Skip to main content

Multicommodity Flow Approximation Used for Exact Graph Partitioning

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2832))

Abstract

We present a fully polynomial-time approximation scheme for a multicommodity flow problem that yields lower bounds of the graph bisection problem. We compare the approximation algorithm with Lagrangian relaxation based cost-decomposition approaches and linear programming software when embedded in an exact branch&bound approach for graph bisection. It is shown that the approximation algorithm is clearly superior in this context. Furthermore, we present a new practical addition to the approximation algorithm which improves its performance distinctly. Finally, we prove the performance of the graph bisection algorithm using multicommodity flow approximation by computing formerly unknown bisection widths of some DeBruijn- and Shuffle-Exchange-Graphs.

This work was partly supported by the German Science Foundation (DFG) project SFB-376, by the IST Programme of the EU under contract number IST-1999-14186 (ALCOM-FT), and by the Intelligent Information Systems Institute, Cornell University (AFOSR grant F49620-01-1-0076.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, C.: Provably good global routing by a new approximation algorithm for multicommodity flow. In: Proc. of the Int. Conference on Physical Design, pp. 19–25 (2000)

    Google Scholar 

  2. Brunetta, L., Conforti, M., Rinaldi, G.: Abranch-and-cut algorithm for the equicut problem. Mathematical Programming 78, 243–263 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Crainic, T.G., Frangioni, A., Gendron, B.: Bundle-based relaxation methods for multicommodity capacitated fixed charge network design. Discrete Applied Mathematics 112, 73–99 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Farvolden, J., Jones, K., Lustig, I., Powell, W.: Multicommodity Network Flows — The Impact Of Formulation On Decomposition. Mathematical Programming 62, 95–117 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Farvolden, J., Powell, W., Lustig, I.: A primal partitioning solution for the arc-chain formulation of a multicommodity network flow problem. Operations Research 41(4), 669–693 (1993)

    Article  MATH  Google Scholar 

  6. Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A.: The node capacitated graph partitioning problem: a computational study. Mathematical Programming 81, 229–256 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Fleischer, L., Wayne, K.D.: Fast and simple approximation schemes for generalized flow. In: Proceedings 10th Symposium on Discrete Algorithms (1999)

    Google Scholar 

  8. Fleischer, L.K.: Approximating Fractional Multicommodity Flow Independent of the Number of Commodities. SIAM Journal on Discrete Mathematics 13(4), 505–520 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frangioni, A.: A Bundle type Dual-ascent Aproach to Linear Multi-Commodity Min Cost Flow Problems. Technical Report TR-96-01, Dipartimento di Informatica, Universita di Pisa (1996)

    Google Scholar 

  10. Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other fractional packing problems. In: 39th Annual IEEE Symposium on Foundations of Computer Science, pp. 300–309 (1998)

    Google Scholar 

  11. Goldberg, A.V., Oldham, J.D., Plotkin, S.A., Stein, C.: An Implementation of a Combinatorial Approximation Algorithm for Minimum-Cost Multicommodity Flow. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 338–352. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Grigoriadis, M.D., Khachiyan, L.G.: Fast approximation schemes for convex programs with many blocks and coupling constraints. SIAM Journal on Optimization 4, 86–107 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grigoriadis, M.D., Khachiyan, L.G.: Approximate minimum-cost multicommodity flows. Math. Programming 75, 477–482 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Hendrickson, B., Leland, B.: The chaco user’s guide: Version 2.0. Technical Report SAND94-2692, Sandia National Laboratories, Albuquerque (1994)

    Google Scholar 

  15. Johnson, E., Mehrotra, A., Nemhauser, G.: Min-cut clustering. Mathematical Programming 62, 133–151 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karakostas, G.: Fast Approximation Schemes for Fractional Multicommodity Flow Problems. In: SIAM Symposium on Discrete Algorithms (2002)

    Google Scholar 

  17. Karger, D., Plotkin, S.: Adding multiple cost constraints to combinatorial optimization problems, with applications to multicommodity flows. In: Proc. of the 27th Symp. on Theory of Computing, pp. 18–25 (1995)

    Google Scholar 

  18. Karisch, S.E., Rendl, F., Clausen, J.: Solving graph bisection problems with semidefinite programming. INFORMS Journal on Computing 12(3), 177–191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Karypis, G., Kumar, V.: Multilevel algorithms for multi-constraint graph partitioning. Technical Report TR 98-019, Dept. of Computer Science, Univ. of Minnesota (1998)

    Google Scholar 

  20. Klein, P., Plotkin, S., Stein, C., Tardos, E.: Faster approximation algorithms for the unit capacity concurrent flow problem with applications to routing and finding sparse cuts. SIAM Journal on Computing 23, 466–487 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures. Morgan Kaufmann, San Francisco (1992)

    MATH  Google Scholar 

  22. Leighton, T., Makedon, F., Plotkin, S., Stein, C., Tardos, E., Tragoudas, S.: Fast Approximation Algorithms for Multicommodity Flow Problems. Journal of Computer and System Sciences 50(2), 228–243 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mehlhorn, K., Nähler, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Communications of the ACM 38(1), 96–102 (1995)

    Article  Google Scholar 

  24. Pellegrini, F., Roman, J.: SCOTCH: A software package for static mapping by dual recursive bipartitioning of process and architecture graphs. In: Proc. HPCN 1996, pp. 493–498 (1996)

    Google Scholar 

  25. Plotkin, S.A., Shmoys, D., Tardos, E.: Fast approximation algorithms for fractional packing and covering problems. Math. of Operations Research 20, 257–301 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Preis, R., Diekmann, R.: PARTY - A Software Library for Graph Partitioning. In: Topping, B.H.V. (ed.) Advances in Computational Mechanics with Parallel and Distributed Processing, pp. 63–71. Civil-Comp Press (1997)

    Google Scholar 

  27. Radzik, T.: Fast deterministic approximation for the multicommodity flow problem. In: Proc. of the 6th Symp. on Discrete Algorithms, pp. 486–492 (1995)

    Google Scholar 

  28. Radzik, T.: Experimental study of a solution method for multicommodity flow problems. In: Proc. of the 2. Workshop on Algorithm Engineering and Experiments, pp. 79–102 (2000)

    Google Scholar 

  29. Sato, M.: Efficient implementation of an approximation algorithm for multicommodity flows. Master’s thesis, Graduate School of Engineering Science, Osaka University (2000)

    Google Scholar 

  30. Sellmann, M.: Reduction Techniques in Constraint Programming and Combinatorial Optimization. PhD thesis, University of Paderborn, Germany (2002), http://www.upb.de/cs/sello/diss.ps

  31. Sensen, N.: Lower Bounds and Exact Algorithms for the Graph Partitioning Problem. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 391–403. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  32. Shahrokhi, F., Matula, D.W.: The maximum concurrent flow problem. Journal of the ACM 37, 318–334 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Steger, A., Wormald, N.C.: Generating random regular graphs quickly. Combinatorics, Probab. and Comput. 8, 377–396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Young, N.: Randomized rounding without solving the linear program. In: Proc. of the 6th Symp. on Discrete Algorithms, pp. 170–178 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sellmann, M., Sensen, N., Timajev, L. (2003). Multicommodity Flow Approximation Used for Exact Graph Partitioning. In: Di Battista, G., Zwick, U. (eds) Algorithms - ESA 2003. ESA 2003. Lecture Notes in Computer Science, vol 2832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39658-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39658-1_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20064-2

  • Online ISBN: 978-3-540-39658-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics