Skip to main content

Molecular Dynamics Simulation of Prion Protein by Large Scale Cluster Computing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2858))

Abstract.

Molecular dynamics (MD) simulation is important theme in the parallel computing. MD simulations are widely used for simulating the motion of molecules in order to gain a deeper understanding of the chemical reactions, fluid flow, phase transitions, and other physical phenomena due to molecular interactions. In this study, we performed molecular dynamics simulations on monomeric and dimeric HuPrP at 300K and 500K for 10 ns to investigate the differences in the properties of the monomer and the dimer from the perspective of dynamic and structural behaviors. Simulations were also undertaken with Asp178Asn and acidic pH known as a disease-associated factor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham III, T.E., Wang, J., Ross, W.S., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., Vincent, J.J., Crowley, M., Tsui, V., Gohlke, H., Radmer, R.J., Duan, Y., Pitera, J., Massova, I., Seibel, G.L., Singh, U.C., Weiner, P.K., Kollman, P.A.: AMBER 7. University of California, San Francisco (2002)

    Google Scholar 

  2. Day, R., Bennion, B., Ham, S., Daggett, V.: Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. J. Mol. Biol. 322, 189–203 (2002)

    Article  Google Scholar 

  3. Glockshuber, R., Hornemann, S., Riek, R., Wider, G., Billeter, M., Wuthrich, K.: Three-dimensional NMR structure of a self-folding domain of the prion protein PrP(121-231). Trends in Biochemical Sciences 22, 241–242 (1997)

    Article  Google Scholar 

  4. Hori, A., Tezuka, H., Ishikawa, Y., Soda, N., Konaka, H., Maeda, M.: Implementation of gang-scheduling on workstation cluster. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1996 and JSSPP 1996. LNCS, vol. 1162, pp. 76–83. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  5. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  Google Scholar 

  6. Kaneko, K., Zulianello, L., Scott, M., Cooper, C.M., Wallace, A.C., James, T.L., Cohen, F.E., Prusiner, S.B.: Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc. Natl. Acad. Sci. USA 94, 10069–10074 (1997)

    Article  Google Scholar 

  7. Knaus, K.J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W.K., Yee, V.C.: Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat. Struct. Biol. 8, 770–774 (2001)

    Article  Google Scholar 

  8. Koradi, R., Billeter, M., Wuthrich, K.: MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55 (1996)

    Article  Google Scholar 

  9. Korth, C., Stierli, B., Streit, P., Moser, M., Schaller, O., Fischer, R., Schulz- Schaeffer, W., Kretzschmar, H., Raeber, A., Braun, U., Ehrensperger, F., Hornemann, S., Glockshuber, R., Riek, R., Billeter, M., Wuthrich, K., Oesch, B.: Prion(PrPSc) -specific epitope defined by a monoclonal antibody. Nature 390, 74–77 (1997)

    Article  Google Scholar 

  10. Meyer, R.K., Lustig, A., Oesch, B., Fatzer, R., Zurbriggen, A., Vandevelde, M.: A monomer-dimer equilibrium of a cellular prion protein (PrPC) not observed with recombinant PrP. J. Biol. Chem. 275, 38081–38087 (2000)

    Article  Google Scholar 

  11. Monod, J., Wyman, J., Changeux, J.-P.: On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965)

    Article  Google Scholar 

  12. Muramoto, T., Scott, M., Cohen, F.E., Prusiner, S.B.: Recombinant scrapie-like prion protein of 106 amino acids is soluble. Proc. Natl. Acad. Sci. USA 93, 15457–15462 (1996)

    Article  Google Scholar 

  13. Parchment, O., Essex, J.: Molecular dynamics of mouse and Syrian hamster PrP: implication for activity. Proteins 38, 327–340 (2000)

    Article  Google Scholar 

  14. Prusiner, S.B.: Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982)

    Article  Google Scholar 

  15. Prusiner, S.B.: Trends Biochem Sci. Molecular biology and pathogenesis of prion diseases 21, 482–487 (1996)

    Google Scholar 

  16. Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., Wuthrich, K.: NMR structure of the mouse prion protein domain PrP(121-321). Nature 382, 180–182 (1996)

    Article  Google Scholar 

  17. Sekijima, M., Motono, C., Yamasaki, S., Kaneko, K., Akiyama, Y.: Molecular Dynamics Simulation of Dimeric and Monomeric Forms of Human Prion Protein: Insight into Dynamics and Properties. Biophysical J. 85, 1–10 (2003)

    Article  Google Scholar 

  18. Tompa, P., Tusnady, G.E., Friedrich, P., Simon, I.: The role of dimerization in prion replication. Biophysical J. 82, 1711–1718 (2002)

    Article  Google Scholar 

  19. Welker, E., Wedemeyer, W.J., Scheraga, H.A.: A role for intermolecular disulfide bonds in prion diseases? Proc. Natl. Acad. Sci. USA 98, 4334–4336 (2001)

    Article  Google Scholar 

  20. Zuegg, J., Greedy, J.E.: Molecular dynamics simulations of human prion protein: importance of correct treatment of electrostatic interactions. Biochemistry 38, 13862–13876 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sekijima, M., Motono, C., Yamasaki, S., Kaneko, K., Akiyama, Y. (2003). Molecular Dynamics Simulation of Prion Protein by Large Scale Cluster Computing. In: Veidenbaum, A., Joe, K., Amano, H., Aiso, H. (eds) High Performance Computing. ISHPC 2003. Lecture Notes in Computer Science, vol 2858. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39707-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39707-6_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20359-9

  • Online ISBN: 978-3-540-39707-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics