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Abstract. This paper introduces the DAML-S Virtual Machine (DS-
VM): an embedded component that uses the DAML-S Process Model
to control the interaction between Web services. We provide a proof of
the validity of the implementation of the DAML-S Virtual Machine by
proving a mapping from the rules used by the DS-VM to the DAML-
S Operational Semantics. Finally, we provide an example of use of the
DS-VM with a DAML-Sized version of Amazon.com’s Web service, and
we conclude with an empirical evaluation that shows that the overhead
required by the DS-VM during the interaction with Amazon is only a
small fraction of the time required by a query to Amazon. The DS-VM
provides crucial evidence that DAML-S can be effectively used to manage
the interaction between Web Services.

1 Introduction

Web services are emerging as the core technology for e-business transactions.
The wide spread use of XML, WSDL and SOAP supports interoperation be-
tween Web services, by abstracting implementation details such as programming
language and transport protocol that plagued the earlier attempts to achieve
distributed computation such as CORBA and Jini. On the other hand, Web ser-
vices interoperation requires more than abstraction from implementation details,
rather Web services should also share the same interpretation of the information
that they exchange. This shared interpretation can be achieved only through a
semantic description of the information that Web services exchange. Unfortu-
nately, the Web services infrastructure does not provide a semantic layer where
the content of the information exchanged by Web services can be expressed.
As a consequence, the Web services infrastructure requires that programmers
hardcode the interaction between Web services, furthermore the resulting Web
services are inherently brittle since they will break whenever the content or the
format of their messages change.

DAML-S attempts to overcome the limitations of the Web Services infras-
tructure by leveraging on DAML+OIL ontologies to provide a semantic specifica-
tion of what Web services do and the information that they exchange. DAML-S
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adopts the prospective that any interaction between Web services involves at
least two parties: a provider and a requester, where the requester needs some
information or a service that can be provided by the providers. Furthermore,
it is the responsibility of the requester to locate the provider and initiate the
interaction; while it is the responsibility of the provider to publish a descrip-
tion of its capabilities, or in other words the service that it provides. A typical
capability description involves description of how the service is performed, and
what information the provider expects from the requester, and finally, how such
information is delivered.

The management of the information exchange is specified in the Process
Model and Grounding of DAML-S. Operationally, a Process Model is defined as
an ordered collection of processes organized on the basis of a workflow, which
specifies the sequence of processes performed by the provider during the trans-
action. Each process is defined as a transformation between an initial state and
a final state, where the initial state is specified by the inputs required by the
process and the preconditions for the process to run successfully. The final state
is described as a set of outputs, or information that results from the execution
of the process, and a set of effects that represent physical changes that result
from the execution of the process.

During the interaction with the provider, the requester executes the Pro-
cess Model published by the provider. Each (atomic) process corresponds to
an (atomic) information exchange, where the inputs of the process describe the
information that the provider expects from the requester, while the outputs
correspond to information that the requester will receive in answer from the
provider. Ultimately, by following the Process Model, the requester can infer the
interaction protocol with the provider.

The contribution of this paper is the description of the DAML-S Virtual
Machine (DS-VM) that uses DAML-S descriptions of Web services and DAML
ontologies to control the interaction between Web services. The DS-VM de-
scribed in this paper is one of a kind, because its a complete framework starting
from parsing a DAML-S description, executing the process model consistently
with the DAML-S operational semantics [2]. Furthermore, the DS-VM uses the
DAML-S Grounding to transform the abstract description of the information
exchanges between the provider and the requester into WSDL operations and
ultimately bits of information that can be exchanged over the net.

To test the DS-VM we generated a DAML- S description of the web service
provided by Amazon.com. The result was the automatic generation of a client for
the web service that can manage the interaction and automatically interpret the
results it obtained from the Web service to select the cheapest book, among all
the responses it receives. Ultimately, this corresponds to a net improvement over
the Web services infrastructure based on WSDL, because the web service did
not require any hand coding of the interaction protocol, as it was automatically
derived from the DAML-S description of the web service. Furthermore, by using
the Semantic Web to interpret the results, the client was able to draw some
inferences and make its selections.
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Fig. 1. Architecture of the DS-VM

In the rest of the paper we will discuss in details the theory and the im-
plementation of the DS-VM. In section 2 we describe the architecture of the
implementation of the DS-VM. In section 2.2 we show how the implementation
maps on the Operational Semantics defined in [2]. In section 3 we describe the
generation of the DAML-S description of Amazon.com’s Web service; and in
section 4 we provide performance measures of the DS-VM and we show that the
use of DAML-S is not a computational burden, rather the performance of the
DS-VM is equivalent to the performance of the hard coded Web service client
provided by Amazon.com and anyway greatly overshadowed by the performance
of a HTTP call to the Web service. Finally in section 5 we conclude.

2 Architecture of DS-VM

The architecture of the DS-VM and its relation with the rest of the Web service is
described in figure 1. The figure is logically divided in three parts: on the left side
the DAML-S Service Description specifies the knowledge used by the DS-VM to
control the interaction with other Web services. This knowledge is composed by
the DAML-S Process Model and Grounding as well as a WSDL description of
the bindings. The DS-VM is displayed in the center of the picture. It is logically
divided in two modules: the first one is the DAML-S Processor which uses the
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DAML Inference Engine and a set of rules implementing the operational seman-
tics of the DAML-S Process Model and Grounding to manage the interaction
with the provider. The second component is the Web service Invocation mod-
ule that is responsible for the information transfer with the provider. The last
component of the DS-VM is shown on the right side of the figure. It is the Web
service Reasoning System that is responsible for a number of decisions during the
interaction. In the rest of this section we will concentrate on the DS-VM module,
and specifically on the DAML-S Processor; we will describe in some details the
role of the inference engine and the rules that it adopts to execute the Process
Model and Grounding. We will conclude the section by analyzing its relation
between the DAML-S Processor and the agent reasoning system, this relation
highlights the assumptions that DAML-S makes on the whole Web service.

2.1 DAML-S Processor

The DAML-S Processor is the core of the DS-VM. It is responsible to “drive” the
interaction with the provider on the basis of the specification of its Process Model
and Grounding. More precisely, the DAML-S Processor derives the sequence
of processes to be executed dealing with the intrinsic non-determinism of the
DAML-S Process Model. Furthermore, it compiles the inputs to send to the
provider and extracts its responses from the outputs.

The DAML-S Processor relies on a DAML inference engine to draw inferences
from the DAML-S description of Web services, as well as deriving inferences from
the ontologies that it loads. The current implementation is based on the DAML-
Jess-KB [9], an implementation of the DAML axiomatic semantics that relies
on the Jess theorem prover [6] and the Jena parser [10] to parse ontologies and
assert them as new facts in the Jess KB.

In addition to making inferences on the definitions loaded from the Semantic
Web, the DAML-S Processor is also responsible to derive the execution of the
Process Models and the mappings defined by the Grounding. To perform these
inferences, the Process Model uses the rules shown in table 11 that implement
the execution semantics of of the Process Model, as defined in [3] and [2], which
formalize the DAML-S specifications [1].

2.2 Implementation of the Process Model Operational Semantics

The main requirement on the DAML-S Processor is to be faithful to the intended
semantics of the Process Model. In this section we review the semantics of each
type of process by providing first an informal description, followed by a formal
semantics as specified by tables 5 and 6, and finally we will show the mapping
into the implementation shown in table 1. The mapping will provide an informal
reason of why the rules in table 1 preserve the semantics of the process. Due to
lack of space, we omit the full details of the proof. In the rest of this section,
1 For ease of explanation the rules are expressed in a Prolog style. In our implemen-

tation they are expressed as OPS5 forward chaining rules.
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we will assume familiarity with the syntax and semantics of DAML-S Core [3,2]
and defer a brief review of DAML-S Core to the appendix.

Atomic. Atomic processes are executed by invoking the Grounding and infor-
mation transfer with the provider. The implementation of atomic processes is
shown by rule (1) in table 1. The semantics of atomic processes is shown by the
rule (FUNC) in table 5 which specifies that p is a symbol that is mapped onto
an actual operation pA over a specified domain of values. The function pA es-
sentially corresponds to an operation invocation on the Web service. In practice
such an invocation results in a call to the grounding as specified by rule (1).

sequence. A sequence of processes is executed by executing the processes in
the order established by the sequence. Sequences are implemented by rule (2)
in table 1. The semantics of sequences is shown by the rule (SEQ) in table 6 is
formalized as follows:2

sequence(Process,{p1, . . . pn}) = do {p1;. . . ;pn}
Notice that this is equivalent to the unraveling of

do {p1;. . . ;pn} into p1 >> do {p2;. . . ;pn}

where the first process of the list p1 is evaluated first and then the rest of the
list do {p2;. . . ;pn} which is exactly what is expressed by rule (2) in table 1.

split. A split describes the spawn of multiple concurrent computation of pro-
cesses skipping the wait for their completion. Splits are implemented by rule (3)
in table 1. The semantics of sequences is shown by the rule (SPAWN) in ta-
ble 6. Formally, a split(Process,List), where List consists of the processes
p1, . . . pn is expressed as:

split(Process,{p1, . . . pn}) = do {spawn p1;. . . ;spawn pn}

As with sequence, this is equivalent to launching the first process in the
List p1 while concurrently the spawning off the remaining processes of the List
{p2, . . . , pn} as concurrent processes as it is expressed by rule (3) in table 1.
2 For simplicity, we use the imperative-style do-notation here. as defined in [7]:

do {x <- e;s} = e >>= \x -> do {s}
do {e;s} = e >>= \ -> do {s}
do {e} = e
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Table 1. Rules of the Process Model Processor

(1) executed (atomic(Process)) ⇐
callGrounding(Process), assert(complete(Process))

(2) executed (sequence(Process,List)) ⇐
executed(first(List)),
executed(sequence(Process,rest(List)))
assert(complete(sequence(Process,List)))

(3) executed (split(Process,List)) ⇐
exec(first(List)), exec(split(Process,rest(List))),
assert(complete(split(Process,List)))

(4) executed (splitJoint(Process,List)) ⇐
exec(first(List)), exec(splitJoint(Process,rest(List))),
complete(first(List)), complete(splitJoint(Process,rest(List)))
assert(complete(splitJoint(Process,List)))

(5) executed (if(Cond,ThenProcess,ElseProcess)) ⇐
( Cond, executed(ThenProcess) ) XOR executed(ElseProcess)
assert(complete(if(Cond,ThenProcess,ElseProcess)))

(6) executed (choice(Process,List)) ⇐ executed(oneOf(List))
assert(complete(choice(Process,List)))

splitJoint. A splitJoint extends split by describing the spawn of multiple con-
current computation of processes with a coordination point at the end of the
execution. SplitJoints are implemented by rule (4) in table 1. In our semantics
the processes are spawned off sequentially, and the completion of the splitJoint
depends on the completion of every process.

splitJoint(Process,{p1, . . . , pn})
is modeled as the following, where each p′

i =do { pi;t!done}:
do { t <- newport;

split(Process,{p′
1, . . . , p′

n};
t?; . . . t? }

This rule is equivalent to the split rule, with the only exception that the
spawning process listens on port t for n messages, where n is the number of
sub-processes that were initially spawned. Similarly, rule (4) in table 1 used by
the DAML-S Processor to control the execution of a splitJoint differs from those
for split only in that the splitJoint is complete only when each one of the sub-
processes signals its own completion. Such a signal is produced by asserting the
completion of the process as the last step of its execution as shown by all the
rules in table 1.
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if-then-else. An if-then-else conditional triggers the execution of the then pro-
cess when the condition is true, or the else process when the condition is false.
if-then-else are implemented by rule (5) in table 1. The semantics of sequences
is shown by the rule (COND-TRUE) in table 6 and by a symmetrical rule for
(COND-FALSE) which is not shown. The if-then-else conditional can be formal-
ized as:

if(Cond,ThenProcess,ElseProcess) = (cond Cond ThenProcess ElseProcess)

The two XOR conditions in rule (5) of table 1 correspond to the two rules
(COND-TRUE) and (COND-FALSE) of table 6, which essentially proves the
equivalence between the two sets of rules.

choice. A choice represents a non-deterministic choice among a set of processes
which may be forced by the execution context. The execution of a choice consists
of executing one of the processes in its list. Choices are implemented by rule (6)
in table 1, while the semantics of the construct is shown by the rule (CHOICE-
LEFT) and (CHOICE-RIGHT) of table 6. A choice choice(Process,List)
where List consists of processes p1, . . . , pn, is formalized as:

choice(Process,{p1, . . . pn}) = (choice (choice p1 p2) . . . pn)

The DAML-S Processor rule (6) in table 1 for the processing of the choice
construct executes one of the set of processes in the choice on the basis of some
non-deterministic choice outside its control and is clearly equivalent to the se-
mantics of the choice construct of DAML-S Core.

2.3 The Grounding and the Invocation of the Provider

The semantics of atomic processes, as described above, forces the execution of the
DAML-S Grounding. The rules for the Grounding are stored in the Grounding
Execution Rules module of the DAML-S Processor. These rules allow the com-
pilation of atomic processes into WSDL operations that can be directly invoked
by the Web service Invocation module.

In addition, the Grounding rules are used to extract the XSLT [5] transforma-
tions that are required when the provider does not use DAML as a transmission
language. Essentially, these transformations provide a translation from the seri-
alization of the data sent over the network, to the representation of the content
of that data. The rationale of the translation is that the information contained
by the data types and the information contained by the DAML ontologies should
be equivalent. They are just presented in very different ways. The use of XSLT
transformations adds a new level of abstraction to DAML-S allowing the de-
scription to be specified in terms of ontological classes and instances, whereas
the actual data transmission can adopt any arbitrary format. Furthermore, it
allows any Web service to be represented by DAML-S independently of its own
internal use of DAML.
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Fig. 2. Rationale of the translation from WSDL to DAML-S

From the implementation point of view, the XSLT transformations required
by the Grounding are performed by XALAN [4] and then transformed into
WSDL messages using JROM [8]. Finally, after the messages are constructed
the WSDL operation is invoked using the AXIS framework. Outputs follow the
opposite path, the data streams corresponding to the WSDL output messages
are returned by the AXIS tools, and fed into JROM and finally transformed
into DAML using XALAN. The DAML data is then parsed with the Jena
DAML/RDF parser and finally asserted in the Jess KB where they are available
for inference and interact with the rest of the knowledge of the Web service.

2.4 Interaction with the Reasoning System

The semantics discussed in the previous sections is mute on the Web service
Reasoning System and concentrates on the specifications of the interaction be-
tween Web services. Nevertheless, the Reasoning System is responsible for many
of the decisions that have to be made while using DAML-S. For instance, the
application level is responsible for the use of the information extracted from the
messages received from other Web Services or to decide what information to send
to other Web Services. In order to take advantage of the flexibility supported
by DAML-S, the Reasoning System should support non-deterministic choices
while maintaining efficiency and control on the behavior of the Web Service. In
ultimate analysis, DAML-S requires applications that look more like intelligent
software agents than traditional e-commerce applications.
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Fig. 3. The Process Model of Amazon.com’s Web service

3 Using DAML-S to Interact with Amazon.com

Amazon.com provides a widely available Web service3 which allows users to
browse Amazon’s databases, locate books and other products and put them in
a shopping cart that can be accessed from the Amazon Web site. Through the
Web service, users or programs can perform a wide range of keyword searches
on the Amazon data bases, for example they are able to search for books with
a given author, or look for products of a manufacturer, or search for DVD of
movies of a given director. Keyword searches available, span over the whole set
of data provided by Amazon, from customer’s reviews to Seller profiles.

Amazon provides a SDK to build clients for its Web service, and many tuto-
rials are available to implement the clients using different development kits from
Microsoft .Net to IBM’s Web Sphere. Amazon also provides a WSDL specifi-
cation of its Web service that describes operations that can be performed with
Amazon, using remote procedure call type of interaction.

We generated a DAML-S specification of the Amazon Web Service gener-
alizing the WSDL description using WSDL2DAMLS [11]. WSDL2DAMLS is a
tool that parses the WSDL specification and automatically generates a process
model with an atomic process for each WSDL operation, and a complete spec-
ification of the grounding and a partial Profile. The translation scheme used
by WSDL2DAMLS is shown in figure 2. Furthermore, WSDL2DAMLS gener-
ates DAML ontologies by mapping each abstract complex type in the WSDL
specification to a DAML class.

Since DAML-S requires more information than the information available in
WSDL, for example WSDL does not specify any control relation between the
operations that could be invoked in any arbitrary order, the mapping produced

3 For more information visit http://www.amazon.com/webservices
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by WSDL2DAML-S is only a partial, and it still requires the intervention of a
programmer to complete the generation of the Process Model and the Profile.

The use of WSDL2DAMLS saved us a great deal of effort in translating every
single message type and operation, furthermore it provided us an automatic
generation of the Grounding. The only problem with the translation was the
generation of the DAML ontology from the complex types, the types used in the
WSDL specification are totally arbitrary. While they may have facilitated the
work of Amazon’s programmers, in general they do not provide an ontological
description of books or book selling. For example, the centerpiece of Amazon’s
Web service type structure is a complex type called Details which provides details
about every type of product sold by Amazon. Details can be used to describe
books, DVDs and other products, with the exception that only some fields apply
to books, while others apply only to DVDs and so on. Hence we have to write
an XSL stylesheet to transform Amazon’s Details complex type to instances of
our Ontologies.

As the last step, we completed the process model for the Amazon Web service
by adding the control flow among the different operations. The result of this
work is shown in figure 3. The main operation of the Process Model is a choice
between three types of operations 4. The first one is browsing the Amazon data
bases which can be done either by Author search, or by Artist search. The second
operation is shopping that can be done by first browsing, if anything is found,
then adding the item to the shopping cart. The last set of operations allows
analysis and modification of the shopping cart by clearing it or adding new
items or looking at its content. Finally, we fed the generated Process Model,
Grounding and Amazon’s WSDL to the DS-VM to invoke the Amazon web
service and we were able to perform arbitrary searches for books and CDs using
DAML-S as the only specification of the server.

The last problem of interacting with the Amazon Web service has been the
implementation of a principled set of rules to make a selection between the
different choices in the Process Model. For instance, the Amazon’s Process Model
allows browsing, shopping or looking at the shopping cart. This type of decisions
show that a Web service client has two type of problems: the first one is to decide
how to use a Process Model, the second one is to implement those decisions.
In our case, the first problem corresponds to deciding whether to browse or
shop, the second one is to actually interact with Amazon to browse or shop.
We assume that the DS-VM solves only the second problem, while the first one
is relegated to the Agent Reasoning System shown figure 1, which contains a
set of Interaction Rules that control the decisions of the agent. Specifically, the
rules we implemented take into account the information available to the agent,

4 Amazon’s Web service allows many more types of searches than the set that we
implemented. The problem we faced is that all of these searches are keyword based
and they do not guarantee the type of the result and it is virtually impossible to
know what type of object is returned. We therefore decided in our first attempt to
limit to searches that are guaranteed to return books and CDs. Further analysis of
the details type may allow us to perform additional types of searches.
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Table 2. Execution time of Amazon Client and DS-VM (time in milliseconds)

Amazon Client DS-VM
Average Execution Time 2007 ms 2021 ms

Standard Deviation 1134 ms 776 ms

and goals it wants to achieve, and then it selects a path in the Process Model
that can be executed with only the information available, and that provide the
expected results.

4 Performance Measure

In the paper so far we demonstrated the correctness of the execution rules used
in the DS-VM and we provided an example of usage of the DS-VM to connect to
the Amazon Web service. In this section we provide a performance evaluation of
the DS-VM and we show that, at least in the case of interacting with Amazon,
the use of the DS-VM does not produce a performance penalty.

To estimate the performance of the DS-VM we performed two experiments.
In the first one, which was restricted to the browsing operation, we compared the
execution time of the DS-VM with the time required by the client provided by
Amazon5. In the second experiment we provide the average time of the execution
of the DS-VM when both browsing and reserving a book. In this experiment we
could not compare with the Amazon client reserving books is beyond what the
capabilities of the client that Amazon provides. In the second experiment we then
compared the total time the DS-VM spent in processing DAML-S information
with the total time of the interaction with the Amazon Web service. We repeated
the experiments during different time of the day to account for the different load
conditions both on our side and on Amazon’s side. Also, in all experiments we
requested books from the same author.

4.1 Experimental Results

In the first experiment was run 98 times over 4 days in varying load conditions.
The results of the experiment are shown in table 2.

The first experiment shows that the DS-VM has virtually the same perfor-
mance of the client distributed by Amazon, with only 14 milliseconds of difference
on average.

In the second experiment we analyze how time is distributed in an interaction
with Amazon when browsing and reserving a book. We computed three times:
first the time required by the DS-VM to make a decision on the path to take
in the process model, create the instances of the processes, and executing the
processes; the second time is the time required by the data transformation from
DAML to the format required by Amazon, and finally the invocation time. As
5 The Amazon’s client requires an input from the user, we hardcoded that input to

avoid penalties due to the human interaction
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Table 3. Distribution of time during the execution

DS-VM Data Transformation Invocation
Average Time 83 ms 156 ms 2797ms

Percentage 3% 5% 92 %
Standard Deviation 107 ms 146 ms 1314 ms

in the first experiment we report the average times, and the standard deviation.
We also report the percentage of the three averages compared to the total time
required by the interaction. The data is shown in table 36.

Consistently with the first experiment the time required by the DS-VM is
minimal with respect to a call to the Amazon web site requiring only 3% of the
whole interaction time.

The experiments show that the use of the DS-VM does not produce a per-
formance penalty. Indeed the average time of the required by the DS-VM for
browsing is virtually equivalent to the time required by the Amazon client. This
equivalence is explained by the second experiment that shows that the time re-
quired by the DAML-S is about 8% of the interaction time, and the majority of
that time was required by the XSLT transformations between the XML format
required by Amazon and DAML required by the DS-VM.

5 Conclusions

In this paper we introduced the DAML-S Virtual Machine, which, as far as we
know, is the first complete implementation of DAML-S consistent with the oper-
ational semantics of the DAML-S Process Model. In the paper we discussed the
architecture of the DS-VM and the rules that it uses to regulate the interactions
with the providers. Furthermore, we showed that those rules are consistent with
the semantics of the Process Model. Finally, we discussed the use of the DS-VM
to interact with Amazon’s Web service.

This paper provides an opportunity to analyze the contribution of DAML-
S and the Semantic Web to the Web services infrastructure. Specifically, three
questions emerge: the first one is whether there is any use of ontological infor-
mation in the Web services representation; the second one is whether DAML-S
representation of Web services is adequate or even useful. The last question is
whether DAML-S can be effectively used in the interaction with Web services.
The paper provides an answer to the last question showing that DS-VM is as
efficient as the Amazon’s own clients, but it also provides an initial answer the
previous two questions.

Our experience with Amazon shows that ontological information facilitates
the representation and use of Web services. For example, Amazon represents its
products using only one data structure that does not distinguish between books,
Cd’s or electronic devices. That data structure depends on Amazon’s internal
6 The data does not account for the loading of the Process Model and the related

ontologies since no similar operation was performed by the Amazon’s client
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way to represent products and it does not have any ontological status. As a con-
sequence any client is forced to implement translation rules between Amazon’s
representation and their own. In practice, the result is an explosion of mappings,
one for each provider. The Semantic Web provides a natural interlingua that is
understood by all clients. As a consequence, using DAML-S, Amazon publishes
its own internal mapping from its own data structure to DAML leaving to the
clients the task of mapping from DAML to their own data structure. The re-
sult is that each client needs only one mapping to the ontology and then it can
interact with any book selling web service.

The last question is whether there is a need for DAML-S representation.
DAML-S requires the specification of the consequences that result from the ex-
ecution of a process. This is probably the main contribution of DAML-S repre-
sentation to the description of Web services. We made an essential use of this
feature when our Amazon client had to make a selection between the different
activities: look for books vs look for Cd’s vs other types of products. To make
the selection, the client needs to know what are the consequences of each choice,
then match them against its own goals. Ultimately, this is possible only because
DAML-S supports the representation of such consequences. Other Web service
representation languages such as WSCI and BPEL4WS that do not support the
representation input, outputs preconditions and effects of processes executed by
Web services force programmers hardcode these choices in the clients leading to
overspecialization which leads to brittleness and maintenance problems.
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A DAML-S Core

In this section, we present a brief review of the syntax and formal semantics of
DAML-S Core, as presented in [2].

A.1 Syntax

The set of DAML-S Core expressions, Exp(Σ), over Σ, which represents a set
of symbols for basic operations, is defined in Table 4. Given a type expression
τ , the set of expressions of type τ is denoted by Exp(Σ)τ .

A.2 Operational Semantics of DAML-S Core

In a Σ-Interpretation A = (A, α), A is a T -sorted set of concrete values and α an
interpretation function that maps each symbol in Ω, the set of all constructors
defined through DAML+OIL, to a function over A.

Definition 1 (State). A state of execution within DAML-S Core is defined as
a finite set of agents: State := Pfin(Agent) An agent is a pair (e, ϕ), where
e ∈ Exp(Σ) is the DAML-S Core expression being evaluated and ϕ is a partial
function, mapping port references onto actual ports:

Agent := Exp(Σ) × {ϕ | ϕ : PortRef−→ PortA
τ }

for all τ , where PortA
τ := (Aτ )∗ and PortRef is an infinite set of globally known

unique port references, disjoint with A. Since no two agents can have a common
port, the domains of their port functions ϕ are also disjoint.

Definition 2 (Evaluation Context). The set of evaluation contexts EC for
DAML-S Core is defined by the context-free grammar

E := [ ] | φ(v1, . . . , vi, E, ei+2, en) | (E e) | (v E) | E >>= e

for v ∈ A, e, e1, e2 ∈ Exp(Σ), φ ∈ Ω ∪ S\{spawn, choice}.

Definition 3 (Operational Semantics). The operational semantics of
DAML-S is −→⊂ State × State is defined in Tables 5 and 6. For (s, s′) ∈−→,
we write s −→ s′, denoting that state s can transition into state s′.

The application of a defined service is essentially the same as the application
rule, except that the arguments to s must be evaluated before they can be
substituted into e. In a [SEQ], if the left-hand side of >>= returns a value v, then
v is fed as argument to the expression e on the right-hand side.

Evaluating spawn e results in a new parallel agent being created, which evalu-
ates e and has no ports, thus ϕ is empty. Creating a new port with port descriptor
p involves extending the domain of ϕ with p and setting its initial value to be
the empty word ε. The port descriptor p is returned to the creating agent. The
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Table 4. DAML-S Core Expressions

Σ Σ ⊆ Exp(Σ)

var V arτ ⊆ Exp(Σ)τ

abs \x -> e ∈ Exp(Σ)τ1 → τ2 for x ∈ V arτ1 , e ∈ Exp(Σ)τ2

appl (e1 e2) ∈ Exp(Σ)τ2 for e1 ∈ Exp(Σ)τ1 → τ2 , e2 ∈ Exp(Σ)τ1

cond cond e e1 e2 ∈ Exp(Σ)IO τ for e ∈ Exp(Σ)boolean, e1, e2 ∈ Exp(Σ)IO τ

return return e ∈ Exp(Σ)IO τ for e ∈ Exp(Σ)τ

seq e1 >>= e2 ∈ Exp(Σ)IO τ2 for e1 ∈ Exp(Σ)IO τ1 , e2 ∈ Exp(Σ)τ1 → IO τ2

send e1!e2 ∈ Exp(Σ)IO () for e1 ∈ Exp(Σ)Port τ , e2 ∈ Exp(Σ)τ

rec e? ∈ Exp(Σ)IO τ for e ∈ Exp(Σ)Port τ

port newPortτ ∈ Exp(Σ)IO Port τ for τ ∈ T

spawn spawn e ∈ Exp(Σ)IO () for e ∈ Exp(Σ)IO τ

choice choice e1 e2 ∈ Exp(Σ)IO τ for e1, e2 ∈ Exp(Σ)IO τ

serv s e1 · · · en ∈ Exp(Σ)τ for ei ∈ Exp(Σ)τi , s ∈ Sτ1 → · · · → τn → τ

Table 5. Semantics of DAML-S Core - I

(FUNC)
φ ∈ Ω

Π, (E[φv1 · · · vn], ϕ) −→ Π, (E[φAv1 · · · vn], ϕ)

(APPL)
free(u) ∩ bound(e) = ∅

Π, (E[(\x -> e) u)], ϕ) −→ Π, (E[e[x/u]], ϕ)

(CONV)
y is a fresh free variable

Π, (E[\x -> e], ϕ) −→ Π, (E[\y -> e[x/y]], ϕ)

(SERV) sx1 · · · xn := e ∈ S
Π, (E[sv1 · · · vn], ϕ) −→ Π, (E[e′[x1/v1, . . . , xn/vn]], ϕ)

evaluation of a receive expression p? retrieves and returns the first value of p.
The port descriptor mapping ϕ is modified to reflect the fact that the first mes-
sage of p has been extracted. Similarly, the evaluation of a send expression, p!v,
results in v being appended to the word at p. Since port descriptors are globally
unique, there will only be one such p in the system.
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Table 6. Semantics of DAML-S Core - II

(SEQ) −
Π, (E[return v >>= e], ϕ) −→ Π, (E[(e v)], ϕ)

(SPAWN) −
Π, (E[spawn e], ϕ) −→ Π, (E[return ()], ϕ), (e, ∅)

(PORT)

p new PortRef ϕ′(x) =

{
ε if x = p;
ϕ(x) otherwise.

Π, (E[newPort τ ], ϕ) −→ Π, (E[return p], ϕ′)

(REC)

p ∈ Dom(ϕ) ϕ(p) = v · w ϕ′(x) =

{
w if x = p;
ϕ(x) otherwise.

Π, (E[p?], ϕ) −→ Π, (E[return v], ϕ′)

(SEND)

p ∈ Dom(ϕ2) ϕ2(p) = w ϕ′
2(x) =

{
w · v if x = p;
ϕ2(x) otherwise.

Π, (E[p!v], ϕ1), (e, ϕ2) −→ Π, (E[return ()], ϕ1), (e, ϕ′
2)

(COND-TRUE) −
Π, (E[cond True e1 e2], ϕ) −→ Π, (E[e1], ϕ)

(CHOICE-LEFT)
Π, (E[e1], ϕ) −→ Π ′, (E[e′

1], ϕ′)
Π, (E[choice e1 e2], ϕ) −→ Π ′, (E[e′

1], ϕ′)

The rules for (COND-FALSE) and (CHOICE-RIGHT) are similar to the rules
for (COND-TRUE) and (CHOICE-LEFT) given in Table 6. If the condition b
evaluates to False, then the second argument e2 is evaluated next, instead of e1
For a choice expression e1+e2, if the expression on the left e2 can be evaluated,
then it is evaluated.However, the choice of which one is evaluated is made non-
deterministically.
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