Skip to main content

Finding Short Integral Cycle Bases for Cyclic Timetabling

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2832))

Abstract

Cyclic timetabling for public transportation companies is usually modeled by the periodic event scheduling problem. To obtain a mixed-integer programming formulation, artificial integer variables have to be introduced. There are many ways to define these integer variables.

We show that the minimal number of integer variables required to encode an instance is achieved by introducing an integer variable for each element of some integral cycle basis of the directed graph D=(V,A) defining the periodic event scheduling problem. Here, integral means that every oriented cycle can be expressed as an integer linear combination.

The solution times for the originating application vary extremely with different integral cycle bases. Our computational studies show that the width of integral cycle bases is a good empirical measure for the solution time of the MIP. Integral cycle bases permit a much wider choice than the standard approach, in which integer variables are associated with the co-tree arcs of some spanning tree. To formulate better solvable integer programs, we present algorithms that construct good integral cycle bases. To that end, we investigate subsets and supersets of the set of integral cycle bases. This gives rise to both, a compact classification of directed cycle bases and notable reductions of running times for cyclic timetabling.

Supported by the DFG Research Center “Mathematics for key technologies” in Berlin

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaldi, E.: Personal Communication. Politecnico di Milano, Italy (2003)

    Google Scholar 

  2. Berge, C.: The Theory of Graphs and its Applications. John Wiley & Sons, Chichester (1962)

    MATH  Google Scholar 

  3. Berger, F.: Minimale Kreisbasen in Graphen. Lecture on the annual meeting of the DMV in Halle, Germany (2002)

    Google Scholar 

  4. Champetier, C.: On the Null-Homotopy of Graphs. Discrete Mathematics 64, 97–98 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. CPLEX 8.0 ILOG SA, France (2002), http://www.ilog.com/products/cplex

  6. Deo, N., Kumar, N., Parsons, J.: Minimum-Length Fundamental-Cycle Set Problem: A New Heuristic and an SIMD Implementation. Technical Report CS-TR-95-04, University of Central Florida, Orlando (1995)

    Google Scholar 

  7. Deo, N., Prabhu, M., Krishnamoorthy, M.S.: Algorithms for Generating Fundamental Cycles in a Graph. ACM Transactions on Mathematical Software 8, 26–42 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gleiss, P.: Short Cycles. Ph.D. Thesis, University of Vienna, Austria (2001)

    Google Scholar 

  9. Golynski, A., Horton, J.D.: A Polynomial Time Algorithm to Find the Minimum Cycle Basis of a Regular Matroid. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, p. 200. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Hartvigsen, D., Zemel, E.: Is Every Cycle Basis Fundamental? Journal of Graph Theory 13, 117–137 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Horton, J.D.: A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM Journal on Computing 16, 358–366 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krista, M.: Verfahren zur Fahrplanoptimierung dargestellt am Beispiel der Synchronzeiten (Methods for Timetable Optimization Illustrated by Synchronous Times). Ph.D. Thesis, Technical University Braunschweig, Germany. (1996) in German

    Google Scholar 

  13. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leydold, J., Stadler, P.F.: Minimal Cycle Bases of Outerplanar Graphs. The Electronic Journal of Combinatorics 5, #16 (1998)

    MathSciNet  Google Scholar 

  15. Liebchen, C., Peeters, L.: On Cyclic Timetabling and Cycles in Graphs. Technical Report 761/2002, TU Berlin (2002)

    Google Scholar 

  16. Liebchen, C., Peeters, L.: Some Practical Aspects of Periodic Timetabling. In: Chamoni, P., et al. (eds.) Operations Research 2001. Springer, Heidelberg (2002)

    Google Scholar 

  17. Nachtigall, K.: A Branch and Cut Approach for Periodic Network Programming. Hildesheimer Informatik-Berichte, 29 (1994)

    Google Scholar 

  18. Nachtigall, K.: Cutting planes for a polyhedron associated with a periodic network. DLR Interner Bericht, 17 (1996)

    Google Scholar 

  19. Nachtigall, K.: Periodic network optimization with different arc frequencies. Discrete Applied Mathematics 69, 1–17 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Odijk, M.: Railway Timetable Generation. Ph.D. Thesis, TU Delft, The Netherlands (1997)

    Google Scholar 

  21. de Pina, J.C.: Applications of Shortest Path Methods. Ph.D. Thesis, University of Amsterdam, The Netherlands (1995)

    Google Scholar 

  22. Schrijver, A.: Theory of Linear and Integer Programming, 2nd edn. Wiley, Chichester (1998)

    MATH  Google Scholar 

  23. Serafini, P., Ukovich, W.: A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics 2, 550–581 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Whitney, H.: On the Abstract Properties of Linear Dependence. American Journal of Mathematics 57, 509–533 (1935)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liebchen, C. (2003). Finding Short Integral Cycle Bases for Cyclic Timetabling. In: Di Battista, G., Zwick, U. (eds) Algorithms - ESA 2003. ESA 2003. Lecture Notes in Computer Science, vol 2832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39658-1_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39658-1_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20064-2

  • Online ISBN: 978-3-540-39658-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics