A (@-Based Architecture for Semantic
Information Interoperability on Semantic Web

Zhen-jie Wang, Huan-ye Sheng, and Peng Ding

Department of Computer Science and Engineering,
Shanghai Jiao Tong University, 200030 Shanghai, China
{wang-zj,sheng-hy,dingpeng}@cs.sjtu.edu.cn

Abstract. Semantic Web supports a fire-new infrastructure for solving
the problem of semantic information interoperability, and it promises to
support an intelligent and automatic information-processing platform for
multi-agent system whose ultimate objective is to provide better services
for end-users, for example, interoperable information query. Therefore,
except agent-to-agent interaction in multi-agent system, there is human-
to-agent interaction. To unify the two kinds of interaction, this paper
introduces @ language - a scenario description language for designing
interaction among agents and users. A ()-based architecture, which inte-
grates ontology servers, ontology-mapping servers, semantic information
sources, and multi-agent query system, is presented as a system solu-
tion to semantic information interoperability on Semantic Web. Further-
more, we investigate key technologies of interoperability: domain ontol-
ogy, ontology-mapping service, and related multi-agent system, and give
an implementation to demonstrate how our architecture works.

1 Introduction

On Semantic Web, a kind of new profiles including semantic information will
be used to weave a fire-new infrastructure with machine-readable and machine-
interpretable information [I], which supports many new functions, such as in-
teroperability, fusion and integration of information. The idea for achieving in-
formation interoperability lies in that the meanings of the interchangeable in-
formation should be understood across the entire information infrastructure. A
key basis of information interoperability is ontology, which makes it possible
to abstract knowledge model of real world using concepts and annotate seman-
tic information into web information sources. Obviously, domain ontology and
annotated semantic information sources intend to improve information query
and address semantic information interoperability. Semantic Web endowed with
many ontology languages such as XML, RDF/S, and DAML+OIL [2/3/4], etc.
These languages are foundation for ontology-based information query that will
provide more effective information query service.

Because same information is widely applied in many domains, and users
have different views for conceptualizing them, there must be different definitions
of concepts and relationships for same information. To implement information

D. Fensel et al. (Eds.): ISWC 2003, LNCS 2870, pp. 722-[737] 2003.
© Springer-Verlag Berlin Heidelberg 2003

A @-Based Architecture for Semantic Information Interoperability 723

interoperability, concept-switching or concept-transformation function between
different domain ontology is necessary.

Additionally, Semantic Web promises to support a semantic information-
processing platform for multi-agent systems, on which agents will be first-class
citizens. Therefore, besides domain ontology component and ontology-mapping
component, another necessary component is multi-agent system that can auto-
matically retrieve and manipulate semantic information for end-users. Thus, one
of the most necessary requirements placed on agents is the capability to interact
with end-users. To unify agent-to-agent and human-to-agent interaction, we in-
troduce @) language - a scenario description language for describing interaction
among agents and end-users [5].

The paper is organized as follows. Section 2 introuduces syntax facilities of
@ language. In section 3, we present a ()-based architecture for implementing
semantic information interoperability on Semantic Web, and then discuss its
crucial components. Section 4 gives a prototype implementation of proposed
(Q-based architecture. Lastly, we conclude the paper and discuss related works.

2 @ Language Overview

Some inter-agent protocol description languages, such as KQML and AgenTalk
[6], often regulate an agent’s various actions on the basis of computational model
of agent internal mechanisms. Obviously,these agents based on strict computa-
tional models have to be designed and developed by computer experts. It is
necessary to design a new agent interaction description language, which makes
it possible that those non-computer-professional application designers, such as
sale managers and consumers, might write scenarios that describe and model
the behaviors of agents, so that a practical multi-agent system can be easily
established. Under the background, we start working on @) language - a scenario
description language for designing interaction among agents and humans. This
kind of scenario-based language is to design interaction from the viewpoint of
scenario description, but not for describing agent internal mechanisms.

2.1 Syntax Facilities

@ extends Scheme by introducing sensing/acting functions and guard command
to realize scenario description. Why Scheme [7] becomes @’s mother language
is in that its Lisp-like characteristic: programs (here scenarios) can be handled
as data. The basic facilities of @ language for scenario description include Cue,
Action, Guard Command, Scenario, and Agent. Execution architecture of @
scenario consists of Execution Layer and Meta Layer [5].

Cue. A sensing function is defined as a cue, which represents agent’s percep-
tion to its outside environment. A cue doesn’t produce any side effect on the
environment. The syntax of cue definition and its example are as follows.

724 Z.-j. Wang, H.-y. Sheng, and P. Ding

(defcue cue-name {(parameter in|out|inout)l}*)
(defcue 7receive (:sentence in) (:from out))
(?receive request :from user)

Action. An acting function is defined as an action, which may change and
impose effects on the environment of agent system. The syntax and example of
an action definition are showed below.

(defaction action-name {(parameter in|out|inout)}*)
(defaction querydaml (:damlquery in) (:queryresult out))
(!'querydaml $queryrule $result)

Guard Command. A guard command is used for describing an agent’s be-
havior control mechanism to await multiple cues. If one of cues is perceived,
corresponding “form” will be performed. If no cue is perceived, the guard com-
mand will perform the “therwise” clause. The syntax and example of Guard
Command are showed as follows.

(guard {(cue {form}*)* [(otherwise{form}*)]})
(guard ((7hear "Hello" Peedy) (!play "Greet")
(!'speak "Hi, Nice to meet you"))
((?see-select 0) (!speak "Please input a query!")
(laskqueryinput $queryrule))
(otherwise (!move 100 200) (!play "Wave")
(!speak "Bye-Bye")))

Scenario. A scenario is used for defining several different states represented by
statel, state2, etc.

(defscenario scenario-name ({variablel}*)
(statel {(cue {forml}x)}x*
[(otherwise {form}*)])
(state2 {(cue {form}*)l}x*
[(otherwise {form}*)]))

An example of scenario is represented as follows, in which state transition is
implemented by “form” (go state) between different states (statel, state2, etc.).

(defscenario query-agent-scenario (message)
(et (($x #£))

(statel((7equal $x Peedy) (!say message) (go state2))
(otherwise (!say "Hello") (go state3)))

(state2((guard
((?hear "Hello" Peedy) (!play "Greet")

('speak "Hi") (go state4))

((7see-select 0) (!askqueryinput $queryrule)

A @-Based Architecture for Semantic Information Interoperability 725

(go stateb))
(otherwise (!move 100 200) (!play "Wave")
(!'speak "Bye-Bye")))))))

Agent. Agent is defined together with a specified scenario that will be executed
by the specified agent. An agent is defined as follows.

(defagent agent :scenario scenario-name {key value}*)
(defagent query-agent query-agent-scenario
:ip_address "192.168.100.188"
:port_number 8080)

Conclusively, the most prominent property of) Language is its simplicity on
both design and application of agent systems with following characteristics: End-
user-oriented, focusing on the interaction behavior of agent from the viewpoint
of users, not agent; Error-allowed (no requirement for correctness); The complex
behavior of agent can be realized by the combination of scenarios.

3 Semantic Information Interoperability

The basic architecture of semantic information interoperability on Semantic
Web is described in Fig. [l It is composed of end-users, agent system, ontol-
ogy sources, and semantic information sources four parts. Agent system consists
of user agent, query agent, wrapper agent, and facilitator agent. The interaction
among these agents and interaction between end-user and agent system are de-
scribed by a library of @ scenarios, each of which control an agent’s behaviors
and a group of which specify a multi-agent cooperation strategy to cope with a
specific request. Ontology sources are ontology-mapping servers and domain on-
tology servers. Semantic information sources include web pages and web services
and web databases, in which information providers have annotated semantic in-
formation using related domain ontology.

3.1 Domain Ontology

Ontology is generally defined as “a formal explicit specification of a shared
conceptualization” [§], which is often used to abstract knowledge models of
real world. Many advanced ontology languages, such as RDF/S, OIL and
DAML+4OIL, make it possible to describe domain ontology and annotate seman-
tic information into web sources. Obviously, domain ontology that conceptual-
izes domain knowledge and corresponding semantic information sources intend
to improve information query and address semantic information interoperability.

The decentralized characteristic of Semantic Web determines that users
themselves are able to construct a large number of small domain ontology in
much the same way that today’s Web content is created [I]. These constructed
domain ontology may be distributed in ontology servers of any physical web

726 Z.-j. Wang, H.-y. Sheng, and P. Ding

>

¥ 0%
End-Users h

Multi-agent 4‘ O Scenarios Library
System
Ontology Sources
Query Agent L ‘ Domain Ontology Servers ‘
‘Facilitator Agent‘ ‘ Wrapper Agent ‘ ‘ Ontology-Mapping Servers ‘

[
Semantic Information = P
Sources a;'g&a %I%IEI%I
==

Fig. 1. Architecture for semantic information interoperability

sites. To same information applied in different domains, users have different
views for conceptualizing them, so even if all domains’ ontology is described in
a common ontology language, there still exist different definitions of concepts
and relationships for same objects. To implement information interoperability,
concept-switching or concept-transformation function between different domain
ontology is necessary. By different ontology definitions about the same objects
Park and Service Advertisement respectively, we will clearly observe this neces-
sary about concept transformation. These examples are represented by ontology
language DAML~+OIL.

The first example is about park information. One is about the definition of
Park Ontology of Travel Domain in http://www.ichi.sjtu.edu.cn/Travel /Park-
Ont. The other is about the definition of Garden Ontology of Administration
Domain in http://www.Travel-Adm.com/Landscape/Garden-Ont.

Park Ontology:
<daml:Class ID="Park">
<rdfs:subClass0f>
<daml:Restriction daml:cardinality="1">
<daml:onProperty rdf:resource="#Name"/>
</daml:Restriction>
</rdfs:subClass0f>
</daml:Class>
<daml:DatatypeProperty rdf:ID="Name">
<rdfs:domain rdf:resource="#Park"/>
<rdfs:range rdf:resource="#string"/>
</daml:DatatypeProperty>
<daml:DatatypeProperty rdf:ID="City">
<rdfs:domain rdf:resource="#Park"/>

A @-Based Architecture for Semantic Information Interoperability 727

<rdfs:range rdf:resource="#string"/>
</daml:DatatypeProperty>
<daml:DatatypeProperty rdf:ID="Country">

<rdfs:domain rdf:resource="#Park"/>

<rdfs:range rdf:resource="#string"/>
</daml:DatatypeProperty>

Garden Ontology:
<daml:Class ID="Garden">
<rdfs:subClass0f>
<daml:Restriction daml:cardinality="1">
<daml:onProperty rdf:resource="#Name"/>
</daml:Restriction>
</rdfs:subClass0f>
</daml:Class>
<daml:DatatypeProperty rdf:ID="Name">
<rdfs:domain rdf:resource="#Garden"/>
<rdfs:range rdf:resource="#string"/>
</daml:DatatypeProperty>
<daml:DatatypeProperty rdf:ID="Place">
<rdfs:domain rdf:resource="#Garden"/>
<rdfs:range rdf:resource="#string"/>
</daml:DatatypeProperty>

The second example is about service advertisement of web service. One is
about ServiceProfile Ontology of Service Domain in http://www.daml.com/Ser-
vice/Profile-Ont. The other is about ServiceAdvertisement Ontology of Agent
Domain in http://www.ichi.sjtu.edu.cn/Agent/Advertisement-Ont.

ServiceProfile Ontology:
<daml:Class ID="ServiceProfile">
<daml:subClassOf rdf:resource="#Profile"/>
</daml:Class>
<daml:DatatypeProperty rdf:ID="ServiceName">
<rdfs:domain rdf:resource="#ServiceProfile"/>
<rdfs:range rdf:resource="#string"/>
</daml:DatatypeProperty>
<daml:DatatypeProperty rdf:ID="ServiceType">
<rdfs:domain rdf:resource="#ServiceProfile"/>
<rdfs:range rdf:resource="#Classification"/>
</daml:DatatypeProperty>
<daml:Class rdf:ID="Classification">
<daml:one0f rdf:parseType="daml:collection">
<Type rdf:ID="Database-Query"/>
<Type rdf:ID="E-Commence"/>
<Type rdf:ID="Language-Translation"/>
</daml:one0f>

728 Z.-j. Wang, H.-y. Sheng, and P. Ding

</daml:Class>

<daml:DatatypeProperty rdf:ID="Input">
<rdfs:domain rdf:resource="#ServiceProfile"/>
<rdfs:range rdf:resource="#string"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="Output">
<rdfs:domain rdf:resource="#ServiceProfile"/>
<rdfs:range rdf:resource="#string"/>

</daml :DatatypeProperty>

ServiceAdvertisement Ontology:

<daml:Class ID="ServiceAdvertisement">
<daml:subClass0f rdf:resource="#Profile"/>

</daml:Class>

<daml:DatatypeProperty rdf:ID="ServiceName">
<rdfs:domain rdf:resource="#ServiceAdvertisement"/>
<rdfs:range rdf:resource="#string"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="ServiceType">
<rdfs:domain rdf:resource="#ServiceAdvertisement"/>
<rdfs:range rdf:resource="#Category"/>

</daml :DatatypeProperty>

<daml:Class rdf:ID="Category">
<daml:subClass0f rdf:resource="#Classification"/>

</daml:Class>

<daml:DatatypeProperty rdf:ID="Precondition">
<rdfs:domain rdf:resource="#ServiceAdvertisement"/>
<rdfs:range rdf:resource="#string"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="Postcondition">
<rdfs:domain rdf:resource="#ServiceAdvertisement"/>
<rdfs:range rdf:resource="#string"/>

</daml:DatatypeProperty>

3.2 Ontology-Mapping Service

Furthermore, we discuss how to implement concept transformation through two
concrete query examples. Supposed a user in Administration Domain wants to
search for information about Yu Yuan Garden, and he sends Query A via a
user agent to a query agent that will assist user in searching for information. A
specific notation is used to identify concepts and specify ontology in users’ query,
for example, Query A is formalized by Garden Ontology with properties Name
and Place. SEARCH <Administration:Garden> means that this user expects to
search for objects of class Garden including all properties that are defined for this
class, and searching results must be restricted to those objects with properties

Name “Yu Yuan Garden” and Place “Shanghai, China”.

A @-Based Architecture for Semantic Information Interoperability 729

Query A:
xmlns:Administration="http:// www.Travel-Adm.com /
Landscape/Garden-Ont#">
SEARCH <Administration:Garden>
WHERE <Administration:Name>Yu Yuan Garden</Administration:Name>
<Administration:Place>Shanghai,China</Administration:Place>
END

When the query agent browses a web page annotated with Park Ontology
(see Annotation A), intuitively, if it is aware of equivalent mapping relation
between property Place in Park Ontology of Travel Domain and properties City
as well as Country in Garden Ontology of Administration Domain, it can find a
object which includes information of Yu Yuan Garden in Shanghai of China.

Annotation A:
xmlns:Travel="http://www.ichi.sjtu.edu.cn/Travel/Park-Ont#">
<Travel:Park rdf:ID="YuYuan'">

<Travel:Name> Yu Yuan Garden</Travel:Name>

<Travel:City> Shanghai</Travel:City>

<Travel:Country> China </Travel:Country>

<Travel:Area> 30 Acres </Travel:Area>
</Travel:Park>

In another example, a user in Agent Domain searches for information about a
search engine, he sends Query B via a user agent to a query agent. Query B is for-
malized by ServiceAdvertisement Ontology. SEARCH <Agent:ServiceName> IN
<Agent:ServiceAdvertisement> means that this user expect to search for prop-
erty ServiceName in class ServiceAdvertisement, and searching results must be
restricted to those objects with properties ServiceType “Language-Translation”
and Postcondition “Web pages”.

Query B:
xmlns:Agent="http://www.ichi.sjtu.edu.cn/
Agent/Advertisement-Ont#">

SEARCH <Agent:ServiceName>

IN <Agent:ServiceAdvertisement>

WHERE <Agent:ServiceType rdf:resource="#Language-Translation"/>
<Agent:Postcondition> Web Pages </Agent:Postcondition>

END

When the query agent contacts with facilitator agent, it acquires a service
profile annotated with ServiceProfile Ontology (see Annotation B). If it is aware
of mapping relations between ServiceAdvertisement Ontology of Agent Domain
and ServiceProfile Ontology of Service Domain, for example, an equivalent map-
ping between properties Postcondition and Output, plus to a subsuming map-
ping between properties ServiceType and ServiceType, it can find a service with
ServiceName “Google” in object GoogleProfile satisfies searching conditions.

730 Z.-j. Wang, H.-y. Sheng, and P. Ding

Annotation B:
xmlns:Service="http://www.daml.com/Service/Profile-Ont#">
<Service:ServiceProfile rdf:ID="GoogleProfile">
<Service:ServiceName> Google </Service:ServiceName>
<Service:ServiceType rdf:resource="#Language-Translation"/>
<Service:Input> Text of sentences </Service:Input>
<Service:0utput> Web pages </Service:Qutput>
</Service:ServiceProfile>

From above query examples, we conclude that ontology-mapping service,
which accepts or collects mapping advertisement information from semantic in-
formation sources, and then updates and adds it in the form of mapping rules
on ontology-mapping server, is a necessary component to implement information
interoperability. The forms of mappings contain three types:

— Ontology-to-ontology: it specifies an equivalent or subsuming mapping be-
tween source ontology and target ontology.

— Class-to-class: it specifies an equivalent or subsuming mapping between
classes of source ontology and target ontology.

— Property-to-property: it specifies an equivalent mapping between properties
of class in source ontology and properties of class in target ontology.

A mapping rule has the form r: Operator(o.c.p) Rlation Operator(o.c.p),
where 7 is the rule’s label, Operator is logical operator (AND, OR, or NOT), o
represents ontology name, o.c is a class of a ontology, and o.c.p is a property
of a class in a ontology. In symbol (), a set of ontology, classes, or properties is
contained. Relation represents equivalent or subsuming relationships that are
symbolized as: =, C. For example, the following rules represent the mappings
between properties of Garden Ontology and Park Ontology.

Ri:http://wuw.Travel-Adm.com/Landscape/Garden-0Ont.Garden.Place =
AND (http://www.ichi.sjtu.edu.cn/Travel/Park-Ont.Park.City,
http://www.ichi.sjtu.edu.cn/Travel/Park-0Ont.Park.Country)
R2:http://www.Travel-Adm.com/Landscape/Garden-0Ont.Garden.Name =
http://www.ichi.sjtu.edu.cn/Travel/Park-Ont.Park.Name

3.3 Multi-agent System

Multi-agent system including user agent, query agent, facilitator agent, and
wrapper agent is to assist users in query inference and transformation, and it is
used to connect users, ontology servers, ontology-mapping servers, and various
semantic information sources (see Fig.).

In interoperable information query, query agent is used to assist users in
query processing, for example concept extracting, ontology-mapping rules ac-
quiring, query rewriting, knowledge finding, etc. Its primary function modules
are depicted in Fig. 2l When end-users issue a query that is described by speci-
fied ontology to his user agent, user agent will submit it to query agent. Firstly,

A @-Based Architecture for Semantic Information Interoperability 731

User Agent
h

/ Query Agent
Domain || Concept Inference Engine
Ontology Servers| Identifying
- Knowledge Base Wrapper

Ontology- | __/Mapping Rules T Agent <
Mapping Servers Acquiring
— Facilitator
‘Query Rewriting ‘ Data Aiqulrlng 1{ Agent

‘ Semantic Information SourcesT

Fig. 2. Multi-agent query system

the query agent abstracts and identifies concepts in user’s query; then it checks
whether there are mappings between user ontology and ontology used by in-
spected semantic information. If query agent acquires ontology-mapping rules
from ontology-mapping server, it will rewrite the user query. Parser is used to
parse semantic data acquired from annotated semantic information sources. Ac-
cording to stored knowledge from Parser and rewritten query from Query Rewrit-
ing in Knowledge Base, Inference Engine will search and return corresponding
query results to user agent.

If information source is a traditional Database, a wrapper agent is used to
transform data in DB into semantic data according to its Database Schema. Here,
wrapper agent acts as proxies for external information sources. Facilitator agent
accepts semantic advertisements from services on Semantic Web, and matches
service requests derived from a query agent.

In this multi-agent system, there is the interaction between users and user
agent, for example, issuing query to user agent, returning results to user, re-
porting states of query; there are the interaction between query agent and user
agent for transmission of query and results, the interaction between query agent
and facilitator agent for searching service information, the interaction between
query agent and wrapper agent for acquiring data from legacy system, and the
interaction between query agent and domain ontology servers as well as ontology-
mapping servers. All of interaction can be described by @ scenarios, which are
used to control agents’ behaviors and specify their cooperation strategy.

4 Implementation

The experimental environment consists of @) language, Microsoft Agen, Visual
C++, and Prolog-based XSBA. The implementation architecture of query system
is showed in Fig.[3l @ scenarios describe agents’ behaviors (Cues and Actions)

! http://www.microsoft.com/msagent /.
2 http://xsb.sourceforge.net/.

732 Z.-j. Wang, H.-y. Sheng, and P. Ding

XSB Inference

DAML Parser ‘ Engine

Microsoft Agent
Software Components

Q Scenario [0S N [e — >| User Agent F—{ Q Scenario |
v T
‘C++ Programs‘ ‘ Q Interpreter | ’ Q Interpreter ‘ ‘C++ Programs‘

Scheme Interpreter Scheme Interpreter

Fig. 3. Implementation architecture of query agent and user agent

Table 1. Main Cues and Actions of user agent

Cues and Actions Interpretation (behaviors of user agent)
(?feel [:from user]) Checks whether to receive user’s instruction, for
example, quit, stop, etc.

(?receiveResult $Result [:from|Checks whether to receive searching result from

query-agent]) query agent.

(!speak Sentence [:to user]) Speaks to users, for example, query results.
('play Animation) Play some animations such as “GestureDown”.
(‘move X'Y) Moves to a point (x, y) in the screen with an

appropriate manner, such as fly.
(faskqueryinput $Query[:from|Asks user to input query items, and variable
user]) $Query represents user’s query.

('submit $Requests [to: query-|Submits user’s requests to a query agent.
agent])

that are implemented by Visual C++. Designed on Microsoft Agent Software
Components, our user agent is incorporated interactive abilities such as ”speak”,
”play”, "move”, etc.

DAMLA4-OIL is used to construct our domain ontology. Therefore, DAML
Parser of query agent is designed to parse semantic annotation (DAML markup),
and it is constructed on Repatﬁ. According to RDF data model, this Parser
should parse DAML annotation into triples, each of which includes three parts
(Subject, Predicate, Object plus to their corresponding Namespace). These
parsed triples are stored in Knowledge Base in a knowledge representation form
that is consistent with XSB Inference Engine. As an efficient rule inference en-
gine, XSB specifies ways of processing a pattern query and finding new knowledge
from parsed semantic data.

Here, we will give two query examples mentioned in Query A and Query B.
We assume that query agent directly acquires semantic information of “Yu Yuan
Garden” from an annotated web page; in addition, it directly acquires semantic
information of service “Google” from facilitator agent. We design user agent and
query agent’s main Cues and Actions as Table [and Table

3 http://www.daml.org/tools/repat.

A @-Based Architecture for Semantic Information Interoperability 733

Table 2. Main Cues and Actions of query agent

Cues and Actions

Interpretation (behaviors of query agent)

(7feel [:from user-agent])

Checks whether to get user agent’s instruction.

(?receiveRequest $Query [:from
user-agent|)

Checks whether to get user agent’s query re-
quest.

(?receiveRule $Mapping-rules
[:from mapping-server])

Checks whether to receive ontology-mapping
rules.

(query-mapping $Mapping-
rules [to: mapping-server])

Identifies concepts used in user query, and then
queries mapping rules from ontology-mapping
server.

(query-rewriting $Mapping-

rules $Query)

Rewrites this query according to mapping-rules.

(parsedaml DAMLFile)

Parses a DAML file into triples.

(!querydaml $Query $Result)

Finishes Knowledge searching according to
$Query, and stores query results in variable
$Result.

('return $Result [to: user-agent])

Returns query results in variable $Result to user

agent.

The main states of user agent in a scenario are shown as follows. At the
initial state state_Ask-query, user agent shows a dialog box and guides a user to
input his query into the dialog box. After the user inputs the query, user agent’s
state shifts to state_Submit, in which the agent executes a action of sending a
query to a query agent, and then user agent goes on shifting to state_MsgWait.
In state_MsgWait, user agent waits for the user’s instructions or the messages
sent by query agent, and tells the user what is happening, and then shifts to the
corresponding state. When user agent receives query results from query agent,

it will speak results to user.

(state_Ask-query (otherwise
(!speak " Hello! This is Agent Peedy!")
('play "Greet")
(!move 200 300)
(!speak "Please input query in the dialog box!")
('askqueryinput $Query) (go state_Submit)))
(state_Submit (otherwise
(!'submit $Query) (go state_MsgWait)))
(state_MsgWait
((7feel) (!speak "Please give me instructions!")
(go state_Instruction))
((?receiveResult $Result)
(!speak "I receive results from query agent.")
(!play "Read")
(!move 300 450)
('speak $result) (go state_Ask-query))
(otherwise
('speak "I am waiting message!")(go state_MsgWait)))

734 Z.-j. Wang, H.-y. Sheng, and P. Ding

The main states of query agent in a scenario are shown as follows. At the
initial state state_MsgWait, query agent waits for the messages from user agent
or ontology-mapping server, and then shifts to corresponding state. When query
agent receives the query request from user agent, it shifts to state_Ask-rules, and
acquires mapping rules from ontology-mapping server. After getting mapping
rules, query agent shifts to state_Query for knowledge query.

(state_MsgWait
((?feel) (go state_Instruction))
((?receiveRequest $query) (go state_Ask-rules))
((?receiveRule $Mapping-rules) (go state_Query)
(otherwise (go state_MsgWait)))
(state_Ask-rules (otherwise
(!query-mapping $Mapping-rules ServerName) (go state_MsgWait)))
(state_Query (otherwise
(!query-rewriting $Mapping-rules $Query)
(!parsedaml DAMLFile)
(!'querydaml $Query $Result) (go state_Return-result)))

Fig. [4 exhibits user input interface and respective query results of examples
of Query A and Query B. Query examples show that query agent with capability
of information interoperability exactly returns results.

5 Conclusion and Related Works

Essentially, our interoperable information query is an ontology-based searching
approach. Compared with some related works of ontology-based searching, the
advantage of our work is in that it introduces ontology-mapping function. For
example, SHOE (Simple HTML Ontology Extension) was proposed, which al-
lowed HTML developers to annotate useful semantic knowledge into their web
pages, and then a web-crawling agent could capture knowledge from these an-
notated pages [9]. There were authors who developed an annotation strategy
and tool to help formulating annotations and searching for specific images based
on domain knowledge contained in ontology [1{]]. Because these ontology-based
searching works neglected concept-switching or concept-transformation function,
they only solved information interoperability in a limited degree. Also, there were
researchers who investigated information query on the DAML-enabled web [11].
This work suggested ontology mapping, but it mainly examined the problem of
inference in searching and addressed the issue of describing dynamic procedures
and services in DAML on the Web, and the mechanism and details of how to
utilize ontology mapping were unclear.

The decentralized feature of Semantic Web makes it inevitable that different
communities will use their own ontology to annotate semantic information in
their own information sources. In the sense, the inter-ontology mapping plays a
crucial role for information interoperability. In addition, Semantic Web promises
to support a semantic information-processing platform for multi-agent systems,

A @-Based Architecture for Semantic Information Interoperability 735

Sutfect [X
[termaat variie |

Pregerty: [fype Pk Name:u Yisn
[aueryvartse =l Garden Clty:Shanghal

Ot [7 1 Courry:China area:20
[uery Varbie =

Londet |

fenon

[has | owte | suemn |

[Peeva) E|

I.X-hmm AL 5{T ¢ ou el Seapdl Cardan- Dati e, Sy
itpbonwrer b st el ardc e Garden Dtd Heme: .
[oymbervn o Lo | SO0 0 sy e wesl Ty ol Moot

Subjact:

[irtermdate varei =
PO [sorvceiame.

s Gl =]
ot [¥

[awery vartie El
_couren |
P
[aa | oeen | swem |
™= Ve =]
3 WAy
LESLLL Skt
2 - o

Fig. 4. Two query examples: find information about Yu Yuan Garden; find name of a
web pages’ search engine

on which agents will be first-class citizens. Considering the two points, many
multi-agent systems have been proposed to cope with information interoper-
ability issues, for example, in the areas of ontology heterogeneity, query refor-
mulation, and data integration, etc. Even similar aims have been pursued by
some multi-agent systems, such as BUSTER [12], KRAFT [13], Infosleuth [14],
and Jeap [15]. Comparing them with our presented @Q-based architecture for se-
mantic information interoperability on Semantic Web, our architecture not only
considers domain ontology servers and multi-agent system, but also introduces
ontology-mapping services that provide concept switching or concept transfor-
mation function. Uniquely, we unify the two kinds of interaction: agent-to-agent
and human-to-agent interaction in multi-agent query system by () scenarios,
through which end-users may control query agent’s behaviors flexibly and inter-
actively. Moreover, the property of @ language is in that it is more oriented to
the non-computer professionals than KQML and FIPA ACL, which determines
that application designers not only can use to () scenarios model and describe the
agents’ behaviors, but also can use them to specify the multi-agent cooperation
strategy by combining different @) scenarios in a library.

736 Z.-j. Wang, H.-y. Sheng, and P. Ding

Next, further works need to be done for improving the practicability of our
architecture. Firstly, a standard ontology-mapping representation and inference
language have to be set up for make it easy to advertise and collect mapping
information of semantic information sources. Certainly, mapping information
may be fully manually specified in semantic information sources, or may be semi-
automatically determined through some automatic mapping discover techniques,
such as case-based reasoning technique.

Acknowledgement. This work was supported by AIEJ (Association of Inter-
national Education, Japan). @ is being developed by @ consortium including
Dept. of Social Informatics at Kyoto University, Dept. of Computer S&E at
Shanghai Jiao Tong University, Research Institute of Image Information Science
in Japan, and Japanese Science Technology Digital City Research Center. We
thank Prof. Toru Ishida of Kyoto University for his supervising, and associate
Prof. Zhi-qiang Gao for his detailed discussion.

References

1. J. Hendler. Agents and the semantic web. IEEE Intelligent Systems, 16(2): 30-37,
2001.

2. A. Gomez-Perez and O. Corcho. Ontology languages for the semantic web. IEEFE
Intelligent Systems, 16(2): 54—60, 2002.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5): 34-43, 2001.

4. J. Hendler and D. McGuinness. The darpa agent markup language. IEEE Intelli-
gent Systems, 15(6): 72-73, 2000.

5. T. Ishida and M. Fukumoto. Interaction design language (): the initial proposal.
Transactions of JSAIL 17(2): 166-169, 2002.

6. K. Kuwabara, T. Ishida, and N. Osato. AgentTalk: coordination protocol descrip-
tion for multi-agent systems. In Proceedings of the First International Conference
on Multi-Agent Systems, pages 455, 1995.

7. R. Kent Dybvig. The scheme programming language, second edition. Prentice Hall
Inc., 1996.

8. M. Gruninger and J. Lee. Ontology applications and design. Communications of
the ACM, 45(2): 39-41, 2002.

9. S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-based web agent. In
Proceedings of the First International Conference on Autonomous Agents, Pages
59-66, 1997.

10. Th. Schreiber, B. Dubbeldam, J. Wielemaker, and B. Wielinga. Ontology-based
photo annotation. IEEE Intelligent Systems, 16(3): 66-74, 2001.

11. G. Denker, J. R. Hobbs, D. Martin, S. Narayanan, and R. Waldinger. Accessing
information and services on the DAML-enabled Web. In Proceedings of the Second
International Workshop on the Semantic Web, 2001.

12. H. Stuckenschmidt, H. Wache, T. Voégele, and U. Visser. Enabling technologies
for interoperability. In Ubbo Visser and Hardy Pundt, editors, Workshop on the
14th International Symposium of Computer Science for Environmental Protection,
pages 35—46, 2000.

13.

14.

15.

A @-Based Architecture for Semantic Information Interoperability 737

A. D. Preece, K. Hui, W. A. Gray, P. Marti, T. J. M. Bench-Capon, D. M. Jones,
and Z. Cui. The KRAFT architecture for knowledge fusion and transformation.
Knowledge Based Systems, 13(2-3): 113-120, 2000.

M. Nodine, J. Fowler, T. Ksiezyk, B.Perry, M. Taylor, and A. Unruh. Active infor-
mation gathering in InfoSleuth. International Journal of Cooperative Information
Systems, 9(1-2): 3-28, 2000.

M. Panti, L. Penserini, and L. Spalazzi. A multi-agent system based on the P2P
model to information integration. Computer Science Institute, University of An-
cona, 2002.

	Introduction
	Q Language Overview
	Syntax Facilities

	Semantic Information Interoperability
	Domain Ontology
	Ontology-Mapping Service
	Multi-agent System

	Implementation
	Conclusion and Related Works

