bound for a model including free evaluation
queries, or perhaps find some trade-off between cuts and evaluation queries.

The protocols actually use only limited evaluations like “Is your measure of
cake piece Z less, greater, or equal to the threshold τ?” or “Is your measure of
cake piece Z1 less, greater, or equal to your measure of cake piece Z2?”. Perhaps
handling these at first would be more accessible. We hope that this problem



A Lower Bound for Cake Cutting 469

could be attacked by a similar lower bound technique using the decision trees in
connection with a combinatorially richer set of instances.

Another interesting question concerns the randomized protocols. The ran-
domized protocol of Even & Paz [2] uses an expected number of O(n) cuts
and Θ(n log n) evaluation queries. Can the number of evaluation queries be de-
creased? Or can our lower bound be extended to randomized protocols?

Finally, let us remark that our model seems to be incomparable with that
of Magdon-Ismail, Busch & Krishnamoorthy [4]. The set of instances for which
they prove a lower bound of Ω(n log n) on the number of comparisons can be
easily solved with O(n) cuts with no evaluation queries even in our restricted
model. On the other hand, they prove a lower bound for protocols that have no
restriction similar to our requirement of assigning a single subinterval to each
player. The common feature of both models seems to be exactly the lack of
ability to incorporate the free evaluation queries; note that using an evaluation
query generates at least one comparison.

Acknowledgment. We thank anonymous referees for providing several com-
ments that helped us to improve the paper.

References

1. S.J. Brams and A.D. Taylor (1996). Fair Division – From cake cutting to dispute
resolution. Cambridge University Press, Cambridge.

2. S. Even and A. Paz (1984). A note on cake cutting. Discrete Applied Mathematics
7, 285–296.

3. S.O. Krumke, M. Lipmann, W. de Paepe, D. Poensgen, J. Rambau, L.

Stougie, and G.J. Woeginger (2002). How to cut a cake almost fairly. Pro-
ceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’2002), 263–264.

4. M. Magdon-Ismail, C. Busch, and M.S. Krishnamoorthy (2003). Cake cut-
ting is not a piece of cake. Proceedings of the 20th Annual Symposium on Theo-
retical Aspects of Computer Science (STACS’2003), LNCS 2607, Springer Verlag,
596–607.

5. J.M. Robertson and W.A. Webb (1991). Minimal number of cuts for fair divi-
sion. Ars Combinatoria 31, 191–197.

6. J.M. Robertson and W.A. Webb (1995). Approximating fair division with a
limited number of cuts. Journal of Combinatorial Theory, Series A 72, 340–344.

7. J.M. Robertson and W.A. Webb (1998). Cake-cutting algorithms: Be fair if
you can. A.K. Peters Ltd.

8. H. Steinhaus (1948). The problem of fair division. Econometrica 16, 101–104.
9. W.A. Webb (1997). How to cut a cake fairly using a minimal number of cuts.

Discrete Applied Mathematics 74, 183–190.
10. G.J. Woeginger (2002). An approximation scheme for cake division with a linear

number of cuts. Proceedings of the 10th Annual European Symposium on Algo-
rithms (ESA’2002), LNCS 2461, Springer Verlag, 896–901.


	Introduction
	The Restricted Cake Cutting Model
	The Proof of the Lower Bound
	Discussion



