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Abstract. Enterprise applications implement business resource man-
agement systems, customer relationship management systems, and gen-
eral systems for commerce. These applications rely on infrastructure that
represents the vast majority of the world’s computing resources. Most of
this infrastructure is lightly utilized and incurs high operations manage-
ment costs. Server and storage consolidation are the current best prac-
tices for decreasing costs of ownership in such environments. However,
capacity related decisions about which applications should be placed on
a consolidated server are often made informally. This paper presents
an approach for automating such exercises. We characterize the com-
plex time varying demands of such applications and then assign them to
a small number of servers such that their capacity requirements are sat-
isfied. The approach can be repeated on an on-going basis to ensure the
continued efficient use of resources. A case study using data from 41 data
center servers is used to demonstrate the effectiveness of the technique.

1 Introduction

Today’s enterprise infrastructure is lightly utilized. Computing and storage re-
sources are often cited as being less than 30% busy. This is in significant contrast
to most large scientific computing centers which run at much higher utilization
levels. Unfortunately, the complex resource requirements of enterprise applica-
tions, and the desire to provision for peak demand are reasons for such low
utilization.

Infrastructure consolidation is the current best practice for increasing asset
utilization and decreasing operations costs in enterprise environments. Storage
consolidation replaces disks within hosts with virtual disks supported by storage
area networks and disk arrays. This greatly increases the quantity of storage
that can be managed per operator. Server consolidation identifies groups of
applications that can execute together on an otherwise smaller set of servers
without causing significant performance degradations or functional failures. This
can greatly reduce the number, heterogeneity and distribution of servers that
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must be managed. For both forms of consolidation, the primary goal is typically
to decrease operations costs.

Recent advances in utility computing make it possible for resource utili-
ties to offer secure server and storage resources to enterprise applications on-
demand [1][12]. Each resource utility requires a Resource Management System
(RMS) to govern access to and automate the configuration of its resources [13].
Ideally, such an RMS should also automate the process of assigning applications
to servers. A set of RMS may then cooperate as part of a grid for enterprise
applications. By supporting more applications on fewer servers, such a grid can
help to decrease operations and infrastructure costs.

In this paper, our focus is on a specific class of enterprise applications. We
define an application of this class as a group of operating system processes that
are assigned to the same server. These applications operate continuously and
have time-varying demands but often require only a fraction of the capacity of
their server.

Our contributions in this paper are as follows. We describe the workload
characteristics of the above class of enterprise applications and a model for
characterizing their resource demands. We then introduce two techniques for
assigning applications to a consolidated set of servers. The first is based on a lin-
ear integer programming model, the second on a genetic algorithm. We apply
the techniques in a case study involving data from 41 data center servers. Our
results indicate that the genetic algorithm behaves well with respect to the in-
teger programming approach, requires less computation, and provides greater
opportunities for enhancement.

The rest of the paper is organized as follows. Section 2 gives an overview of
related work. Section 3 describes our system under study, our workload model,
and our experimental design. Assignment algorithms are introduced in Section 4.
A case study is given in Section 5. Section 6 offers concluding remarks.

2 Background and Related Work

Virtualization features are becoming common within today’s enterprise infras-
tructures. Examples of virtualization features include: virtual Local Area Net-
works, Storage Area Networks and disk arrays that support virtual disks, and
virtual machines and other partitioning technologies the enable resource sharing
within servers. These features make it possible for resource management systems
to offer joint, secure, and programmatic configuration and control for computing,
networking and storage infrastructure [7][12].

The above technologies help to enable a control-loop that can continuously
re-evaluate and realize assignment alteratives. To close the loop, applications
must provide interfaces that support their migration from one server to another
while maintaining their qualities of service.

Assignment must deal with both the long term and short term consequences
of consolidating applications on a server. Long term issues pertain to capacity
planning. Shorter term issues deal with arbitration, for example, who should
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get access to resources when demand exceeds supply. Long term consequences
include interactions and correlations between the time varying demands of the
applications. The demands are correlated if they tend to move together within
their demand ranges. Short term consequences deal with the scheduling of re-
sources to applications at specific times in a manner that best meets the goals
of the resource utility. Short term decisions typically operate on time scales of
tens of seconds to hours [3][11]. In this paper, our focus is on long term issues.

There is a substantial literature on the use of optimization methods for re-
source management problems in computing systems. This includes the seminal
work by Chu that uses zero/one integer programming for task and file alloca-
tion [4]. This is known to be an NP-hard problem. The model we consider is
most closely related to the zero/one multiple knapsack problem which is also
NP-hard. [8] demonstrates that genetic algorithms can be used to find good
solutions for such problems. We prefer to apply genetic algorithms over other
knapsack heuristics [2][10] as they appear to be more robust with respect to fu-
ture enhancements to our problem definition. Dick et al. use a genetic algorithm
to schedule embedded system specifications consisting of multiple periodic task
graphs [5]. Our problem differs but we aim to exploit the same properties of
genetic algorithms. In particular, the ability to consider multiple objectives and
to consider general functions when evaluating the merit of an assignment.

3 Methodology

This section describes our system under study, the characteristics of the workload
we examine, and the experimental design for our study.

3.1 System under Study

For the purpose of our study we were able to obtain CPU utilization information
for 41 servers in a data center. The data was collected between September 2, 2001
and October 24, 2001. For each server, the average CPU utilization across all
CPUs in the server was recorded for each five minute interval. This information
was collected using HP OpenView Performance Agent. We consider the work
on each server as a single application and model per-interval CPU demand as
the product of the number of CPUs on the server and their reported aggregate
average utilization.

Table 1. Server Groups

|Group|Number of Servers|Server Class|CPU per Server|MHz|Memory (GB)]

1 10 K-class 6 240 4

2 8 N-class 2-6 550 4-8
3 16 N-class 2-8 440 2-10
4 7 L-class 2-4 440 2-8
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Fig.1. One Week Traces of Application CPU Utilizations

We identified four groups of servers that had similar hardware configurations.
We treat these groups separately. Table 1 provides a breakdown of the groups of
servers. The most homogeneous is Group one, where all 10 servers have the same
number (six) and speed (240 MHz) of CPUs, and the same amount of memory
(4 GB). The other groups consist of servers from the same family with the same
CPU speed, but vary in the number of CPUs and the amount of memory per
server.

For the purpose of our study, we treat the demand of each server as the
demand of one enterprise application. We characterize each application using
its trace of per interval CPU utilization. In general, we can also consider other
attributes such as measures of bandwidth to and from the server and the amount
of real memory used.

Figure 1 illustrates the per-CPU utilization of four applications, each over
a one week period. These applications portray the kinds of behavior we have
observed. Figures 1(a) and (b) illustrate clear time of day effects. The utilizations
are similar for the other weeks of data. The first has some constant background
load, the other’s utilization drops to near zero levels at certain times of day.
Figure 1(c) shows the behavior of an application that is less predictable. It
has a surge of work towards the end of the week. For this application, some
other weeks were basically idle, and others had surges that were more or less
pronounced. Figure 1(d) illustrates a server with a flat CPU utilization. There
were several of these, some with higher and some with lower CPU utilizations.

Traces provide us with a historical view regarding application behavior. They
must be long enough to capture behavior that is representative. We assume that
such behavior will repeat itself; therefore we use the traces as input for our
assignment algorithms.

When consolidating applications, we assume that an application from a server
group is assigned to a consolidated server with a similar configuration. We also
assume that the consolidated server has sufficient memory to support the aggre-
gate demand of its assigned applications.
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3.2 Experimental Design

This section describes our experimental design. In each case the goal is to mini-
mize the number of servers needed for the entire time under study. Our design
explores the sensitivity of assignment to several experimental factors as described
below.

A.

We consider the following scenarios for assignment:

Large multi-processor server: we assume that the target server is a single
server with a large number of CPUs (e.g., 32, 64). Each CPU’s worth of
load from an application is assigned to a CPU for exactly one measurement
interval. We assume processor affinity, i.e. the load cannot be served by any
other CPU in this measurement interval. However, the CPU hosting the load
is re-evaluated at the boundaries of measurement intervals.

. Small servers without fast migration: here the target is a cluster of identical

servers with a small number of CPUs (e.g., 8). Each application is assigned
to one server for the whole computation, but we do not assume processor
affinity, i.e. the load might receive concurrent service from its server’s CPUs.

. Small servers with fast migration: this case is the same as case B, but the

applications are assigned to the target servers for each separate measurement
interval. This implies that an application may migrate between servers at
the measurement interval boundaries. We do not consider the overhead of
migration in our comparison.

For the above cases, we consider several additional factors.

Target utilization M per CPU. We assign the applications to CPUs or servers
in such a way that a fixed target utilization M of each CPU is not exceeded.
The value of M that we use is either 50% or 80%, so each CPU retains an
unused capacity that provides a soft assurance for quality of service. Since
our input data is averaged over 5-minutes intervals, the unused capacity
supports the above-average peaks in demand within an interval. M can also
be specified to set aside resources for expected server virtualization over-
heads. Finally, if per-CPU input utilization data exceeds the value of M for
a measurement interval, it is truncated to M. Otherwise the mathematical
programs can not be solved since no allocation is feasible. With our assign-
ment algorithms, if a utilization is truncated, the application gets assigned
to its own server but doesn’t fully benefit from the 1 — M in soft assurance.
Interval duration D. In addition to the original data with measurement in-
tervals of 5 minutes duration, we average the CPU demands of three consec-
utive intervals for each original server, creating a new input data set with
measurement interval length of 15 minutes. This illustrates the impact of
measurement time scale and, for the case of fast migration, the impact of
migrating applications less frequently.

s, the number of CPUs in each small server. For cases B and C, we assume
that the number s of CPUs of a single server is 6, 8 or 16.

Table 2 summarizes the factors and levels, and indicates when they apply.



Automating Enterprise Application Placement in Resource Utilities 123

Table 2. Summary of Factors and Levels

| Factor |Symb01| Level |Applicable Cases|
Target Utilization M 50%, 80% A, B, C
Interval Duration D |5 min, 15 min A, B, C
Fast migration - false, true B, C
# of CPUs per server s 6, 8, 16 B, C

4 Assignment Methods

This section presents two assignment methods. The first is a linear integer pro-
gramming approach. It takes traces of application demand as input and packs
them onto as small a set of servers as is possible with a limited computation
time. This is a compute intensive process but gives us a baseline set of results
that can be used for comparison. Our second approach is a genetic algorithm.

4.1 Linear Integer Programming Approach

Our goal is to assign the offered applications to as small a set of CPUs or
servers as is possible. To encode constraints for this goal, we introduce an idle
application. Each CPU or server either hosts an idle application or at least one
of the offered applications. The demand of the idle application is set to M for
case A and s- M for cases B and C.

We designate:

I=1{0,1,...} as the index set of applications, where 0 is the index of the idle
application, these are the applications under consideration;

J ={1,...} as the index set of CPUs (case A) or target servers (cases B and
C);

T = {)1, ...} as the index set of measurement intervals (with durations of either
5 or 15 minutes); and,

u; ¢+ as the demand of an application with index ¢ € I for measurement interval
with index ¢ € T'. As mentioned above, for all t € T we set ug; = M for case
A and up s = s- M for cases B and C.

Furthermore, for i € I and j € J let x; ; be a 0/1-variable with the following
interpretation: 1 indicates that the application with index 7 is placed on a CPU or
server with index j, 0 when no such placement is made. Note that o ; = 1,7 € J
indicates that the CPU or server with index j is hosting the idle application, i.e.
it is unused.

The following class of 0/1 integer programs cover our cases. The objective
function is:

— Minimize the number of CPUs (case A) or servers (cases B and C) used by
maximizing the number of idle applications:

maximize E T,
jeJ
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With the following constraints:

— Let the unused CPUs (case A) or servers (cases B and C) be those with
highest indices. For each j € J\{1}:

Zo,j-1 < To,5,

where \ denotes removal from a set.
— Each non-idle application i € I is assigned to exactly one CPU (case A) or
server (cases B and C). For all i € I\{0}:

ind =1.

jeJ

— For case A, each target CPU must not exceed target utilization M in each
time interval t. Each t € T gives rise to a new integer program to be solved
separately. For all j € J:

Zui,txm S M.
i€l

— For case B, each target server must not exceed target utilization M for each
CPU for all measurement intervals ¢t € T simultaneously. For all j € J and

allt e T
Z Ug,tTq,5 S sM.
i€l
— For case C, each target server must not exceed target utilization M for each
CPU for each measurement interval t. Fach t € T' gives rise to a new integer
program. For all j € J:
Zuwa:i,j S sM.
i€l
As mentioned above, for cases A and C we solve one integer program for each
measurement interval. Case B requires one integer program that includes all
time intervals.

4.2 Genetic Algorithm Approach

We rely on the GALib genetic algorithm library as our genetic algorithm
solver [9]. Tt is an extensible and mature C++ library for genetic algorithm opti-
mization capable of general representations and extensible genetic operators. To
use the library, it is necessary to prepare an initial assignment for the solver, to
provide an objective function that is called by the solver to evaluate the utility
of a next assignment, and to provide a mutation function and crossover method
that are called by the solver to generate alternative assignments.

The encoding of a genome, a single assignment, is based on a one-dimensional
array where a value v at position ¢ means that application ¢ is assigned to server v.
For the initial assignment, we simply place all applications on a first server.
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The solver aims to minimize an objective function. In our case, the objective
is to minimize the number of servers used. When an assignment is presented
to the objective function we compute the peak of aggregate demand on each
server. To compute the peak of aggregate demand, we traverse the traces of all
applications under consideration. By re-visiting these traces for each possible
assignment, we take into account both interactions and correlations as described
in Section 2. If the peak demand exceeds M per CPU for any server, then the
assignment, i.e. the genome, is invalid. To correct the genome, we use a greedy
algorithm that starts with the first server. The algorithm simply keeps a subset
of applications on the first server such that the peak of their aggregate demand
does not exceed M per CPU. Those applications that must be moved are moved
to the next server, possibly causing a server to be added. We note that the
crossover method, described later, does not change the number of servers. This
process is repeated with the remaining servers until all applications are assigned.
The objective function returns the number of servers used. If an individual ap-
plication requires more capacity than a server can offer, we mark the result of
the optimization as infeasible and exit.

The solver invokes mutation and crossover routines to perturb the current
assignment and arrive at the next assignment. Our code for the mutation routine
implements three kinds of mutations. The first is to take a number of applications
and re-assign them to the next higher server. This tends to add servers to the
system. The second randomly swaps pairs of applications. The last takes all
the applications from the last server and randomly assigns them to the other
servers. This last step tends to decrease the number of servers used. As a result
our approach both adds and removes servers to increase coverage of the solution
space and avoid local minima.

We rely on the solver’s built in uniform crossover method to generate next
assignments based on earlier assignments. With this approach, the assignment
of each application to a server is taken from one of two parents, each with
probability %

Finally, we describe the termination criteria used by the solver. The solver
generates a population with sixty members (assignments); each member starts
with the initial solution. The population is permitted forty generations (itera-
tions). The solver returns the best assignment observed. When generating as-
signments, we specified that 80% of an assignment should be perturbed from one
iteration to the next. The crossover probability and mutation probability were
set to 0.75 and 0.1, respectively. These values offered good solutions without
excessive running time.

For the B cases, the assignments in the initial solution are based on the peak
of the aggregate demand as computed over the traces. For the C cases, we take
into account the ability of applications to migrate after each measurement in-
terval. Our problem is to deduce how many servers are needed to support the
applications in the presence of such migration. To do this, we consider a daily
profile of demand. Time of day is partitioned into slots and each slot has a dura-
tion equal to that of a measurement interval D. We create an initial solution for
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Fig.2. Numbers of CPUs Required for Group 1

each slot and apply the solver to each slot separately. When computing peak de-
mands for an assignment for a slot, we consider only the subset of measurement
intervals from the traces that apply to the slot. To compare the solution with
the results of the linear integer programming approach, we report the maximum
number of servers that are needed over all slots.

5 Case Study

This section presents the results of the assignment methods for the experimental
design. Due to space constraints, a subset of results for cases A, B, and C are
presented. We note that there is no guarantee that either of the assignment
algorithms offers an optimal assignment.

Figure 2 presents results for Group 1 with D = 5 minutes and M = 50%.
Case A is the Large server case as identified on the x-axis. Cases B and C cor-
respond to the six, eight, and sixteen CPUs per server cases, without and with
fast migration, respectively. Squares in the figure identify the number of CPUs
required on the y-axis versus the number of CPUs per server, as shown on the
x-axis. The quadrants of each square show whether a solution method/fast mi-
gration scenario combination corresponds to that number of CPUs. For example,
the upper-left most square in Figure 2(a) shows that for the six CPU per server
case, without fast migration, both the linear integer program and genetic algo-
rithm found an assignment with forty two CPUs. The squares below it show that
for the fast migration case, the genetic algorithm’s assignment required thirty
six CPUs while the linear integer program’s assignment required thirty CPUs.

As the number of CPUs per server increases, we expect consolidation to be
more effective. However, as Figure 2(a) shows, each server, in particular the last
server, isn’t always well utilized. For this reason, the sixteen CPU per server case
shows a jump in the required number of CPUs. The Large case required only
thirty CPUs. It has the least waste. The results for the Large case were computed
using the linear integer program in a manner similar to the fast migration case.
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Fig.3. Numbers of CPUs Required for Group 3

Figure 2(b) shows the impact of increasing D to fifteen minutes. This smooths
reported bursts in utilization, in some cases, letting us pack more work onto
fewer CPUs. For example, we report fewer CPUs as required for the six CPU
per server case without fast migration, and the sixteen CPU per server case
without fast migration.

Figure 3(a) and (b) show results for Group 3 with D = 5 minutes and
M = 50% or M = 80%, respectively. As the utilization threshold increases,
clearly more work can be added to each server. We note that in both Figure 3(a)
and (b), solutions were not possible for the six CPU per server cases. This is
because some applications required more than six CPUs even after truncation of
demand with respect to M. These are identified as squares at y = 0 (i.e. 0 CPUs).
Note that given a limited computation time, the linear integer program did not
return a valid solution for the eight CPU per server case without fast migration
in Figure 3(a). The genetic algorithm was able to find a solution. Computation
times are discussed in the next subsection.

The results for Groups 2 and 4 were nearly identical for both the linear
integer program and the genetic algorithm. Valid solutions were found for all
cases in Groups 1, 2, and 4.

From our case study, we find that the genetic algorithm typically finds that
the same number of servers are required as the linear integer programming ap-
proach. In some cases an additional server is required. These cases usually re-
quired an additional CPU or two that force the addition of an entire server.

5.1 Computation Times

The linear integer program computations were performed on a server with a
440 MHz PA-RISC processor and 16 GB of memory running HP-UX. We relied
on the AMPL 7.1.0 modeling environment and CPLEX 7.1.0 optimizer [6]. CPU
time limits were established for each run of the CPLEX tool. For each run, we
report the best solution found within its time limit. For scenarios in cases A
and C, time limits were generally 128 seconds. Case B scenarios had limits of
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4096 seconds. There were a few scenarios in B that did not yield good allocations.
These were cases where we deemed the bounds for the solution, as reported by
CPLEX, to be too wide. They then received 131072 seconds of computation
time. As illustrated in Figure 3(a), the eight CPU per server case without fast
migration did not return a valid solution at all. Several case C scenarios received
2048 seconds of processing time. Unfortunately, we only had limited access to
the modeling environment; some runs did not lead to satisfactory allocations.
We note that knapsack heuristics [2][10] or a more sophisticated formulation of
the linear integer program may reduce its solution time.

The genetic algorithm was performed on a laptop with a 2GHz Pentium IV
processor. It typically required tens of seconds per solution, and never required
more than two minutes. Solutions were found for each scenario. Even after tak-
ing into account differences in processor speeds between the laptop and server,
the genetic algorithm performed quickly, especially with respect to the time
consuming case B scenarios.

6 Summary and Conclusions

In this paper, we describe two assignment algorithms for assigning a class of
enterprise applications to servers in resource utilities. The first is a linear in-
teger programming approach, the second is based on a genetic algorithm. The
algorithms are used in a case study involving data from 41 data center servers.

For our data set, the linear integer programming approach offers the best
solutions but had relatively large solution times. It seems most appropriate as
an off-line algorithm. The genetic algorithm offered solutions that were nearly as
good as the programming approach. However solution times were much lower.
It appears to be a good candidate for an on-line assignment algorithm that can
be used in a control-loop that automates the assignment and re-assignment of
applications. The genetic algorithm permitted us to compute peak aggregate
demands as assignments were considered. This helped to reduce the problem
size with respect to the linear integer programming approach. With the latter
approach, the same strategy is not possible. Furthermore, the genetic approach
can be easily enhanced. For example, the objective function can be modified to
consider features of assignments that can not be expressed in a linear integer
program.

We intend to extend our work in several ways. We plan to collect data from
additional data centers for greater periods of time. With longer traces, we can
use parts of the traces for deciding assignments and the remainder for valida-
tion. In addition to collecting measures of CPU utilization, we intend to collect
information on network and storage utilization, in order to get a more com-
plete picture of data center usage. We also plan to extend these techniques to
consider multiple demand attributes and classes of service regarding access to
resources [13]. Finally, we plan to explore more efficient linear programming
strategies and improve our use of the genetic algorithm paradigm.
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