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Abstract. Although RDF/XML has been widely recognized as the stan-
dard vehicle for representing semantic information on the Web, an enor-
mous amount of semantic data is still being encoded in HTML docu-
ments that are designed primarily for human consumption and not di-
rectly amenable to machine processing. This paper seeks to bridge this
semantic gap by addressing the fundamental problem of automatically
annotating HTML documents with semantic labels. Exploiting a key ob-
servation that semantically related items exhibit consistency in presenta-
tion style as well as spatial locality in template-based content-rich HTML
documents, we have developed a novel framework for automatically parti-
tioning such documents into semantic structures. Our framework tightly
couples structural analysis of documents with semantic analysis incor-
porating domain ontologies and lexical databases such as WordNet. We
present experimental evidence of the effectiveness of our techniques on a
large collection of HTML documents from various news portals.

1 Introduction

The Semantic Web espouses a vision [3] for next-generation information networks
where content providers define and share machine processable data on the Web
to empower a variety of automated tasks ranging from information integration
to Web services. There have been significant activities in building the techno-
logical infrastructure for realizing the Semantic Web vision and applications
based on it. Notable efforts include developing Semantic Web languages such as
DAML+OIL [22,23] based on Description Logic, and DAML Rules [16], which
seeks to extend the Semantic Web with rule-based and object-oriented capabili-
ties. Prototype systems, such as FaCT [21], Flora-2 [31,30], and TRIPLE [28],
are now available to drive the knowledge representation and reasoning compo-
nent of the Semantic Web.

Semantic Web documents contain metadata to express the meaning of their
content. Tools such as those pioneered by SHOE [20] and OntoBroker [13,29]
facilitate manual annotation of HTML documents with semantic markups. How-
ever, an enormous amount of semantic data (such as product descriptions and
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Fig. 1. New York Times Front Page

pricing information) is still being encoded in “plain” HTML documents. These
documents are designed primarily for human consumption and hence, unlike
annotated Semantic Web documents, are not machine understandable.

In this paper we address the relatively unexplored problem of automatically
annotating HTML documents, especially those that are machine generated from
templates and contain rich semantic data. These kinds of documents are in-
creasingly common nowadays since most content-rich Web sites (e.g., news por-
tals, product portals, etc.) are typically maintained using content management
software that creates HTML documents by populating templates from backend
databases. Figure 1, depicting a screen shot of the New York Times front page,
is an example of a template-based content-rich HTML document. Observe that
it has a news taxonomy (on the left in the figure) which does not change and
a template for major headline news items. Each of these items begins with a
hyperlink labeled with the news headline (e.g., “White House ...”) followed by
the news source (e.g., “By REUTERS ...”), followed by a timestamp and a text
summary of the article (e.g., “The White House today ...”) and (optionally) a
couple of pointers to related news.
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Fig. 2. A Fragment of the Semantic Partition Tree for New York Times Front Page

Usually a content-rich HTML document (such as the one shown in Figure 1)
comprises many semantic concepts (e.g., “News Taxonomy” and “Major Head-
line News”) and concept instances. These concepts and concept instances can
be organized into a semantic partition tree (such as the one shown in Figure 2)
which represents the “semantics” of a HTML document. In a semantic partition
tree each partition (subtree) consists of items related to a semantic concept. For
example, in Figure 2 all the major headline news items are grouped under the
subtree labeled “Major Headline News”. The problem addressed in this paper is
to automatically transform template-based content-rich HTML documents into
their corresponding semantic partition trees. Note that once a semantic parti-
tion tree is created, it is relatively straightforward to generate a corresponding
new document (in RDF/XML or some other suitable formats) with semantic
annotations.1

There are two main tasks underlying the creation of a semantic partition tree
from a HTML document: (i) identify segments of the document that correspond
to semantic concepts; and (ii) assign labels to these segments. Informally, we
say that several items are semantically related if they all belong to the same
concept. Our solution to these problems is based on two important observations
about semantically related items in template-based HTML documents, namely:

– Semantically related items exhibit consistency in presentation style. For ex-
ample, observe the presentation styles of the items in the news taxonomy of
the New York Times front page (on the left in Figure 1). The main taxonomic
items, “NEWS”, “OPINION”, “FEATURES”, ..., etc., are all presented in
bold font. All the subtaxonomic items (e.g., “International”, “National”,
“Washington”, ..., etc.) under a main taxonomic item (e.g., “NEWS”) are
hyperlinks. A similar observation can also be made on all the major headline
news items in the Figure 1.

– Semantically related items exhibit spatial locality. For example, when ren-
dered in a browser (see Figure 1), all the taxonomic items are placed in close
vicinity occupying the left portion of the page. Further observe that in the
DOM tree (see Figure 3) corresponding to the HTML document, all these

1 However, the final document generation step is not the main focus of this paper.
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Fig. 3. DOM Tree Fragment of New York Times Front Page

taxonomic items are grouped together under one single subtree rooted at
the table node (shown in circle). Similarly, all the major headline news items
are clustered under a different subtree rooted at the td node (shown in circle
in Figure 3).

Our solution to automatically creating semantic partition trees exploits the
two key observations above. The first observation leads to the idea of associating
a type with every leaf node in the DOM tree. The type of a leaf node consists
of the root-to-leaf path of this node in the DOM tree and captures the notion of
consistency in presentation style. The second observation gives rise to the idea
of propagating types bottom-up in the DOM tree and discovering structural
recurrence patterns for semantically related items at the root of a subtree. The
reader is referred to Section 2.1 for more details.

Summary of Our Approaches and Contributions

– Based on the idea of types and type propagation, we develop structural
analysis techniques for automatically partitioning HTML documents into
semantic structures. Our algorithm can also discover semantic labels and
associate them with partitions when they are present in the document (e.g.,
“NATIONAL”, “INTERNATIONAL”, ..., etc. appearing in the third column
in Figure 1). (See Sections 2.1 and 2.2.)

– We develop semantic analysis techniques to factor in structural variations
in concept instances (e.g., the absence of pointers to related news in the
third major headline news item in Figure 1 in contrast to the others). Our
semantic analysis makes lexical associations via WordNet to more accurately
put the pieces of a concept instance together. To assign informative labels
that are not present in a HTML document (e.g., “Major Headline News”
in Figure 2) to partitions our semantic analysis makes concept associations
by classifying the content of a partition using an ontology encoding domain
knowledge. (See Section 2.2.)
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– To accurately separate and aggregate instances of a semantic concept as well
as uncover higher level concept instances in a complex ontology we propagate
lexical and concept associations by coupling structural and semantic analysis
to work in tandem. (See Section 2.2.)

The rest of this paper is organized as follows. Our framework for automatic
semantic partitioning is presented in Section 2. In Section 2.1 we introduce struc-
tural analysis techniques based on sequential pattern discovery. In Section 2.2 we
show how structural analysis can be coupled with semantic analysis to improve
accuracy of partitioning. Experimental results appear in Section 3. Related work
is discussed in Section 4. Finally, Section 5 concludes this paper.

2 A Framework for Automatic Semantic Partitioning

As we point out in Section 1, the principal step in automatic semantic annotation
is to transform HTML documents into semantic partition trees. This is achieved
in our framework through a combination of structural and semantic analysis
techniques. First we illustrate the ideas underlying structural analysis.

2.1 Structural Analysis

Structural analysis is based on the key observation that in template-based
content-rich HTML documents semantically related items exhibit consistency
in presentation style and spatial locality. Such a property can be captured by
a simple typing system for the nodes in the DOM tree (and its corresponding
semantic partition tree) of a HTML document. Formally, we have the following
definition.

Definition 1 (Types) Given a DOM tree: (i) Let t1, t2 . . . , tk be the sequence
of HTML tags, with their attribute values, on the path from the root of the DOM
tree to a leaf node, then t1 · t2 . . . tk is a primitive type; (ii) If T1, . . . , Tk are
types, then seq(T1 . . . Tk) is a compound type.

Intuitively, a primitive type encodes the presentation style (including loca-
tion and visual cues such as font type and size) of a piece of text that corresponds
to a leaf node in a DOM tree. For example, in the DOM tree of Figure 3 (which
corresponds to the HTML document shown in Figure 1, all the leaf nodes corre-
sponding to the main taxonomic items, “NEWS”, “OPINION”, “FEATURES”,
..., etc., have the same primitive type, tr · td · table · tr · td · img. Let us denote
this type as T1. Further observe that all the subtaxonomic items under each
main taxonomic item, such as “International”, “National”, ..., etc., under the
“NEWS” item, have the same primitive type, tr · td · table · tr · td · a · font0.2 Let
us denote it using T2.
2 The font tags with different subscripts in Figure 3 (e.g., font0) denote font tags

with different attributes such as type and size.
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A compound type essentially summarizes the structural recurrence informa-
tion at a subtree rooted at an internal node. Note that in Figure 3 the subtree
rooted at the table node (shown in circle) groups together several main taxo-
nomic items each of which is followed by a number of subtaxonomic items, i.e.,
the entire taxonomy is clustered under this single DOM tree. This property of
spatial locality combined with consistency in presentation style reveals evident
structural recurrence information about semantically related items. If we cast
all the primitive types of the leaf nodes in the subtree rooted at table, then we
obtain the following string: T1T2T2 . . . T1T2T2 . . . . In this string the sequential
pattern, T1T

∗
2 (here ∗ denotes Kleene closure), exactly captures the structural

recurrence information of each semantically related item (i.e., a main taxonomic
item followed by a number of subtaxonomic items). In our type settings, the
sequential pattern T1T

∗
2 is generalized as the compound type seq(T1T2), which

is assigned to the type of the table node (shown in circle) in Figure 3.
Therefore, as illustrated by the example above, the idea underlying structural

analysis is to discover sequential patterns on the type sequence of nodes in a
DOM tree. Given any two types as defined above, their equivalence is defined
straightforwardly: two types are equivalent if and only if they are syntactically
the same. Our structural analysis algorithm is built on the notion of maximal
repeating substrings, which is defined below.

Definition 2 (Maximal Repeating Substrings) Given a string S and a
support threshold value θ, a substring α that repeats k times in S is a maxi-
mal repeating substring if and only if: (i) k ≥ 2 and |α|×k ≥ θ · |S| (|S| denotes
the length of S); and (ii) |α| × k is the maximum among all substrings that sat-
isfy condition (i); and (iii) k is the maximum among all substrings that satisfy
conditions (i) and (ii).

Essentially the above definition says that a maximal repeating substring
should be, first of all, a repeating substring that covers a majority of elements.3

In addition, its coverage should be maximized and its length minimized (un-
der the prerequisite that its coverage be maximized). In the sequel, we will
use MaximalRepeatingSubstring(S) to represent any algorithm that returns a
maximal repeating substring of the input string S if there is one. Otherwise, we
assume that it returns the empty string ε.

Since semantically related items exhibit spatial locality, structural analysis
can be performed recursively bottom-up starting from the leaf nodes of the DOM
tree of a HTML document. Specifically, to transform the DOM tree of a HTML
document into a semantic partition tree, we simply invoke the top-level algorithm
PartitionTree on the root of the given DOM tree. This algorithm first traverses
the DOM tree top-down and then restructures it bottom-up.
3 The support threshold value is used to filter out “noise” during structural analysis.

Since our algorithm traverses a DOM tree bottom-up and multiple semantically
related items can be dispersed in several subtrees, the “true” sequential pattern may
not be discovered until our algorithm is invoked on an internal node closer to the
root. Normally the support threshold value is set to 30% - 50% in our system.
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Algorithm PartitionTree(n)
input

n : a node in a DOM tree
begin
1. if n is a leaf node then
2. n.type = the sequence of HTML tags from the root to n
3. else if n has only one child node c then
4. PartitionTree(c)
5. Replace n with c and remove n from the DOM tree.
6. else
7. for each child node x of n do PartitionTree(x) endfor
8. Analyze(n)
9. endif
end

We use the notation n.type to refer the type attribute of a node n. In the al-
gorithm PartitionTree, Line 2 assigns primitive types to all leaf nodes. Internal
nodes with only one child are handled in Lines 4–5. In such a case, the type of this
only child node is computed and then simply propagated up the tree. However,
for an internal node with multiple children, we first invoke PartitionTree on
all of its children to collect their type information (Line 6). Then the algorithm
Analyze is invoked upon this node to perform a pattern discovery on its children
nodes (Line 7). (Here Analyze only does structural analysis. In Section 2.2 we
will show how to extend it to do semantic analysis.)

Algorithm Analyze(n)
input

n : an internal node in a DOM tree
begin
1. S = the sequence of all the child nodes of n
2. for each node c in S do
3. if c.flatten = true then
4. Replace c with the sequence of all the child nodes of c.
5. endif
6. endfor
7. τ = ε
8. do
9. Collapse adjacent nodes in S which share the same type.
10. α = MaximalRepeatingSubstring(TypeStr(S))
11. if α �= ε then τ = α endif
12. if |α| > 1 then
13. for each substring ρ in S such that TypeStr(ρ) = α do
14. Replace ρ with NewNode(ρ,seq(α)).
15. endfor
16. endif
17. while |α| > 1
18. if τ = ε then
19. n.flatten = true
20. else
21. Partition S into β0γβ1 . . . γβm, where TypeStr(γ) = τ .
22. for each γβi do Replace γβi with NewNode(γβi, NewType(τ)). endfor
23. n.type = NewType(τ)
24. endif
25. Make the nodes in S the new children of n.
end

The algorithm Analyze takes an internal node, n, as input. Its main func-
tion is to discover structurally similar items among all the children of n and
restructure the subtree rooted at n accordingly. Because our algorithm climbs
up a DOM tree from leaf nodes to the root, structural similarity may not be
discovered until it reaches a node close enough to the root. Therefore, we asso-
ciate a boolean attribute, flatten, with each node to signal whether a structural
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similarity pattern has been discovered at this node. The value of this attribute
is initialized to false for each node. However, if a pattern (or type) is not found
at a node, then its flatten attribute is set to true (Line 19).

In Lines 1–6, all the child nodes of n are collected into a sequence, which
will be partitioned into semantically related items later if they share structural
similarity. But if we encounter a node, c, whose flatten attribute has the value
true (which means a pattern is not found at this node), then we move all the
child nodes of c into this sequence for further processing. Note that when the
algorithm Analyze is invoked on a node, all of its descendant nodes are already
typed. Intuitively, since the type of a node summarizes the structure of the
subtree rooted at that node, analysis of the sequence of sibling types is essential
for structural similarity pattern discovery, which is done in two stages by our
algorithm.

In the first stage, consecutive nodes having equivalent types are collapsed into
a single node (Line 9). The intuition behind this is that they all relate to the
same item. Next, in Line 10, an attempt is made to find a maximal repeating
substring of the string corresponding to the type sequence of S (returned by
TypeStr(S)). If such a substring does not exist (hence no structural similarity),
then the loop in Lines 8–17 is exited and the flatten attribute of the current node
is set to true (Line 19). However, if a maximal repeating substring, α, is found
and α contains at least two elements (|α| > 1), then the sequence of consecutive
nodes whose type sequence matches α is merged into a new node created by the
procedure NewNode (Lines 12–16). The first argument of NewNode contains
the sequence of nodes to be merged while the second argument indicates the type
of this new node. The above collapsing-discovering-merging process is repeated
until it cannot be performed any more.

In the second stage (Lines 21–23), the last pattern discovered during the
first stage is used to partition the remaining sequence of nodes further. This is a
simple heuristic that we apply to handle variations in document structures (e.g.,
missing data items). Note that if τ contains only one type, then NewType(τ)
returns τ directly; otherwise, it returns the compound type seq(τ).

Now we illustrate the working steps of the algorithm Analyze using an exam-
ple. For simplicity, we will just show how it manipulates a sequence of types and
omit other details. Suppose the type sequence of S is T1T2T3T2T3T4T1T2T3T5
immediately before the algorithm executes the loop starting at Line 8. T2T3
is a maximal repeating substring. Let us use a new type T6 to denote
seq(T2T3). Then after the first iteration of the loop, the type sequence becomes
T1T6T6T4T1T6T5. The first two occurrences of T6 can be collapsed into one, re-
sulting in T1T6T4T1T6T5, in which T1T6 is a maximal repeating substring. Again,
we use a new type T7 to represent seq(T1T6). So after the second iteration the
type sequence becomes T7T4T7T5 and the loop terminates. It is not hard to see
that the first T7 and the following T4 will be put into one partition and the rest
into another partition. T7 is the type assigned to the current node.
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2.2 Semantic Analysis

There are two main problems with structural analysis. Firstly, it may not, in
general, always yield correct partitions corresponding to concept instances, es-
pecially when there are structural dissimilarities among them. In particular,
the analysis based on maximal repeating substrings (immediately after Line 17
in the algorithm Analyze) does not guarantee complete partitions. For exam-
ple, observe that in Figure 1 the third major headline news item starting with
“Bush Backs ...” does not have any pointer to related news while all the others
do. Invoking algorithm Analyze on the td node in Figure 3 (shown in circle
which contains all major headline news items) renders a sequence S as follows:
γ · T4 · γ · T4 · γ · γ · T4, where γ = seq(T1T2T3); T1, T2, T3, T4 correspond to news
title, source, text summary, and pointers to related news, respectively. (The cor-
rect partitions corresponding to the four major headline news items should be
P1 = γ · T4, P2 = γ · T4, P3 = γ, P4 = γ · T4, such that S = P1 · P2 · P3 · P4.)

The second problem with structural analysis is concerned with assigning
semantic labels to partitions. Usually the labels of (small) partitions deep in a
partition tree are provided by Web site designers in the document itself (e.g.,
“NATIONAL,” “INTERNATIONAL” ..., etc. appearing in the third column
in Figure 1). When such a label is present in a document, it is usually the
first text item in the partition. Applying this observation as a heuristic, we can
extract labels for many partitions. On the other hand, we also have to deal with
labeling concept instances using labels not present in the document (e.g., “Major
Headline News” in Figure 2). Such situations occur when smaller partitions are
aggregated into bigger partitions (e.g., “News Taxonomy” in Figure 2).

To address the problems above, we incorporate semantic analysis techniques
into algorithm Analyze introduced in Section 2.1. Specifically, Lines 18–24 of
algorithm Analyze, which serve as a rather straightforward heuristic to finally
separate concept instances, will now be replaced with more general techniques
for semantic analysis. Due to space limitation, here we will only outline the ideas.

Lexical Association. Lexical association is a light-weight linguistic processing
technique for identifying small segments of related text. It semantically relates
two consecutive pieces of free text by examining whether they share common
words (after filtering out “stop” words such as “the” and “of”) either directly or
via synonym relationship. This process can be implemented using WordNet [1],
a widely popular digital lexical reference database.

For instance, recall the example at the beginning of this section, where pure
structural analysis produces the sequence S = γ ·T4 ·γ ·T4 ·γ ·γ ·T4. At this point
there is no justification to sort out the correct concept instances, P1 = γ ·T4, P2 =
γ·T4, P3 = γ, P4 = γ·T4, corresponding to the four major headline news items (in
the second column of Figure 1) such that S = P1 · P2 · P3 · P4. However, observe
that in partition P4, the texts associated with γ and the following T4 share
the common word “SARS”. Therefore, by lexical association γ and T4 can be
semantically related and hence merged into one partition with high confidence.
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Concept Association. Concept association maps a partition to a semantic
concept that succinctly summarizes the meaning of its content. The concept
becomes the label of the partition. To make concept association we leverage
domain knowledge encoded in an ontology. Informally an ontology describes
concepts and their relationships, their features and attributes in a domain of
interest. For instance, an ontology for the news domain is shown in Figure 4 and
Table 1. Note that all the concepts and their subsumption hierarchy is depicted
in Figure 4.

Recall the observation that the labels for (small) partitions may be present
in the document itself. Moreover, they are usually the first text item of a parti-
tion. This observation leads to the following heuristic for discovering such labels.
Suppose a type sequence Tα corresponds to a partition. If T consists of short
text (one to two words) and matches one of the keywords of a concept in the
ontology, then it is extracted as the label for the corresponding partition (e.g.,
“NATIONAL”, “INTERNATIONAL” ..., etc. in the third column of Figure 1).

In cases where labels are not present in the document for the partitions,
rules encoded in the ontology are used to classify the content of a partition.
For instance, Table 1 shows the concept association rules for the news ontology.
To determine if a partition can be classified as a major headline news item the
ontology uses a rule which is a function of the key features associated with it,
namely, (hyperlink) title, keywords for recognizing news sources (such as AP,
Reuters, etc.), and features associated with news summaries such as constraints
on the text length.4

Propagating Lexical and Concept Associations. In principle, the light-
weight semantic analysis techniques introduced above are “incomplete” and
hence not all concept instances can be identified. However, recall the key obser-
vation that semantically related items exhibit both consistency in presentation
style and spatial locality. We can exploit this observation to propagate lexical as
well as concept associations to other structurally similar items.

4 More sophisticated classifiers such as Naive Bayes can also be used to make concept
associations.
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Table 1. Ontology Concepts and Their Mapping Functions

Ontology Concept Mapping Function
Major Headline News Rule: Function of Title, Source, Content
Minor Headline News Rule: Function of Title, Content
National Keyword: National, U.S.
International Keyword: International, World
Science & Technology Keyword: Science, Technology
Arts & Entertainment Keyword: Arts, Movies, Music,

Entertainment, Books, Travel
Business Keyword: Business, Finance
Sports Keyword: Sports, Baseball, Basketball
Health Keyword: Health, Fitness
Detailed News Rule: Function of Title, Content
News Taxonomy Keyword: NEWS, OPINION

For instance, recall again the example illustrating lexical association above.
In that example we determined via lexical association that γ and T4 in P4 are
semantically related. Such an association between γ and T4 can be propagated to
other nearby (γ, T4) pairs to form the partitions P1 and P2 (and so the remaining
γ becomes P3).

Structural Types vs. Semantic Types. Like lexical associations concept
associations discovered can also be propagated to structurally similar items to
assign semantic labels to partitions. In contrast to structural types (see Defini-
tion 1) that summarize the structural recurrence information about semantically
related items, semantic labels can be viewed as semantic types that directly cap-
ture the semantics of partitions. Because semantic types factor out structural dis-
parities, weaving structural and semantic types together enables our sequential
pattern analysis process to uncover higher level concepts in a complex ontology.

Now each node in a DOM tree is associated with two types: a structural type
and a semantic type. Once a semantic type (and the semantic label) is assigned
to the root node of a partition, it will replace its structural type (if it exists) in
the structural analysis process. However, its structural type is still retained in
order to propagate concept associations. This will enable structural and semantic
analysis to work in tandem. Specifically, immediately prior to invoking structural
analysis on the root of a DOM subtree, the semantic type of a child node is
propagated to all its siblings having the same structural type.

3 Experimental Results

We have implemented a prototype system and used it to create semantic par-
tition trees from 50 sample HTML documents collected from 8 different news
portals. The ontology used in our experiment is shown in Figure 4. These 50
sample HTML documents consist of 15 “front” pages (which contain multiple
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Table 2. Complexity Measures of Sample HTML Documents

Portal D
Major Minor Category Detailed News

Headline News Headline News News News Taxonomy
N MF SD N MF SD N MF SD N MF SD N MF SD

New York 15 4 47 5.24 2 28 0.47 19 97 37.32 - - - 6 79 27.69
Times 16 - - - 1 16 2.26 - - - 1 26 14.88 - - -

CNN
14 1 23 5.00 - - - 12 13 29.55 - - - 1 23 8.04
13 - - - - - - 2 9 5.40 1 32 12.91 1 23 7.87

Yahoo 18 - - - - - - 11 49 49.66 - - - 1 24 9.68
News 21 - - - 3 16 7.05 - - - 1 62 22.94 1 30 3.37

Google 13 26 30 64.16 1 30 4.14 - - - - - - 1 15 4.97
News 16 - - - 2 25 56.30 - - - 1 25 20.70 1 34 0.90

ZdNet
13 15 35 12.47 3 6 4.76 - - - - - - - - -
13 - - - 4 25 14.39 - - - 1 41 18.30 - - -

CNet
12 7 79 47.50 3 17 10.29 2 27 6.61 - - - 1 7 0
11 - - - 1 22 10.80 - - - 1 43 27.26 1 7 0

Bloomberg 21 7 31 31.10 - - - - - - - - - 1 37 5.31
News 2 - - - - - - - - - 1 30 3.33 1 40 9.80

Recorder 14 10 25 9.56 - - - - - - - - - 1 32 4.06
News 5 - - - - - - - - - 1 46 1.12 - - -

concepts and concept instances such as news taxonomy and various headline
news items) and 35 “detailed” news pages (which are usually characterized by a
long text description).

To reflect the complexity of a HTML document in terms of its layout struc-
ture and content richness, we have collected statistics about all the 50 sample
documents (see Table 2). Technically the complexity of a HTML document can
be measured along four different dimensions: (1) Mean depth of the DOM tree
(denoted by D). A large mean depth value usually implies complicated presen-
tation style; (2) Number of concepts w.r.t. the ontology and their instances
(denoted by N ). Usually large values are observed on front pages reflecting their
rich content; (3) Mean of the maximum fanout of subtrees in the DOM tree
that are mapped to ontology concepts (denoted by MF ). The maximum fanout
of a tree is the max of all the fanout values of descendant nodes. A large value
usually implies the presence of multiple concept instances that are clustered to-
gether in close vicinity; (4) Standard deviation of structural types of leaf nodes
contained in the subtrees that are mapped to ontology concepts (denoted by
SD). A larger values usually indicates a higher degree of structural variation
among the concept instances.

We compute all the four metrics as defined above for each ontology concept
in every HTML document in our sample data set. When each metric is finally
tallied, we group together all documents collected from the same news portal
and take the mean value of each group. Furthermore, each group is divided
into front and detailed news pages and their corresponding mean values of each
metric are shown in the top and bottoms rows, respectively, in Table 2 for every
news portal. For instance, with respect to the documents from New York Times,
the average mean depth of front (detailed) news pages is 15 (16); the average
number of “Major Headline News” instances is 4 for front news pages. Note that
in Table 2 the symbol “-” indicates that a metric is not applicable.

We measure two performance metrics: recall and precision. Recall value for
a concept in a document is the fraction of the number of partitions correctly
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Table 3. Recall and Precision Measures of Semantic Partitions

Portal
Major Minor Category Detailed News

Headline News Headline News News News Taxonomy
Rec.% Prec.% Rec.% Prec.% Rec.% Prec.% Rec.% Prec.% Rec.% Prec.%

New York 100 100 50 100 100 100 - - 100 100
Times - - 25 100 - - 100 100 - -

CNN
100 100 - - 100 100 - - 100 100
- - - - 0 0 100 100 100 100

Yahoo - - - - 81.8 100 - - 100 50
News - - 66.7 100 - - 100 100 100 100

Google 76.9 100 100 100 - - - - 100 100
News - - - - - - 100 100 100 100

ZdNet
93.3 100 66.7 100 - - - - - -

- - 78.9 93.3 - - 100 100 - -

CNet
100 100 87.5 100 100 100 - - 100 100
- - 0 0 - - 100 100 100 100

Bloomberg 100 100 - - - - - - 100 100
News - - - - - - 100 100 100 100

Recorder 90 90 - - - - - - 100 100
News - - - - - - 100 100 - -

labeled as instances of the concept over the actual number of concept instances
present in the document. Precision value for a concept is the fraction of the
number of partitions correctly labeled as instances of the concept over the total
number of partitions (correctly and erroneously) labeled as instances of the con-
cept. To collect recall and precision measures, first we manually identify all the
ontology concepts and their correct instances for each document and thus ob-
tain our reference model. When the semantic partition trees are rendered by our
algorithm, we manually tally the number of partitions that are correct and er-
roneous w.r.t. the reference model and thereby compute the recall and precision
values. As before, these recall and precision numbers are presented in Table 3 for
every news portal and every concept w.r.t. the front and detailed news pages,
respectively.

The recall and precision numbers presented in Table 3 show that our algo-
rithm for automatically partitioning HTML documents works well in practice.
On detailed news pages which typically contain few concepts and concept in-
stances our algorithm shows high recall and precision. Even for front pages
which normally include multiple concepts and instances our algorithm shows
little degradation.

It is noteworthy pointing out that our algorithm almost always achieves 100%
recall and precision on taxonomic news items, which typically show high struc-
tural homogeneity (see the low SD values in Table 2). For some complex pages
(such as New York Times and Yahoo front page) the recall and precision for cat-
egory news is high in spite of their complexity (see SD and MF values of these
pages in Table 2 for category news). On the other hand the recall for major
headline news in Google’s front page is considerably lower than that of CNet’s
front page because of many more concept instances in Google. Also observe that
in ZdNet’s front page, in spite of the low complexity of minor headline news (see
the low N, MF, and SD values) the recall value is low. This is due to the the
“incompleteness” of our semantic analysis techniques.
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The running time of our algorithm consists of two components: one is due
to structural analysis while the other due to semantic analysis. The complexity
of the structural analysis is dominated by MaximalRepeatingSubstring whose
worst case time complexity is quadratic in the length of the input sequence.
During the bottom-up traversal of the DOM tree this procedure can be invoked
at most n times where n is linear in the number of nodes in the DOM tree. The
complexity of semantic analysis is dependent on the implementation technol-
ogy used for doing lexical and concept associations. Currently in our prototype
implementation the light-weight concept association rules have worst case time
complexity linear in the number of concepts in the ontology.

Finally, we also measure the total running time that our algorithm takes
for processing a document. On a Pentium III machine with a 800MHz proces-
sor and 256MB memory, the running times range from 60 milliseconds to 6289
milliseconds for documents with 96 nodes to 1709 nodes in their DOM trees.

4 Related Work

The problem studied in this paper is primarily concerned with automatically
annotating HTML documents. The essence of this problem boils down to orga-
nizing the concepts and concept instances in a HTML document into a (la-
beled) semantic partition tree. There are a number of areas related to this
problem, namely, XML schema discovery [15,26,14,27], schema inference from
HTML documents [8,2], wrapper construction [17,7,25], record boundary de-
tection in HTML documents [12,11,10,4], and semantic annotation of HTML
documents [18,19,9]

However, our approach departs from all the related works above in several
respects. Firstly, our main focus is on template-based content-rich HTML docu-
ments. Unlike the proposed approaches for XML schema discovery and schema
inference from HTML documents, which require a collection of documents as in-
put, we work on individual documents. Secondly, our techniques exploit the key
observation that semantically related items exhibit consistency in presentation
style as well as spatial locality.

Heuristics have been proposed to partition HTML documents into tree-like
structures so as to facilitate Web browsing on small-screen devices [5], efficient
Web search [33], and converting HTML documents into XML data [6,32]. How-
ever, the partitioning algorithms in these works do not perform complex se-
quential pattern analysis as proposed by us. The partitioning algorithm of [33]
depends on ad hoc interpretation of HTML markups and hence does not scale
well to arbitrary content-rich domains. In [5], a combination of keyword extrac-
tion and text summarization is used for semantic partitioning; but the implicit
patterns in template-based Web documents are not exploited. The problem of
assigning semantic labels to partitions was not addressed in [32]. Unlike our
work, [6] did not propose general techniques for discovering semantic labels that
are present in a document. Moreover, our work further complements these above
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works by introducing a novel semantic analysis framework based on discovering
and propagating concept associations.

Relevant to our work is the problem of record boundary detection in HTML
documents pioneered in [12]. Several heuristics were introduced in [12] for this
problem and were later extended in [4]. More recently, a sophisticated frame-
work for developing application ontologies and using them for delineating record
boundaries was proposed in [10]. However, these techniques are not directly ap-
plicable to our problem due to the presence of rich content comprising multiple
concepts and concept instances in one document. Furthermore, like most pro-
posed wrapper construction techniques, [10] requires supervised training whereas
our framework does not.

Recently, interesting works were reported in [20,18,19,9], which seek to enable
the Semantic Web by enriching Web documents with semantic labels. In [20,18,
19] powerful ontology management systems form the backbone of systems that
support interactive annotation of HTML documents. This is in contrast to our
approach where annotation is automatic given a domain ontology. Even though
annotation in [9] is automatic, it does not exploit the key observation that seman-
tically related items exhibit spatial locality in DOM trees of HTML documents.
Consequently, their partitioning algorithm may fail to properly identify concept
instances in template-generated HTML documents containing multiple concept
instances.

Finally, the fundamental difference between our approach and other works is
that our framework tightly couples structural and semantic analysis techniques
and propagates semantic associations discovered in order to identify concept
instances.

5 Conclusion

There is scope for improving both structural and semantic analysis. In structural
analysis we can incorporate more robust pattern discovery techniques based on
minimum string edit distances. This can easily accommodate structural differ-
ences without requiring semantic analysis. We can enhance semantic analysis by
incorporating more powerful classification techniques.

The idea of semantic partitioning has important implication to other data
management problems. First, it eases the task of formulating (XPath and
XQuery) queries to retrieve data from HTML documents. Semantic partitioning
can be used to detect semantic changes in document content, an idea recently ex-
plored in [24]. Another application is audio-browsable Web content. By putting a
dialog interface to the content of a HTML document which is reorganized based
on the knowledge of its schema, a user can easily browse its content using voice
commands. Audio browsable Web content can greatly expand the reach of the
Web to visually challenged individuals. Finally, the idea of semantic partitioning
can enable the creation of self-repairing wrappers.
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