MobiMan: Bringing Scripted Agents
to Wireless Terminal ManagementEl

Venu Vasudevan, Sandeep Adwankar, and Nitya Narasimhan

Mobile Platforms and Services Department, Motorola Labs,
1301, E. Algonquin Road, ILO2-2240, Schaumburg, IL 60196
{venuv, adwankar,nitya}@labs.mot.com

Abstract. The increasing software complexity of wireless devices and
wireless data service provisioning motivates a wireless terminal man-
agement challenge. The systems management solution for this problem
needs to scale up to large device populations, while being lightweight
enough to be pragmatic for resource-constrained devices. The work in
this paper builds upon the emerging SyncML standard for wireless ter-
minal management in order to bring sophisticated policy-based man-
agement to large populations of wireless data devices. It is anticipated
that this technology will simplify the upgrade and management of wire-
less data devices substantially, thus encouraging the adoption of sophis-
ticated data terminals.

1 Introduction

The increasing complexity of wireless devices and services motivates an automated
terminal management challenge. Complex client-side wireless tools (e.g. WAP brows-
ers) need to be remotely configured upon service activation or upgrade. Mobile serv-
ice operators desire the ability to dynamically upgrade applications and services on a
mobile device, motivating the need for scalable software distribution capabilities.
Effectively supporting a complex palette of applications on a consumer-oriented de-
vice requires pro-active diagnosis and troubleshooting of both the devices and the
network. While these tasks can be done in an operator-assisted fashion, the absence of
a scalable, automated management infrastructure can contribute to a high total cost of
ownership. Early studies [KD99] estimate this number as being several times the retail
cost of the device

The goals of wireless terminal management resemble those of “classical” (wired)
systems management in terms of scaling and automation. However, achieving the
goals in a resource-constrained, intermittently connected environment presents unique
technical and business challenges. The pervasiveness of the Simple Network Man-

We would also like to thank Kevin Cutts and Hung Tsang from Motorola’s PCS business
unit for many constructive discussions in this context.

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 68-81, 2003.
© IFIP International Federation for Information Processing 2003

MobiMan: Bringing Scripted Agents to Wireless Terminal Management 69

agement Protocol (SNMP) and its thick-manager, thin client-agent architecture make
it a logical first choice. However, while SNMP agents can be deployed on thin de-
vices, traditional client-server SNMP lacks the “elastic server” or delegation model
[GY95] that is required for effective management in intermittently connected envi-
ronments.

Advanced proposals within the SNMP community (such as the SNMP mid-level
manager architecture [SMLM, SNMX]) provided a standards-compliant basis for a
delegation model but failed to gain the widespread traction of core SNMP. Mobile
agent technology can provide a delegation model for systems management that is
agnostic to the management protocol. However, mobile agent infrastructure is too
heavyweight for mobile devices, requiring some programming features (e.g. dynamic
classloading) that are not supported by current mobile device application platforms
like J2ME.

From a pragmatic point of view, another problem with SNMP is its lack of uptake
in the mobile wireless space. The wireless industry, which seeks a single, integrated
standard to manage device-resident information as well as device operation, has ral-
lied around SyncML [SM02, JNO1] and SyncML for Device Management (SyncML-
DM)H[SDOZ] as the management standard of choice. SyncML caters to both the in-
formation management and device management needs of the wireless industry, while
supporting a lightweight architecture using an XML-based command language.

While SyncML-DM is best suited for simple request-response management opera-
tions (analogous to a single SNMP Get and Set), complex operator management func-
tions require richer predicates and procedures to capture the necessary semantics. For
instance, a network operator may want to run an automated management test on all
cell phones in the “847” area code. Furthermore, he may want this test to run during
off-peak hours and only on terminals with sufficient battery-power levels. Although
basic SyncML-DM provides the low-level mechanisms to collect the relevant teleme-
try, expressing such activation policies as a collection of primitive SyncML-DM inter-
actions could be prohibitively expensive.

1.1 The MobiMan Architecture

In the MobiMan architecture, we explore an alternative “embrace and extend” ap-
proach to bringing the benefits of scripted mobile agents to SyncML-based wireless
terminal management. MobiMan defines a SyncML-derived scripting language called
Symple (SYncML Programming LanguagE) that extends SyncML semantics in a
lightweight manner suitable for resource-constrained devices. The MobiMan archi-
tecture also extends the SyncML runtime framework with support for the scheduling,
evaluation and lifecycle management of Symple agents. To strike a balance between
capabilities and deployment costs, we designed Symple according to the following
principles:

e Embeddable within SyncML. Symple agents can be embedded within standard
SyncML packets, allowing us to reuse SyncML as an agent distribution protocol.

' Henceforth, the terms SyncML and SyncML-DM will be used interchangeably to mean
SyncML-DM.

70 Venu Vasudevan et al.

e Lightweight. Symple is easy-to-learn, requiring only a small amount of code to
define complex requirements that can be interpreted by a lightweight client-side
SyncML platform.

e FExtensible. Devices can support different variants of Symple in accordance with
their resources and computing capabilities, with Synclets being discarded without
error by Symple-unaware, SyncML capable devices.

Given that the SyncML standard is of recent vintage, we provide a quick tour of
SyncML in Section 2, followed by an overview of the MobiMan architecture in Sec-
tion 3, with focus on the computing elements (Synclets) and the client-side runtime
“container” architecture (Micropods). Section 4 delves deeper into the structure of
Synclets, and their support for conditional execution. We conclude the paper with a
discussion of our experiences building a Synclet-based system on Motorola wireless
devices, future directions for our research, and comparisons of our work to related
ideas in distributed systems management.

2 SyncML: A Short Tour

The SyncML standardEl[SMOE] was developed as XML-based information synchroni-
zation standard designed specifically for the needs of the wireless industry. Thus, the
SyncML protocol is lightweight to cater to device limitations, language-neutral and
protocol-neutral. To suit device limitations, SyncML language constructs are kept
fairly minimal, with the protocol not using some features (e.g., server sockets) that are
yet to become pervasive on mobile devices. Because SyncML is XML-based, it is
inherently language-neutral, and supports OEM-specific extensibility. In addition, the
SyncML “protocol” can run over a number of underlying transport protocols including
HTTP, WSP, and OBEX.

SyncML's popularity in information synchronization led to its scope being ex-
panded via SyncML-DM [SD02] to include device management. SyncML-DM allows
management actions to be performed on management objects, where a management
object might represent a device configuration or the run-time software application
environment. Actions taken against the former might include reading and setting pa-
rameter keys and values, while actions taken against the latter might include installing,
upgrading, or uninstalling software elements. The signatures of the Get and Set meth-
ods on a management object are type-specific and may vary substantially in complex-
ity. For instance, a management action for setting the device clock accepts a simple
textual MIME type (text/plain), while an action to change the WAP browser settings
requires new WAP provisioning “blobs” to be transmitted as part of the Set operation.
Software upgrades present another example of a management action with significant
payload complexity.

The SyncML-DM is a 2-phase protocol consisting of a sefup phase for authentica-
tion and device information exchange, following by a management phase that can be

2 It was developed first in a separate standards body, which has since been merged with the

Open Mobile Alliance (OMA).

MobiMan: Bringing Scripted Agents to Wireless Terminal Management 71

repeated multiple times to support complex manager-to-mobile sessions. A manage-
ment session may also start with Packet 0 (the trigger), where the trigger may be out-
of-band depending on the environment

While SyncML-DM significantly expands the scope and utility of SyncML to in-
clude device management, it is limited in the following ways :

1. SyncML-DM based device management is limited to terminal-at-a-time manage-
ment. It allows a cellular operator to run only one diagnostic operation at a time
on each terminal.

2. SyncML-DM does not support intelligent postponement of management opera-
tions (e.g. postpone terminal operation until battery level is above 50%), some-
thing which is necessary to scale terminal management to large terminal popula-
tions.

3. SyncML-DM does not allow operators to schedule coordinated terminal man-
agement operations across collections of terminals.

These limitations restrict the subset of “Opex” (operational expense) minimizing
management functions that a cellular operator can perform using SyncML. The goal of
MobiMan is to add a more powerful computing abstraction to SyncML-DM to facili-
tate more comprehensive, automated, scalable systems management

: I Diagnostics
| Micropod poa—
7 Synclet

1T ; v y
| Policy Engine

JC
| SyncML Engine =

T

| J2ME MIDP | Manager

T
ARA N

| JNI to Firmware |
Fig. 1. The MobiMan runtime architecture

| SyncML Parser | Asset Management
IL Synclet .

| XML Parser | Mobile
I Device

3 MobiMan: Architecture and Runtime

As shown in Figure 1, MobiMan augments the standard SyncML-DM runtime frame-
work in terms of both the basic execution entities and the execution model. In doing
so, it extends the SyncML-DM framework with two elements: Synclets and Micro-

72 Venu Vasudevan et al.

pods. Synclets are scripted agents written in Symple, allowing complex sequences of
management instructions to be expressed in a single executable object. Micropods are
terminal-resident containers that have the ability to receive Synclets and manage their
lifecycle; for instance, micropods can activate and deactivate Synclets based on state.

The key to the MobiMan container model is to organically expand SyncML to sup-
port intelligently postponable computing objects, whose execution triggers are so-
phisticated. A cellular operator can exploit this sophistication to perform large man-
agement operations in a manner that conserves bandwidth, avoids terminal operations
when the terminal is in an unsuitable state, and coordinates complex multi-terminal
operations with complex orchestration policies. We describe Synclets and Micropods
in detail in the following sections.

3.1 Synclets and Synclet Bundles

Synclets are the basic unit of computation in MobiMan. A Synclet is an executable
script consisting of Symple commends, where Symple is an extension of SyncML.-.
A Synclet specification comprises of two parts: a policy and an action routine. The
Synclet policy specifies non-functional aspects of the Synclet such as if, when and
how often it should be executed. The action routine is the functional code that makes
up the Synclet. Synclets are interpreted and executed by the extended client-side
SyncEngine known as a Micropod.

Synclets are transported over the SyncML protocol, which in turn is bearer-
agnostic. Thus Synclets may be transported over HTTP, SMTP or other IP-based
protocols. To be compatible with Synclet unaware clients, Synclets are carried as the
payload — i.e., as nested tags — in a Synclet XML element within the SyncML body.
Standard SyncML engines that are not MobiMan-enabled will simply ignore the Syn-
clet scripts within the enclosing Synclet tags. As Synclet upload and execution are
decoupled, multiple Synclets with differing execution policies may be carried in a
single SyncML session, i.e. nested within the same MobiMan tag.

Synclet bundles are a convenience mechanism, analogous to Java packages or
modules in programming languages. The bundle mechanism allows a group of Syn-
clets to be loaded in a single SyncML session, and be henceforth accessed by the
remote operator using a single bundle name. The bundle notion facilitates packaging,
distribution and policy management of Synclets.

3.2 Micropods

Micropods are terminal resident containers layered over the standard client-side
SyncEngine. They host and manage Synclets that are dispatched to the terminal. Mi-
cropods perform functions relating to Synclet lifecycle management, and serve as
secure sandboxes for Synclet execution. Lifecycle functions include (de) activation,
multitasking between concurrently executing Synclets, and the suspension and the
revival of Synclets that were stopped due to adverse terminal conditions (e.g. deterio-
rating battery level). To avoid race conditions on the device, Micropods support
“virtual multitasking” where multiple terminal-resident Synclets might have partially
executed at any point in time, but only one Synclet is actually executing at any instant.

MobiMan: Bringing Scripted Agents to Wireless Terminal Management 73

As previously mentioned, Synclet specifications include a model of conditional,
policy-based execution analogous to the UNIX cron model. Micropods augment the
standard SyncEngine with a policy engine, which determines the subset of Activatable
Synclets based on evaluating individual Synclet policies. Policies could be based on
absolute time, invocation cardinality (number of times a Synclet should be run), and
device state. More sophisticated micropods could support the interleaved execution of
multiple synclets. These could include allowing a certain maximum number of concur-
rent synclets, deadlock avoidance or resolution between concurrent synclets, and fair-
ness policies for Synclet swap-out whereby idle synclets are swapped out for other
waiting synclets.

As with Java applet environment and J2EE servlet containers, micropods provide a
constrained environment to executing synclets, bounding and monitoring their access
to the underlying terminal. Synclets are privileged applications have limited access to
retrieving and modifying the device state via a special set of “closed classes” in Java.
Two factors simplify sandboxing in MobiMan. First, the Synclet dispatching capabil-
ity is accessible only to a small number of trusted parties (namely service operators).
So authentication solutions such as digital signatures can check the signature against a
very small universe of trusted sources. Secondly, the use of a scripting language al-
lows for language safety verifiers to be developed, and for sandboxes to suspend (and
resume) the script at arbitrary points in the program.

Synclets face the unique situation in executing on mobile wireless devices, namely
that the device may be powered off at any time without operator control. Micropod
lifecycle management techniques need to allow for script re-entrancy in such adverse
situations. Script re-entrancy might involve re-prioritizing Synclets when they are
restarted, to reflect the new environment (analogous to adjusting the nice value of
processes in Unix). This is handled by re-evaluating Synclet policies of awakening
Synclets in the changed environment.

4 More Synclet Anatomy

As described previously, Synclets consist of policy and action routine components.
The action routine is the body of what the Synclet does, and the policy is the trigger
condition for the Synclet. The policy, action routine separation allows the same func-
tional Synclet to be reused in different circumstances. This section elaborates on the
kinds of policies supported in Symple, and the SyncML extensions supported in an
action routine. SyncML is extended in two ways in the action routine language: the
addition of a few new commands, and support for conditional command execution
(aka guarded commands). environment.

4.1 Policies

Policies are specifiable at three levels of granularity: terminal, synclet bundle, and
synclet. Terminal level policies apply to all scripts that will execute on the terminal
from the time the policy is installed. For instance, a terminal policy may dictate that
only one Synclet shall be active at a time. Synclet bundle policies apply to a collection

74 Venu Vasudevan et al.

of synclets that were loaded as an aggregate, perhaps because they collectively per-
form a single cohesive task. Synclet policies govern the execution of the Synclet's
action routine, and may include the maximum time a Synclet is allowed to run, re-
sources that should be allocated before the Synclet should be activated, or recovery
actions when Synclet execution is interrupted. Terminal policies tend to be more static
and persistent than Synclet bundle and Synclet level policies.

4.2 Extended SyncML Command Set

SyncML provides a fairly minimal set of commands for device management, but is
missing some important primitives that are building blocks for device and service
management. Symple currently extends the SyncML command set with three com-
mands: assert, schedule, and perform. All these commands may contain a redirect
block (see section 4.3 below).

<Synclets>
<Guards>
<Attribute> Battery level </Attribute>
<Condition> GREATER THAN </Conditions
<Threshold> 5 </Thresholds>
</Guards>
<Assert>
<Item>
<Target>
<LocURI>
./SynC/DM/WAP/WAPSTNGZ/GRPSiAPN
</LocURI>
</Target>
<Data>
internet2.voicestream.com
</Data>
</Item>
</Assert>
</Synclet>

Fig. 2. Synclets with guarded commands

1. Assert (see Figure 2) allows the Synclet to assert a certain device (or network)
condition, and take an exception action in case this isn't true. Assert is useful
where the absence of a condition (e.g. non-null values for WAP session parame-
ters) requires corrective action.

2. Schedule is used to represent timed and/or repetitive commands. Parameters in
the schedule command may specify the maximum number of times the command
is executed, the time interval between successive iterations, and the delay between
the loading of a Synclet and the first “run” of the scheduled command.

3. Perform performs a non-local service invocation (e.g. an http gef) from the termi-
nal. Network operators can use this to measure service performance across a sta-
tistically significant number of terminals.

While our present extension to the SyncML command set is restricted to these op-
erations, we envisage future extensions to facilitate service management.

MobiMan: Bringing Scripted Agents to Wireless Terminal Management 75

4.3 Guarded Commands and Output Redirection

At the finest level of granularity are policies that govern the execution of individual
SyncML commands (or command blocks) within the action routine. However, we tend
to not view these in the same way as the policies described in the previous section, as
these are part of the functional definition of the action routine and cannot be viewed as
orthogonal to the script function. Commands governed by such policies are also re-
ferred to as guarded commands, and the policy pertaining to the command as the
guard. A battery-level guard might govern a command that fetches a number of ter-
minal attributes. This guard would prevent the command from executing if the battery-
level on the terminal is below a certain threshold. Figure 2 shows a guarded command
with a battery guard. The standard SyncML command is prefixed by a guard element
that constrains the GET to execute only when the battery level on the terminal is
above the threshold. Guards may be used to protect terminal or network resources, and
to coordinate with external events.

Traditionally, the results of a SyncML session are returned synchronously to the
caller when the command(s) are complete. In Symple, we allow a more flexible output
communication by allowing the results of partially executed scripts to be exported to
URLs external to the terminal, and by allowing commands within an action routine to
post their results to different URLs. Redirect is an output redirection primitive in
Symple that delivers the output of a command to the appropriate URL Redirect will
support a variety of standard protocol prefixes including http, sockets and RMI.
Allowing external access to partial script results allow the operator greater visibility
into script execution and greater flexibility in controlling the script. The operator may
decide to shut down an otherwise expensive and long-running script based on viewing
the partial results, or he might decide to take alternative actions based on what is ob-
served. Partial result availability is also useful in scaling the Symple paradigm to con-
current multi-terminal operations, where the partial results of a running script on one
terminal may cause side effects on another.

5 Implementation and Usage Experience

MobiMan has been used in a number of operator management scenarios, of which one
pertaining to wireless system performance management is described here. A wireless
network operator may be interested in performance metrics such as average latency
experienced by users in a particular geographic area, perhaps as a way to validate the
service level agreement with an enterprise customer.

Latency can be characterized by the time taken to download a HTML or WML
page from a remote server. To measure latency over multiple devices and a statisti-
cally meaningful period of time, the operator can compose guarded synclet (see Figure
3), and can push it to of the mobile device fleet.

The synclet will execute at the time specified by the date attribute and will connect
to specified UR/ to download HTML page. It will repeat this operation for times as
specified in repeat attribute. This synclet will average these latency measurements and
send it to operator server. The server correlates the values obtained from number of

76 Venu Vasudevan et al.

mobile devices over period of time at different times and can collate the data to make
decisions about re-provisioning the network.

<Synclet>

<Guards>
<Attribute> Signal Strength </Attributes
<Condition> GREATER THAN </Conditions>
<Threshold> 20 </Thresholds>

</Guards>

<Schedule>
<Date> 01028526240000 </Date>
<Period> 1 </Periods>
<Repeat> 20 </Repeat>
<URI> http://www.yahoo.com/index.html </URI>
<Item>

<Target>
<LocURI>
./Sync/DM/Performance/Network/Latency
</LocURI>
</Target>

</Item>

</Schedule>

</Synclet>

Fig. 3. Synclet with guarded commands for latency measurement

Table 1 details our experience in running performance management Synclets over a
GSM network on a Java-enabled mobile handset. The data shows a total time of about
30 seconds for Synclet loading and execution. While this number is acceptable, it
could benefit from improvement. Better networks will reduce this latency, while Syn-
clet bundling allows latency to be amortized across multiple management operations.
Synclets can be encoded in Wireless Binary XML (WBXML) instead of plain XML
representation that can significantly reduce size of data sent (and hence time) over
wireless network. WBXML is a binary format compact representation of XML that
encodes the structure and content of the document entities while removing meta-
information contained in document.

The Micropod, policy engine along with SyncML engine and parser occupy 100K
on MIDP KVM with peak runtime memory consumption of 230 K. Local runtime
operations on the mobile device (e.g. Synclet parsing) make up about 25% of the total
cycle-time, and will improve as Moore's law increases the horsepower dedicated on
handsets to data services. Overall, the numbers indicate the viability of a Synclet
based approach for today's handsets, and its growing value with handset and network
evolution.

Table 1. Synclet Execution. The phases, and some performance measurements

Time taken to

send data over

GSM network
(seconds)

Size of data
Synclet Operation flow sent
(bytes)

MobiMan: Bringing Scripted Agents to Wireless Terminal Management 77

1. |Creation of SyncML package 1

Server initiates SyncML Engine on mobile
device (e.g.. by SMS push). SyncML Engine
creates SyncML package with capabilities
data such (e.g. Manufacturer/ Model name.
and credentials.

2. |Getting Synclet from Server

Mobile device sends SyncML package DM
Server. Server parses the package, checks for
credentials and synclets that need to be sent to
the device. Server returns new SyncML pack-
age containing synclet (HTTP reply).

3. |Invoking Synclet

SyncEngine parses/extracts Synclet transfers
to Policy Engine. Policy engine verifies syn-
clet safety and semantics, conditionally sched-
ules Synclet. Synclet reception status sent
back to server.

4. |Status/Result of Synclet

Server responds to synclet receipt status mes- 595 11.3
sage.

5. |Status of Synclet
Mobile device parses SyncML message and 2
continues to process synclet.

6. |Synclet Execution

Scheduled Synclets are executed in separate
thread. For long-running synclets (e.g., latency
monitoring), steps 4 and 5 are repeated. Re-
sults sent back to server.

1185 3.3

1822 18.5

745 8.2

6 Intelligent Distribution of Tasks in MobiMan

Thus far, the MobiMan architecture has focused on the design and deployment of
Synclets as a means for intelligent scheduling of tasks at the targeted terminal. How-
ever, the richer predicates offered by Synclet-enhanced terminal management also
enables operators to define tasks that span multiple terminals and involve complex
orchestration policies for successful completion.

This functionality is supported by a SmartCloud extension [NA03] that integrates a
tuplespace-backend (provided by the Mojaveﬂ system [VLO1]) into the MobiMan
server infrastructure. The SmartCloud extensions provide three core mechanisms:

3 The Mojave System developed at Motorola Labs provides a tuple-space based agent archi-

tecture where task agents can dynamically clone/relocate to the agent container that best fa-
cilitates task completion.

78 Venu Vasudevan et al.

1. Intelligent TM Server Selection. Current TM operations assume the exis-
tence of a centralized server whose identity is known to the TM client. This
raises performance and reliability concerns as the server becomes both a bot-
tleneck and a single point of failure. Instead, we envision a “multi-server” ap-
proach where multiple TM servers exist, any of which are capable of deliver-
ing the task to the device. The TM servers could be co-located as part of a
“server farm” or could be in deployed as individual “kiosks” in high-traffic ar-
eas such cafeterias, banks and airports. Choice of server for task dispatch is
now based on opportunity, i.c., the associatiorﬂ of'a TM client with a particular
server causes that server to register with the SmartCloud as the dispatcher for
that TM client. If a client associated simultaneously with two dispatchers (cel-
lular and short-range), the dispatcher with better QoS criteria (e.g., higher
bandwidth) is chosen.

2. Task Dispatch Priority Escalation. Intelligent server selection raises the
question of how long the SmartCloud should wait for the right “opportunity”.
Operators (and users) may prefer the user of the quicker, more reliable short-
range network for TM operations; however, users may not always be within
range of a suitably equipped server. The SmartCloud extension solves this
problem by using an “escalation policy” for task dispatch. Operator submit
tasks with an appended deadline for task dispatch.. The SmartCloud will hold
on to tasks, waiting for the best dispatch opportunity; however if a specified
deadline is near expiry, the SmartCloud becomes more aggressive, opting to
use the first opportunity it sees.

3. Automated Coordination Through Aggregation. While the multiple-server
model improves the distribution of TM tasks, it can complicate the coordina-
tion of complex tasks that span multiple terminals (e.g. an operator request for
100 terminals in the “847” code to respond with bandwidth availability infor-
mation). Here, the single operator request actually translates into multiple ter-
minal-specific tasks — each being dispatched to the target over a potentially dif-
ferent server. Monitoring the tasks, coordinating follow-up actions and re-
turning a unified result to the operator can become a logistics nightmare. The
use of a SmartCloud backend alleviates this problem by providing a common
backend “shared memory” structure that can be used to aggregate results from
various tasks and automate the firing of follow-on tasks such as request-
termination, and result-display.

By integrating the SmartCloud backend into the MobiMan server infrastructure, we
achieve three objectives: flexibility, efficiency and ease-of-use. Operators are now
required only to design the task using Synclet semantics to define the appropriate
criteria for task execution. The MobiMan system ensures that the tasks are delivered
within deadline — and in the most effective manner — to the targeted terminal(s). It also
automates the monitoring and completion of coordinated multi-terminal tasks thereby
reducing the burden on the operator and minimizing opportunities for operator error.

4 An association (client-server communication) could happen over a wide-area (e.g. cellular)

or a short-range (Bluetooth, Adhoc WiFi) network.

MobiMan: Bringing Scripted Agents to Wireless Terminal Management 79

Furthermore, because the SmartCloud extensions are server-centric, they add minimal
resource or execution overhead to the resource-constrained mobile terminals.

7 Related Work

A number of lightweight programming languages [LLO1] provide design examples
that Symple tries to emulate. SIMSpeak [KMO1] aims to provide programmability to
devices whose only programmable component is an extremely limited “smart card”
supporting the Javacard specification. An on-card interpreter supports a simple stack-
based language that uses registers instead of variables to save space. Similar choices
of language primitives are made in 3GPP's USAT specification [3GPP]. Mobile code
is pushed to the device via the short-message service (SMS) and security is handled
partly in the device and partly in a network gateway. MobiMan supports an SMS
based script dispatch in a manner similar to SIMSpeak, but has the luxury of living in
a slightly less constrained Java environment than the Javacard.

The SNMP world has at least two proposals that augment the classic client-server
SNMP model with scripted agents. The SNMP mid-level manager [SMLM] proposal
includes a scripting language proposal called SNMPScript that is used to specify and
distribute scripted agents to managed nodes. SNMX [SNMX] is another script pro-
posal, although an SNMX interpreter weighs in at a “chunky” 400KB. A size that
would be somewhat taxing on today's J2ME powered mobile wireless devices.

Sloman [MS98] and others have made a case for policy-based systems management
as a means to change management policies without changes to management agents.
Some of their proposed primitives (e.g. positive obligation policies) resemble those
proposed in this paper. However, Symple adopts a lightweight policy framework to
cater to resource-constrained terminals, includes device states as policy predicates, is
tightly integrated with SyncML, and supports multi-terminal policies via a network-
resident coordination infrastructure.

Heidemann [HS00] proposes a Cron-derivative (based on Xcron [GK99], another
cron derivative) for intermittently connected laptops, and articulates intermittent con-
nectivity issues similar to those discussed by us. However, the policy language here
focuses on time-based policies, and has no support for policies based on device state.

8 Conclusions

MobiMan aims to provide complex scheduling primitives to wireless systems man-
agement, while operating within the limitations of resource-constrained Java devices.
So far our experience has been encouraging, showing that a fairly sophisticated set of
capabilities can be supported on a wireless terminal. Easy authoring of coordinated
operations across large sets of terminals (e.g. a cellular region) remains a challenge.
This requires application infrastructure support in the network and interaction primi-
tives to be defined for greater interplay between network controller objects and the
currently executing process on a particular terminal. Emerging smart wireless termi-

80 Venu Vasudevan et al.

nals that support pJava (or J2ME/CDC) provide another systems management inno-
vation opportunity, as they are substantially more resource-rich than the kJava
(J2ME/CLDC) devices targeted in this paper.

References

[GK99]

[GY95]

[HS00]
[JNO1]
[KD99]

[KMO1]

[LLO1]
[LSO1]

[MS98]

[NA03]

[0S96]

[SD02]

[SMO02]

[SMLM]

[SNMX]

G. Kuenning, 4 Cron Daemon for Portable Computers, UCLA Computer
Science Department Technical Report UCLA-CSD-990044, Sep 1999

G. Goldszmidt and Y. Yemini, Distributed Management by Delegation, in
Proc. of the 15™ ICDCS Conference, IEEE Computer Society, pp 333-340,
1995

J. Heidemann and D. Shah, Location-Aware Scheduling with Minimal In-
frastructure, In USENIX Conference Proceedings, pp.131-138, Jun 2000
A. Jonsson. and L. Novak, SyncML — Getting the mobile Internet in sync,
Ericsson Review No. 3-2001, pp. 110-115

K. Dulaney, TCO for PDAs: Higher than Expected, Strategic Planning,
SPA-08-7900, Research Note, Gartner Group, July 1999

R. Kehr and H. Mieves, SIMspeak — Towards an Open and Secure Appli-
cation Platform for GSM SIMs, in Proceedings of the Intl. Conference on
Smart Cards, E-smart 2001, Lecture Notes in Computer Science, pp. 135-
149, Springer 2001

MIT Lightweight Languages Workshop, 2001, http://I11.mit.edu/

D. Levi and J. Schoenwaelder, Definitions of Managed Objects for the
Delegation of Management Scripts, IETF Network Working Group RFC,
Aug 2001, www.ietf.org/rfc/rfc3165.txt

M. Sloman, Policy Based Management of Telecommunication Systems and
Networks, First UK Programmable and Telecommunications Workshop,
HP Labs, 1998

N. Narasimhan, S. Adwankar and V. Vasudevan, SmartCloud: Automated,
intelligent task distribution in MobiMan, Internal Draft, Motorola Labs,
2003

O. Shivers, A universal scripting framework, or Lambda: the ultimate “lit-
tle language “, in Concurrency and Parallelism, Programming, Networking
and Security, Lecture Notes in Computer Science, pp. 254-265, Springer
1996

SyncML Representation Protocol Device Management Usage, version 1.1,
at http://www.openmobilealliance.org/syncml February 2002

SyncML Data Synchronization and Device Management, official website
http://www.openmobilealliance.org/syncml

SNMP Research: Mid-Level Manager (MLM), White Paper, SNMP Re-
search, http://www.snmp.com/products/mlm.html

SNMP Frameworks, Inc., The Simple Network Management Executive
(SNMX) Scripting Language , http://www.snmx.com

[3GPP]

[VLO1]

MobiMan: Bringing Scripted Agents to Wireless Terminal Management 81

3GPP Technical Specification Group Services and System Aspects:
USIM/SIM Application Toolkit (USAT/SAT), Doc# 3G TS 22.038 v5.2.0
(2001-02)
V. Vasudevan and S. Landis, Malleable Services, International Journal of
Software Engineering and Knowledge Engineering, Vol, 11, no. 4, pp. 389-
406, 2001

	MobiMan: Bringing Scripted Agents to Wireless Terminal Management
	Introduction
	The MobiMan Architecture

	SyncML: A Short Tour
	MobiMan: Architecture and Runtime
	Synclets and Synclet Bundles
	Micropods

	More Synclet Anatomy
	Policies
	Extended SyncML Command Set
	Guarded Commands and Output Redirection

	Implementation and Usage Experience
	Intelligent Distribution of Tasks in MobiMan
	Related Work
	Conclusions
	References

