
Sequencing by Hybridization in Few Rounds

Dekel Tsur∗

Abstract

Sequencing by Hybridization (SBH) is a method for reconstructing an un-
known DNA string based on obtaining, through hybridization experiments, whether
certain short strings appear in the target string. Following Margaritis and Skiena [12],
we study the SBH in rounds problem: The goal is to reconstruct an unknown
string A (over a fixed alphabet) using queries of the form “does the string S ap-
pear in A?” for some query string S. The queries are performed in rounds, where
the queries in each round depend on the answers to the queries in the previous
rounds. We show that almost all strings of length n can be reconstructed in log∗ n

rounds with O(n) queries per round.
We also consider a variant of the problem in which for each substring query S,

the answer is whether S appears once in the string A, appears at least twice in A,
or does not appear in A. For this problem, we show that almost all strings can
be reconstructed in 2 rounds of O(n) queries. Our results improve the previous
results of Margaritis and Skiena [12] and Frieze and Halldórsson [8]. Moreover,
the second result is optimal.

Keywords: Sequencing by hybridization; Probabilistic analysis

1 Introduction

Sequencing by Hybridization (SBH) [2, 11] is a method for sequencing of long DNA
molecules. In this method, the target string is hybridized to a chip containing known
strings. For each string in the chip, if its reverse complement appears in the target,
then the two strings will bind (or hybridize), and this hybridization can be detected.
Thus, SBH can be modeled as the problem of finding an unknown target string using
queries of the form “does S appear in the target string?” for some query string S.
Classical SBH consists of making queries for all the strings of length k for some fixed
k, and then constructing the target string using the answers to the queries.

Unfortunately, string reconstruction is often not unique: Other strings can have the
same set of k-long substrings as the target’s. For an alphabet of size σ, only strings of
length O(σ

1

2
k) can be reconstructed reliably when using queries of length k [1,6,15,17].

∗Department of Computer Science, Ben-Gurion University of the Negev.
E-Mail: dekelts@cs.bgu.ac.il

1

In other words, in order to reconstruct a string of length n, it is required to take
k = 2 logσ n + Θ(1), and thus the number of queries is Θ(n2). As this number is large
even for short strings, SBH is not considered competitive in comparison with standard
gel-based sequencing technologies.

Several methods for overcoming the limitations of SBH were proposed: alternative
chip designs [7, 10, 15, 21], using analog spectra [16], using location information [3–5,9,
17], using a known homologous string [14], and using restriction enzymes [18].

Margaritis and Skiena [12] suggested asking the queries in several rounds, where the
queries in each round depend on the answers to the queries in the previous rounds. The
goal is to reconstruct the target strings using as few rounds as possible, where each round
contains as few queries as possible. Margaritis and Skiena [12] gave several results,
including an algorithm that reconstructs almost all strings of length n in O(log n)
rounds, where the number of queries in each round is O(n). They also showed that
every string of length n can be reconstructed in O(log n) rounds using n2/ log n queries
in each round. Skiena and Sundaram [19] showed that every string can be reconstructed
in (σ − 1)n + O(

√
n) rounds with one query per round.

Frieze and Halldórsson [8] studied a variant of the problem, in which for each sub-
string query, the answer is whether the string appears once in the target, appears at
least twice in the target, or does not appear in the target. We call this model the
ternary model, while the former model will be called the binary model. For the ternary
model, Frieze and Halldórsson gave an algorithm that reconstruct almost all strings of
length n in 7 rounds with O(n) queries in each round.

There are several known lower bounds on the string reconstruction problem. First,
in order to reconstruct a constant fraction of all strings of length n, a total of Ω(n)
queries are needed [7]. Moreover, if only one round of queries is performed, then Ω(n2)
queries are needed [20]. These upper bound apply both to the binary and ternary
models.

In this paper, we investigate the string reconstruction problem when the number
of queries in each round is linear in the length of the target string. We improve the
results of [12] and [8] as follows: For the binary model, we show that almost all strings
of length n can be reconstructed in log∗

σ n rounds (using O(n) queries per round). For
the ternary model, we show that almost all strings of length n can be reconstructed in
2 rounds (using O(n) queries per round). The latter result is optimal due to the lower
bounds mentioned above.

We note that for obtaining our results, we use the algorithms from [8,12] with some
changes in the parameters of the algorithms. The contribution of this paper is a new
analysis which gives the reduction in the number of rounds.

The rest of this paper is organized as follows: Section 2 contains basic definitions
and top-level description of our algorithms. In Section 3 we give the algorithm for the
binary model, and in Section 4 we give the algorithm for the ternary model.

2

2 Preliminaries

For clarity, we shall assume for the rest of the paper that the alphabet of the strings is
Σ = {A, C, G, T}. However, our results hold for any finite alphabet.

For a string A = a1 · · ·an, let Al
i denote the l-substring aiai+1 · · ·ai+l−1. The binary

k-spectrum of a string A is a mapping SPA,k
2 : Σk → {0, 1} such that SPA,k

2 (B) = 1 if
B is a substring of A, and SPA,k

2 (B) = 0 otherwise. The ternary k-spectrum of A is
a mapping SPA,k

3 : Σk → {0, 1, 2}, where SPA,k
3 (B) = 0 if B is not a substring of A,

SPA,k
3 (B) = 1 if B appears in A exactly once, and SPA,k

3 (B) = 2 if B appears in A
twice or more. We shall omit the subscript when referring to a spectrum of unspecified
type, or when the type of the spectrum is clear from the context.

Let log n = log4 n, log(1) n = log n and log(i) n = log(log(i−1) n) for i > 1. Define
log∗ n to be the minimum integer i such that log(i) n ≤ 1.

As mentioned in the introduction, we are interested in algorithms that reconstruct
almost all strings of some length n. It is convenient to assume that the target string
is a random string of length n, and then bound the probability that some algorithm
reconstructs the target string. We will use A = a1 · · ·an denote the target string. In the
following, we say that an event happens with high probability (w.h.p.) if its probability
is 1− n−Ω(1).

Our algorithms have the same basic structure:

1. k ← k0.

2. Let Q = Σk. Ask the queries in Q and construct SPA,k.

3. For t = 1, . . . , T do:

(a) SPA,k+kt ← Extend(SPA,k, kt).

(b) k ← k + kt.

4. Reconstruct the string from SPA,k.

Procedure Extend uses SPA,k and one round of queries in order to build SPA,k+kt (im-
plementations of Extend will be given in Sections 3 and 4). If at step 4 of the algorithm
the value of k is 2 log n + s, then A will be reconstructed correctly with probability
1 − O(4−s) [15]. In particular, if s = Ω(log n) then A will be reconstructed correctly
with high probability. Our goal in the next sections is to design procedure Extend,
analyze its performance, and choose the parameters k0, . . . , kT .

The following theorem will be used to bound the number of queries.

Theorem 1 (McDiarmid’s bound [13]). Let f : R
n → R be a function such that |f(x)−

f(x′)| ≤ ci if x and x′ differ only on the i-th coordinate. Let Z1, . . . , Zn be independent
random variables. Then,

P [f(Z1, . . . , Zn)− E [f(Z1, . . . , Zn)] > t] ≤ exp

(−t2
∑n

i=1 c2
i

)

.

3

3 Binary model

In this section, we consider the binary model. Procedure Extend(SPA,k, ∆) is as follows:

1. Let QA be the set of all strings s1 · · · sk+∆ such that SPA,k(si · · · si+k−1) = 1 for
all i ∈ {1, . . . , ∆}.

2. Ask the queries in QA.

3. For every string B of length k+∆, set SPA,k+∆(B) = 1 if B ∈ QA and the answer
for B was ‘yes’, and set SPA,k+∆(B) = 0 otherwise.

We give a small example of procedure Extend: Let A = CGGATGAG, k = 3, and ∆ =
2. The set QA contains all the substrings of A of length 5 (CGGAT, GGATG, GATGA,
and ATGAG). Furthermore, QA contains the string CGGAG as all its substrings of
length 3 (CGG, GGA, GAG) are substrings of A, and the strings ATGAT and TGATG.

The correctness of procedure Extend is trivial. We now estimate the number of
queries that are asks by the procedure. Clearly, the number of queries in QA for which
the answer is ‘yes’ is at most n−(k+∆)+1. It remains to bound the number of queries
for which the answer is ‘no’. Denote this number by Y .

Lemma 2. If ∆ ≤ k then E [Y] = O((k24∆−k + (n/4k)k34∆−k + (n∆/4k)en∆/4k−1

) · n).

Proof. Let B be the set of all strings of length k+∆ that do not appear in A. One can
compute E [Y] by computing PB∈B [B ∈ QA] (note that the probability PB∈B [B ∈ QA]
is over both the random choice of A and the random choice of a string B from B),
and then multiplying this probability by |B|. This can be extended as follows: For a
partition of B into disjoint sets B0, . . . ,Bl, we have that E [Y] =

∑

i |Bi|·PB∈Bi
[B ∈ QA].

The advantage of the latter approach over the former one is that an appropriate choice
of the sets B0, . . . ,Bl can simplify the computation of the probabilities. Since we are
interested in an upper bound on E [Y], instead of a partition of B we will take subsets
B0, . . . ,Bl of B whose union is B. Then, E [Y] ≤∑i |Bi| · PB∈Bi

[B ∈ QA].
The subsets of B are defined as follows. First, note that if B ∈ QA then the

prefix of B of length k is a substring of A. Therefore, defining B0 to be the set of all
strings of length k +∆ whose prefixes of length k are not substrings of A, we have that
PB∈B0

[B ∈ QA] = 0. Every string in B \ B0 is of the form at · · ·at+k+∆−s−1b1 · · · bs for
some 1 ≤ s ≤ ∆ and t ≤ n− k−∆ + s + 1, where b1 6= at+k+∆−s (we assume here that
an+1 is a special character that is not equal to a character in Σ). We thus define

Bs = {at · · ·at+k+∆−s−1b1 · · · bs : t ≤ n− k −∆ + s + 1, b1 6= at+k+∆−s}.

Clearly, |Bs| ≤ n · 3 · 4s−1. For the rest of the proof, we will give a bound on
PB∈Bs

[B ∈ QA] for some fixed s.
Let B = at · · ·at+k+∆−s−1b1 · · · bs be a random string from Bs. From the definition of

procedure Extend, we have that B ∈ QA if and only if there are indices r∆−s+2, . . . , r∆+1

4

such that Bk
i = Ak

ri
for all i (note that we always have Bk

i = Ak
t+i−1 for i = 1, . . . , ∆−

s + 1). Since ∆ ≤ k, we have that every substring Bk
i for i ≥ ∆ − s + 2 contains the

character b1, and from the fact that b1 6= at+k+∆−s we conclude that ri 6= t + i − 1 for
all i ≥ ∆− s + 2.

Suppose we consider some fixed r∆−s+2, . . . , r∆+1, and we want to compute the
probability that Bk

i = Ak
ri

for all i. These equality events may not be independent:

Example 1. if ri+1 = ri + 1 then P
[

Bk
i+1 = Ak

ri+1
Bk

i = Ak
ri

]

= 1/4.

Example 2. If ri = ri+1 = ri+2 then P
[

Bk
i+2 = Ak

ri+2
Bk

i = Ak
ri
∧Bk

i+1 = Ak
ri+1

]

= 1/4.

We can eliminate the dependencies of the type shown in Example 1 by grouping together
equality events. More precisely, we say that two indices ri and rj are adjacent if
rj − ri = j − i. For two adjacent indices ri and rj with i < j, the events Bk

i = Ak
ri

and Bk
j = Ak

rj
happen if and only if Bk+j−i

i = Ak+j−i
ri

(this follows from the fact that
j − i ≤ ∆ − 1 ≤ k − 1). More generally, for each equivalence class of the adjacency
relation there is a corresponding equality event between a substring of A and a substring
of B. We can assume that the equivalence classes of the adjacency relation have simple
structure: We say that the indices r∆−s+2, . . . , r∆+1 are simple if there are integers
∆+2−s = c1 < c2 < · · · < cx < cx+1 = ∆+2 such that the indices rci

, rci+1, . . . , rci+1−1

form an equivalence class for i = 1, . . . , x.

Claim 3. B ∈ QA if and only if there are simple indices r∆−s+2, . . . , r∆+1 such that
Bk

i = Ak
ri

for all i.

Proof. Suppose that B ∈ QA, and let r∆−s+2, . . . , r∆+1 be (not necessarily simple)
indices such that Bk

i = Ak
ri

for all i. If ri and rj are adjacent indices, with i < j,
then Bk

l = Ak
ri+l−i for every l = i, . . . , j. Therefore, for every l = i + 1, . . . , j − 1, if

rl 6= ri + (l− i) we can change the value of rl to ri + (l− i). By repeating this process,
we obtain the desired simple indices.

The other direction of the claim is trivial.

To compute (or bound) PB∈Bs
[B ∈ QA], consider some fixed simple indices r∆−s+2, . . . , r∆+1.

We want to compute the probability that Bk
i = Ak

ri
for all i, or equivalently, the prob-

ability that B
k−1+ci+1−ci
ci = A

k−1+ci+1−ci
rci

for i = 1, . . . , x. Each string A
k−1+ci+1−ci
rci

is

called a block and will be denoted by Li. We also define block L0 to be the string Ak+∆
t .

The starting position in A of block Li is rci
, and the starting position of Li in B is ci.

Two blocks Li and Lj overlap if their occurrences in A have common letters (in other
words, for i < j, Li and Lj overlap if [rci

, rci
+ |Li| − 1] ∩ [rcj

, rcj
+ |Lj | − 1] 6= ∅).

We consider three cases. The first case is when there are no overlapping blocks. In
this case, the events {Bk−1+ci+1−ci

ci = A
k−1+ci+1−ci
rci

}xi=1 are independent, so the probabil-
ity that these events happen for fixed r∆+2−s, . . . , r∆+1 is

x
∏

i=1

1

4k−1+ci+1−ci
=

1

4
Px

i=1(k−1+ci+1−ci)
=

1

4(k−1)x+s
.

5

For fixed x, the number of ways to choose simple indices r∆+2−s, . . . , r∆+1 which have x
equivalence classes is bounded by

(

s−1
x−1

)

nx. Therefore, the contribution of the first case
to PB∈Bs

[B ∈ QA] is at most

s
∑

x=1

(

s− 1

x− 1

)

nx

4(k−1)x+s
=

n

4k−1+s

s
∑

x=1

(

s− 1

x− 1

)

(n

4k−1

)x−1

=
n

4k−1+s

(

1 +
n

4k−1

)s−1

≤ n

4k−1+s
· en(s−1)/4k−1

.

In the next two cases, assume that there are overlapping blocks, and let Li and Lj

be two blocks that overlap with i < j. If i > 0 then consider the events Bk
ci

= Ak
rci

and

Bk
cj

= Ak
rcj

. These two events are independent (see the proof of Lemma 6 in the next

section), so the probability that these events happen (for fixed ci, cj , rci
, and rcj

) is
1/42k. The number of ways to choose ci and cj is

(

s
2

)

≤ ∆2/2, and the number of ways
to choose rci

and rcj
is at most 2(k+∆)n (as |rci

−rcj
|≤ k+∆−1), so the contribution

of the second case to PB∈Bs
[B ∈ QA] is bounded by (k + ∆)∆2n/42k ≤ 2k3n/42k.

The last case is when i = 0. The event Bk
cj

= Ak
rcj

is composed of k equalities

between the cj + l-th letter of B and the rcj
+ l-th letter of A for l = 0, . . . , k − 1.

Each such equality adds a requirement that either two letters of A are equal (if i + j ≤
k +∆−s), or a letter in b1 · · · bs is equal to a letter in A. In either case, the probability
that such equality happens given that the previous equalities happen is exactly 1/4, as
at least one of the two letters of the equality is not restricted by the previous equalities.
Therefore, for fixed cj and rcj

, the probability that Bk
cj

= Ak
rcj

is 1/4k. The number of

ways to choose cj is s ≤ ∆, and the number of ways to choose rcj
is at most 2(k + ∆).

Thus, the contribution of the first case to PB∈Bs
[B ∈ QA] is at most 4k2/4k.

Combining the three cases, we obtain that

PB∈Bs
[B ∈ QA] ≤ 4k2

4k
+

2k3n

42k
+

n

4k−1+s
· en∆/4k−1

.

Therefore,

E [Y] ≤
∆
∑

s=1

n · 3 · 4s−1 · PB∈Bs
[B ∈ QA]

≤
(

4k24∆−k + 2
(n

4k

)

k34∆−k + 3

(

n∆

4k

)

en∆/4k−1

)

· n.

Lemma 4. If k ≥ log n, k = O(logn), and ∆ ≤ 0.48 · log n, then w.h.p., Y =
O((n∆/4k)en∆/4k−1 · n) + o(n).

Proof. By Lemma 2,

E [Y] = O((log2 n + (n/4k) · log3 n) · 4−0.52 log n · n + (n∆/4k)en∆/4k−1 · n)

= O((n∆/4k)en∆/4k−1 · n) + o(n).

6

The random variable Y is a function of the random variables a1, . . . , an. A change in
one letter ai changes k substrings of A of length k. For a single k-substring of A, the
number of strings of length k + ∆ that contain it is at most (∆ + 1)4∆. Therefore, a
change in one letter of A changes the value of Y by at most k(∆+1)4∆ = O(n0.48 log2 n).
Using Theorem 1,

P
[

Y − E [Y] > n0.99
]

≤ exp

(

−n2·0.99

n ·O
(

n0.48 log2 n
)2

)

= e−Ω(n0.02/ log4 n),

and the lemma follows.

We are now ready to present our first algorithm, which will be called algorithm A.
We first define fi to be a tower of fours of height i (i.e., f1 = 4 and fi = 4fi−1 for
i > 1). Algorithm A is based on the algorithm given in Section 2 with procedure
Extend described in the beginning of this section, and with the following parameters:
T = log∗ n− 1, k0 = ⌈log n⌉, and kt = min(ft+3, 0.48 · log n) for t = 1, . . . , T .

Theorem 5. With high probability, algorithm A reconstructs a random string of length
n and uses O(n) queries in each round.

Proof. Since flog∗ n−1 > 0.48 log n, we get that kT = kT−1 = kT−2 = 0.48 · log n.

Thus,
∑T

t=0 kt > 2.1 · log n, so the algorithm reconstructs the target string with high
probability.

The number of queries in the first round is 4k0 ≤ 4n. Let lt =
∑t−1

i=0 ki and Lt =
nkt/4lt−1. We claim that Lt ≤ L1 for all t ≥ 2. The proof of this claim is simple as

Lt =
nkt

4lt−1
≤ n4kt−1

4lt−1
=

n

4lt−1−1
≤ Lt−1.

By Lemma 4, w.h.p., the number of queries in round t is n + O(Lt−1e
Lt−1 · n) + o(n).

Since Lt ≤ L1 ≤ nf4/4k0−1 = O(1), it follows that the number of queries in each round
is O(n).

4 Ternary model

For the ternary model, we use a procedure called Extend2, that is based on the algorithm
of Frieze and Halldórsson [8]:

1. Let QA be the set of all strings s1 · · · sk′ of length k′ ∈ {k + 1, . . . , k + ∆} such
that SPA,k(s1 · · · sk) ≥ 1, SPA,k(sk′−k+1 · · · sk) ≥ 1, and SPA,k(si · · · si+k−1) = 2
for i = 2, . . . , k′ − k.

2. Ask the queries in QA and construct SPA,k+∆.

The correctness of procedure Extend follows from [8].

7

Lemma 6. If k ≥ log n + 2 and ∆ < k, the expected number of queries asked by
Extend2(SPA,k, ∆) is O(n).

Proof. The proof is similar to the proof of Lemma 2. We first bound the number of
‘no’ queries. For this purpose, define B to be the set of all strings of lengths between
k + 1 and k + ∆ that do not appear in A. We define subsets of B as follows: First, let
B0 to be the set of all strings in B whose prefixes of length k are not substrings of A.
Next, for s ∈ {1, . . . , ∆} and l ∈ {0, . . . , ∆− s}, let

Bs,l = {at · · ·at+k+l−1b1 · · · bs : t ≤ n− k − l + 1, b1 6= at+k+l},

and we have |Bs,l| ≤ n · 3 · 4s−1. Fix some s and l, and let B = at · · ·at+k+l−1b1 · · · bs be
a random string from Bs,l.

Claim 7. B ∈ QA if and only if there are indices r1
l+2, . . . , r

1
l+s+1 and r2

2, . . . , r
2
l+s such

that

1. Bk
i = Ak

rj
i

for all i and j.

2. rj
i 6= t + i− 1 for all i and j.

3. r1
i 6= r2

i for all i.

We say that the indices r1
l+2, . . . , r

1
l+s+1, r

2
2, . . . , r

2
l+s are simple if each equivalence classes

of the adjacency relation is of the form rj
i , r

j
i+1, . . . , r

j
i′ (recall that two indices rj

i and rj′

i′

are adjacent if rj
i−rj′

i′ = i−i′). Similarly to the proof of Claim 3, if B ∈ QA then we can
obtain indices that satisfy properties 1–3 of Claim 7 and are “almost” simple, where
“almost” means that all the equivalence classes are of the form rj

i , r
j
i+1, . . . , r

j
i′ , except

perhaps the class that contains r1
l+s+1. By ignoring r1

l+s+1, we obtain the following:

Claim 8. If B ∈ QA then there are simple indices r1
l+2, . . . , r

1
l+s, r

2
2, . . . , r

2
l+s that satisfy

properties 1–3 of Claim 7.

Our goal is to give an upper bound on the probability that B ∈ QA. Using Claim 8, we
look at some fixed simple indices r1

l+2, . . . , r
1
l+s, r

2
2, . . . , r

2
l+s that satisfy properties 2–3

of Claim 7, and we will bound the probability that Bk
i = Ak

rj
i

for all i and j. We denote

this event by E .
Denote R1 = {r1

l+2, . . . , r
1
l+s} and R2 = {r2

2, . . . , r
2
l+s}. Let L1

1, . . . , L
1
x1

be the blocks
corresponding to the indices in R1, and let L2

1, . . . , L
2
x2

be the blocks corresponding to

the indices in R2. As before, we define block L1
0 to be the string Ak+∆

t . We say that two
blocks are far if the distance between their starting positions in A is at least 6k. An
important property of this definition is that for a set L of pairwise far blocks, a block
(not in L) can overlap with at most one block from L. Moreover, two blocks that each
overlaps with a distinct block in L cannot overlap with each other.

To help with the proof of the lemma, we build a simple bipartite graph G = (V, E).
The set of vertices V contains vertices v1, . . . , vn that correspond to the n characters

8

Figure 1: Example of the graph G for the case when the blocks are pairwise far (case 1).
In this example k = 4, l = 1, and s = 3. The indices are r1

3 = 40, r1
4 = 41, r2

2 = 2,
r2
3 = 3, and r2

4 = 80. The equivalence classes are {r1
3, r

1
4}, {r2

2, r
2
3}, and {r2

4}. All the
edges of the graph are shown, except for the special edges.

of A, and vertices w1, . . . , wk+l+s that correspond to the k + l + s characters of B.
Each equality event Bk

i = Ak
rj
i

consists of k letters equalities. The graph G contains

k edges (wi, vrj
i
), . . . , (wi+k−1, vrj

i +k−1) that correspond to these equalities. Addition-

ally, G contain special edges (w1, vt), . . . , (wk+l, vt+k+l−1). The set of special edges is
denoted by Ê. See Figure 1 for an example. The probability that event E happens is
∏

C∈CC(G) 4−(|C|−ê(C)−1), where CC(G) is the set of connected component of G, |C| is

number of vertices in the connected component C, and ê(C) is the number of special

edges in C. In particular, if G has no cycles, then P [E] = 4−|E\Ê|. Moreover, for every
set of edges E ′ with Ê ⊆ E ′ ⊆ E such that the graph (V, E ′) has no cycle, we have

P [E] ≤ 4−|E′\Ê|.
We consider several cases:

Case 1 The blocks are pairwise far. Since the graph G does not contain cycles in this
case (see Figure 1), the probability that event E happens is 1/4(k−1)(x1+x2)+l+2s−2. For
fixed x1 and x2, the number of ways to choose the indices r1

l+2, . . . , r
1
l+s, r

2
2, . . . , r

2
l+s is at

most
(

(s−1)−1
x1−1

)(

(l+s−1)−1
x2−1

)

nx1+x2 . Therefore, the contribution of this case to PB∈Bs,l
[B ∈ QA]

is bounded by

s−1
∑

x1=1

l+s−1
∑

x2=1

(

(s− 1)− 1

x1 − 1

)(

(l + s− 1)− 1

x2 − 1

)

nx1+x2
1

4(k−1)(x1+x2)+l+2s−2

=
n2

42(k−1)+l+2s−2

s−1
∑

x1=1

(

s− 2

x1 − 1

)

(n

4k−1

)x1−1
l+s−1
∑

x2=1

(

l + s− 2

x2 − 1

)

(n

4k−1

)x2−1

=
n2

42k+l+2s−4

(

1 +
n

4k−1

)l+2s−4

= O

(

n2

42k+l+2s
· e2(l+s)n/4k−1

)

= O

(

1

4l+2s
· e2(l+s)n/4k−1

)

,

where the last equality follows from the fact that k ≥ log n + 2.

9

Figure 2: Example of the graph G in case 2.

We now assume that there are near blocks. We define a linear order < on the blocks
L1

0, L
1
1, . . . , L

1
x1

, L2
1, . . . , L

2
x2

according to their starting positions in B with equalities
broken arbitrarily (L1

0 is the first block in the order). Let Li
α′ be the block such that

1. Li
α′ is near to a block that appears before Li

α′ in the order <.

2. Li
α′ is the first block in < among all the blocks that satisfy 1.

Let Lj
γ′ be the block such that

1. Lj
γ′ is near to either Li

α′ , a block that appears before Li
α′ in <, or a block that

appear after Lj
γ′ in <.

2. Lj
γ′ is the last block in < among all the blocks that satisfy 1.

Denote α = α′ − 1 and γ = xj − γ′. Let β be the number of indices from R1 that
correspond to the blocks Li

1, . . . , L
i
α, and let δ be the number of indices from Rj that

correspond to the blocks Lj
γ′+1, . . . , L

j
xj

.

Case 2 The blocks Li
α′ and Lj

γ′ are the same block. This implies that in every pair of

near blocks, one of the blocks is Li
α′ and the other block is a block that appears before

Li
α′ in <. Since the blocks that appear before Li

α′ are pairwise far, it follows that there
is at most on pair of overlapping blocks. It is easy to verify that in this case, the graph
G has no cycles (see Figure 2). Thus, for fixed r1

l+2, . . . , r
1
l+s, r

2
2, . . . , r

2
l+s, the probability

of event E is the same as in case 1. The upper bound on the number of ways to choose
r1
l+2, . . . , r

1
l+s, r

2
2, . . . , r

2
l+s for case 1 is also an upper bound on the number of ways to

choose these indices for both case 1 and case 2. Therefore, contribution of case 2 to
PB∈Bs,l

[B ∈ QA] is accounted in case 1.

For the next cases assume that Li
α′ and Lj

γ′ are different blocks.

Case 3 i = 1, α > 0 and γ > 0. Consider the following sets of edges in G:

1. E1 = edges that correspond to the first β indices from R1, first l + β indices from
R2, last δ indices from R1, and last δ indices from R2.

10

2. E2 = edges that correspond to r1
l+2+β.

3. E3 = edges that correspond to rj
l+s−δ.

Note that r1
l+2+β is the first index that corresponds to the block Li

α′ , and rj
l+s−δ is the

last index that corresponds to the block Lj
γ′+1. The first β indices from R1 form α

equivalence classes (corresponding to the blocks L1
1, . . . , L

1
α). Let α2 be the number of

equivalence classes in the first l + β indices from R2. Similarly, the last δ indices from
Rj form γ equivalence classes, and define γ2 to be the number of equivalence classes in
the last δ indices from R3−j.

Let W2 = {wl+β+2, . . . , wk+l+β+1} (resp., W3 = {wl+s−δ, . . . , wk+l+s−δ−1}) be the set
of vertices among w1, . . . , wk+l+s which are incident with an edge of E2 (resp., E3).
Define E ′

3 to be the set of edges from E3 that are incident with a vertex from W3 \W2.

Claim 9. The graph G′ = (V, Ê ∪ E1 ∪E2 ∪ E ′
3) has no cycles.

Proof. Let L be the set of blocks that appear before Li
α′ or after Lj

γ′ in <. The blocks

in L are pairwise far. Therefore, the blocks Li
α′ and Lj

γ′ can each overlap with at most

one block in L. Thus, the subgraphs G2 = (V, Ê ∪E1 ∪E2) and G3 = (V, Ê ∪E1 ∪E ′
3)

have no cycles. Assume first that Lj
γ′ does not overlap with a block that appears after

Lj
γ′ in <. For each vertex from W3 \W2, all its neighbors in G2 have degree 1 (in G2).

Hence, adding the edges in E ′
3 to G2 cannot creates cycles, and we conclude that G′

has no cycles.
Now assume that Lj

γ′ overlaps with a block that appears after Lj
γ′ in <. From the

definition of near blocks, we have 3 possible cases:

1. Li
α′ overlaps with Lj

γ′ , and does not overlap with any of the blocks in L.

2. Li
α′ overlaps with with one block from L (that appear before Li

α′ in <), and does
not overlap with Lj

γ′ .

3. Li
α′ does not overlap with Lj

γ′ and does not overlap with any of the blocks in L.

In the first case we have that for each vertex from W2, all its neighbors in G3 have
degree 1. It follows that G′ has no cycles. In the last two cases, we have that a
connected component of G′ that contains an edge from E ′

3 cannot contain an edge from
E2. Therefore, G′ has no cycles.

Since G′ has no cycles, P [E] ≤ 1/4|E1|+|E2|+|E′

3
|. We have

|E1| = ((k − 1)α + β) + ((k − 1)α2 + l + β) + ((k − 1)γ + δ) + ((k − 1)γ2 + δ),

|E2| = k,

and

|E3| = s− β − δ − 1.

11

For fixed α, α2, β, γ, γ2, and δ, the number of ways to choose the indices that
correspond to the edges of E1 is at most

(

β−1
α−1

)(

l+β−1
α2−1

)(

δ−1
γ−1

)(

δ−1
γ2−1

)

nα+α2+γ+γ2 . There are

at most (α+α2 +1) ·8k ≤ 16k2 ways to choose r1
l+2+β (since the block of r1

l+2+β must be
near one of the blocks L1

0, L
1
1, . . . , L

1
α, L2

1, . . . , L
2
α2

), and at most (α+α2+γ+γ2+2)·8k ≤
32k2 ways to choose rj

l+s−δ. Therefore, the contribution of this case to PB∈Bs,l
[B ∈ QA]

is bounded by

512k4

4k−1+l+s

s−3
∑

β=1

s−β−2
∑

δ=1

1

4β+δ

β
∑

α=1

(

β − 1

α− 1

)

nα

4(k−1)α

l+β
∑

α2=1

(

l + β − 1

α2 − 1

)

nα2

4(k−1)α2

·
δ
∑

γ=1

(

δ − 1

γ − 1

)

nγ

4(k−1)γ

δ
∑

γ2=1

(

δ − 1

γ2 − 1

)

nγ2

4(k−1)γ2

≤ 512k4n4

45(k−1)+l+s

s−3
∑

β=1

s−β−2
∑

δ=1

1

4β+δ
e(l+2β+2δ)n/4k−1

=
512k4n4

45(k−1)+l+s
eln/4k−1

s−3
∑

β=1

(

e2n/4k−1

4

)β s−β−2
∑

δ=1

(

e2n/4k−1

4

)δ

= O

(

k4n4

45k+l+s
eln/4k−1

)

= O

(

k4

4k+l+s
eln/4k−1

)

(for the last two equalities we use the fact that k ≥ log n + 2).
The analysis of the remaining cases is similar, and we omit it. Table 1 summarizes

the different cases and their contribution to PB∈Bs,l
[B ∈ QA].

Summing all cases, we have

PB∈Bs,l
[B ∈ QA] = O

(

1

4l+2s
e2(l+s)n/4k−1

+
k5

4k+l+s
eln/4k−1

)

,

and

E [Y] ≤
∆
∑

s=1

∆−s
∑

l=0

n · 3 · 4s−1 · PB∈Bs,l
[B ∈ QA]

= O





∆
∑

s=1

(

e2n/4k−1

4

)s ∆
∑

l=0

(

e2n/4k−1

4

)l

+
k5

4k

∆
∑

s=1

∆
∑

l=0

(

en/4k−1

4

)l




= O(1).

Using similar argument, the expected number of ‘yes’ queries is O(n).

Algorithm B uses the following parameters: T = 1, k0 = ⌈log n⌉+10, and k1 = ⌈log n⌉.
By Lemma 6 and Markov’s inequality, we obtain the following theorem.

Theorem 10. With probability of at least 0.99, algorithm B reconstructs a random
string of length n and uses O(n) queries in each round.

12

Case Contribution

No near blocks or Li
α′ = Lj

γ′ O
(

1
4l+2s e

2(l+s)n/4k−1

)

i = 1, α > 0, γ > 0 or i = 2, β > l, α > 0, γ > 0 O
(

k4

4k+l+s e
ln/4k−1

)

i = 1, α = 0, γ > 0 or i = 2, β > l, α = 0, γ > 0 O
(

k4

4k+l+s e
ln/4k−1

)

i = 1, α > 0, γ = 0 or i = 2, β > l, α > 0, γ = 0 O
(

k4

4k+l+s e
ln/4k−1

)

j = 1, α = 0, γ = 0 or i = 2, β > l, α = 0, γ = 0 O
(

k4n
42k+l+s e

ln/4k−1

)

i = 2, α > 0, γ > 0 O
(

k5

4k+l+s e
ln/4k−1

)

i = 2, β ≤ l, α = 0, γ > 0 O
(

k3

4k+l+s

)

i = 2, β ≤ l, α > 0, γ = 0 O
(

k5

4k+l+s e
ln/4k−1

)

i = 2, β ≤ l, α = 0, γ = 0 O
(

k2

4k+l+s

)

Table 1: Contribution of all cases to PB∈Bs,l
[B ∈ QA].

5 Concluding remarks and open problems

For the string reconstruction problem with linear sized rounds, we have shown an
log∗

σ n rounds algorithm for the binary model, and a 2 rounds algorithm for the ternary
model. While our result for the ternary model is optimal, it remains an open problem
to determine the minimum number of rounds required in the binary model.

References

[1] R. Arratia, D. Martin, G. Reinert, and M. S. Waterman. Poisson process approxi-
mation for sequence repeats, and sequencing by hybridization. J. of Computational
Biology, 3(3):425–463, 1996.

[2] W. Bains and G. C. Smith. A novel method for nucleic acid sequence determination.
J. Theor. Biology, 135:303–307, 1988.

[3] A. Ben-Dor, I. Pe’er, R. Shamir, and R. Sharan. On the complexity of positional
sequencing by hybridization. J. Theor. Biology, 8(4):88–100, 2001.

[4] S. D. Broude, T. Sano, C. S. Smith, and C. R. Cantor. Enhanced DNA sequencing
by hybridization. Proc. Nat. Acad. Sci. USA, 91:3072–3076, 1994.

[5] R. Drmanac, I. Labat, I. Brukner, and R. Crkvenjakov. Sequencing of megabase
plus DNA by hybridization: theory of the method. Genomics, 4:114–128, 1989.

[6] M. E. Dyer, A. M. Frieze, and S. Suen. The probability of unique solutions of
sequencing by hybridization. J. of Computational Biology, 1:105–110, 1994.

13

[7] A. Frieze, F. P. Preparata, and E. Upfal. Optimal reconstruction of a sequence
from its probes. J. of Computational Biology, 6:361–368, 1999.

[8] A. M. Frieze and B. V. Halldórsson. Optimal sequencing by hybridization in
rounds. J. of Computational Biology, 9(2):355–369, 2002.

[9] S. Hannenhalli, P. A. Pevzner, H. Lewis, and S. Skiena. Positional sequencing by
hybridization. Computer Applications in the Biosciences, 12:19–24, 1996.

[10] S. A. Heath, F. P. Preparata, and J. Young. Sequencing by hybridization using
direct and reverse cooperating spectra. J. of Computational Biology, 10(3/4):499–
508, 2003.

[11] Y. Lysov, V. Floretiev, A. Khorlyn, K. Khrapko, V. Shick, and A. Mirzabekov.
DNA sequencing by hybridization with oligonucleotides. Dokl. Acad. Sci. USSR,
303:1508–1511, 1988.

[12] D. Margaritis and S. Skiena. Reconstructing strings from substrings in rounds. In
Proc. 36th Symposium on Foundation of Computer Science (FOCS), pages 613–
620, 1995.

[13] C. McDiarmid. On the method of bounded differences. In Surveys in Combina-
torics, London Math. Soc. Lectures Notes 141, pages 148–188. Cambridge Univ.
Press, 1989.

[14] I. Pe’er, N. Arbili, and R. Shamir. A computational method for resequencing
long DNA targets by universal oligonucleotide arrays. Proc. National Academy of
Science USA, 99:15497–15500, 2002.

[15] P. A. Pevzner, Y. P. Lysov, K. R. Khrapko, A. V. Belyavsky, V. L. Florentiev, and
A. D. Mirzabekov. Improved chips for sequencing by hybridization. J. Biomolecular
Structure and Dynamics, 9:399–410, 1991.

[16] F. P. Preparata. Sequencing-by-hybridization revisited: The analog-spectrum pro-
posal. IEEE/ACM Trans. on Computational Biology and Bioinformatics, 1(1):46–
52, 2004.

[17] R. Shamir and D. Tsur. Large scale sequencing by hybridization. J. of Computa-
tional Biology, 9(2):413–428, 2002.

[18] S. Skiena and S. Snir. Restricting SBH ambiguity via restriction enzymes. In Proc.
2nd Workshop on Algorithms in Bioinformatics (WABI), pages 404–417, 2002.

[19] S. Skiena and G. Sundaram. Reconstructing strings from substrings. J. of Com-
putational Biology, 2:333–353, 1995.

14

[20] D. Tsur. Tight bounds for string reconstruction using substring queries. In Proc.
9th International Workshop on Randomization and Computation (RANDOM),
LNCS 3624, pages 448–459, 2005.

[21] D. Tsur. Optimal probing patterns for sequencing by hybridization. In Proc. 6th
Workshop on Algorithms in Bioinformatics (WABI), pages 366–375, 2006.

15

