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Abstract. The Semantic Web promises to open innumerable opportunities for 
automation and information retrieval by standardizing the protocols for 
metadata exchange. However, just as the success of the World Wide Web can 
be attributed to the ease of use and ubiquity of Web browsers, we believe that 
the unfolding of the Semantic Web vision depends on users getting powerful 
but easy-to-use tools for managing their information. But unlike HTML, which 
can be easily edited in any text editor, RDF is more complicated to author and 
does not have an obvious presentation mechanism. Previous work has 
concentrated on the ideas of generic RDF graph visualization and RDF Schema-
based form generation. In this paper, we present a comprehensive platform for 
constructing end user applications that create, manipulate, and visualize 
arbitrary RDF-encoded information, adding another layer to the abstraction 
cake. We discuss a programming environment specifically designed for 
manipulating RDF and introduce user interface concepts on top that allow the 
developer to quickly assemble applications that are based on RDF data models. 
Also, because user interface specifications and program logic are themselves 
describable in RDF, applications built upon our framework enjoy properties 
such as network updatability, extensibility, and end user customizability – all 
desirable characteristics in the spirit of the Semantic Web. 

1   Introduction 

One reason underlying the initial success of the World Wide Web is the facility with 
which people can author Web pages and post them online. Web browsers proved to be 
an easy client-side platform on which to develop, due to the simplicity and forgiving 
nature of HTML syntax and the quick turnaround time of the edit-debug process of 
authoring HTML content. HTML was also sufficiently expressive as a layout 
language that creative page designs could be realized. Early adopters found a whole 
new medium in which to express and share their thoughts, designs, and artwork. As 
HTML matured, programming languages such as JavaScript were called upon to 
provide support for implementing client-side dynamic content, making HTML even 
more expressive.   

Perhaps an even more important reason for the Web’s success is the fact that 
HTML-based content is extremely easy to navigate. Using the almost ubiquitous Web 
browser, content located virtually anywhere in the world, regardless of the server on 
which it is hosted, can be browsed with point-and-click simplicity.  
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In contrast, the Resource Description Framework (RDF) [2], the corresponding 
standard language for the Semantic Web [3], enjoys none of these properties. 
Composition of RDF is difficult in its XML form, as is evidenced by the creation of 
several alternate syntaxes for RDF [5]. Separate from the syntax is the conceptual 
difficulty of crystallizing knowledge in terms of ontologies, a more complicated 
process than copying and pasting pieces of hypertext. Furthermore, there are no 
standard approaches to visualizing RDF, and the generalized approaches of graph 
visualization and key/value pair editing employed by many projects do not provide 
the intuitive interface presented by the Web [17]. 

For the Semantic Web to develop organically, various kinds of users must be able 
to participate in its growth. User interfaces must be constructed to facilitate the 
creation and distribution of RDF-encoded information and to visualize extant RDF 
metadata on the Semantic Web in an intuitive fashion. Developers will need tools for 
producing such user interfaces that give them easy access to RDF data and user 
interface components that are specially designed to handle the generality of RDF’s 
data model. 

An example of a user interface that gives normal humans the ability to interact with 
RDF is Haystack [1]. Haystack brings the Semantic Web to end users by leveraging 
key Semantic Web technologies that allow users to easily manage their documents, e-
mail messages, appointments, tasks, etc. The Haystack user interface is capable of 
visualizing a variety of different types of information; meanwhile, the interface gives 
few clues to the notion that the underlying data model is represented in RDF. 
Presenting information in a manner familiar and intuitive to users is key, as few users 
are familiar with ontological vocabulary and descriptive logic. Additionally, users are 
unlikely to accept a system that requires them to explicitly shuttle information 
between their current systems and an RDF representation. In other words, end user 
Semantic Web applications need to be developed in such a way that users need not 
even be aware that the Semantic Web is involved!  

In addition to serving as an exemplar, Haystack has been built as an extensible 
platform that allows various kinds of functionality to be developed easily and 
independently and incorporated seamlessly. In this paper we describe our 
observations on the kinds of tools that are needed by developers of RDF-based client 
software and demonstrate these key concepts of the Haystack system that can be 
reused by others. 

2   Approach 

The layers of Haystack’s infrastructure are designed to tackle specific aspects of the 
problem of creating end user Semantic Web applications. Enabling the data layer of 
the system is Adenine, a new domain-specific programming language we have 
developed for manipulating RDF data. Like RDF/XML and Notation3 [5], it can be 
used to record RDF, but unlike them, it can express programming constructs that 
manipulate such data. Adenine adopts a combination of Python, Notation3, and 
Scheme [9] syntax in order to conveniently express frequently-used RDF operations. 
Furthermore, because Adenine can be compiled into an RDF representation, Adenine 
code and RDF data can be freely intermixed and distributed together.  
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The basis for the Haystack system is a layer that supports back-end components 
called services that are responsible for incorporating data from other systems and 
processing existing data in the background. Haystack’s RDF information store holds 
all RDF data known to the system and serves as a blackboard that coordinates the 
workings of different services, allowing one service to build on the results produced 
by other services. Services can be written in a variety of languages, including Java, 
Python, and Adenine. 

We turn our attention to the problems of presenting the RDF information that is 
managed by services to the user. As mentioned, one important part of the appeal of 
HTML is its expressiveness and ease in coding layout and presentation. Haystack 
supports an analogous, extensible user interface ontology called Ozone that exploits 
the power of RDF to describe on screen presentation. Using Ozone we can construct 
user interface elements called views that represent resources described in RDF on 
screen. 

Not only do we need to present RDF data to the user, but we also need to give 
users intuitive tools with which to interact with such data. We allow users to 
manipulate resources with direct manipulation techniques such as context menus and 
drag and drop. The actual commands that are exposed by such techniques are 
specified according to an ontology for declaring operations on RDF data. Operations 
– akin to menu items and toolbar buttons in existing environments – can be defined to 
work on specific classes of RDF resources and are written in Adenine. 

A special type of operation is object and document creation, which is the explicit 
means through which the user adds data to the system. We define the notion of a 
constructor, an adaptation of templates, factories, and other construction paradigms 
used in object-oriented systems [4], to the Semantic Web. Constructors, like 
operations, are Adenine functions that set up the basic properties of an object, 
potentially also displaying a user interface to prompt the user for necessary 
information in the process. We will show how this abstraction can address the issue of 
how users create new resources and describe existing resources to the system. 

Our contributions can be reused in systems other than Haystack. Adenine, for 
instance, can code information processing algorithms on Web servers that handle 
RDF data. Haystack’s UI framework can be adapted to serve Dynamic HTML pages 
built up by nesting HTML representations of pieces of RDF data. However, it is 
through the Haystack system that we wish to illustrate how the combined use of all of 
these techniques can ease the development of an environment that brings the benefits 
of the Semantic Web directly to end users.  

3   Related Work 

We believe that the availability of tools for prototyping and building programs that 
both produce content for and render content from the Semantic Web can help to 
improve the reception of Semantic Web technologies. The current generation of tools 
represents the first step in this direction in that they expose programming interfaces 
for manipulating information. Toolkits for generating, processing, and visualizing 
graphs of RDF data are widely available on most platforms [14] [15]. Tools for 
editing data according to specific ontologies, such as Ont-O-Mat and Protégé, give 
knowledge engineers powerful tools for creating and manipulating data that 
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corresponds to specific schemata [10] [11]. Furthermore, server-side software 
packages have been developed to aggregate RDF information for presentation to users 
[13]. 

Building on these toolkits, Haystack exposes functionality to users for interacting 
with information at higher levels of abstraction. Rather than exposing information as a 
series of RDF statements, Haystack concentrates on the concepts that are important to 
users of that information: documents, messages, properties, annotations, etc. The 
Placeless Documents project at Xerox PARC [3] similarly developed an architecture 
for storing documents based on properties specified by the user and by the system. 
Both Haystack and Placeless Documents support arbitrary properties on objects and a 
collection mechanism for aggregating documents. It also specified in its schema 
access control attributes and shared properties useful for collaboration. We have taken 
advantage of many ideas that arose from this research in developing the user interface 
paradigms exposed to users in Haystack for working with RDF-encoded information. 

4   Adenine Programming Language 

In any system built upon an RDF data model, a sizeable amount of code – both in 
services and in user interface components – is devoted to the creation and 
manipulation of RDF-encoded metadata. We observed early on that the development 
of a language that facilitated the types of operations we frequently perform with RDF 
would greatly increase our productivity. This lead to the creation of Adenine. An 
example snippet of Adenine code is given below. 

# Prefixes for simplifying input of URIs 
@prefix : <urn:test-namespace:> 
 
:ImportantMethod rdf:type rdfs:Class 
 
method :expandDerivedClasses ; 
rdf:type :ImportantMethod ; 
rdfs:comment "x rdf:type y, y rdfs:subClassOf z => x rdf:type z" 
 # Perform query 
 # First parameter is the query specification 
 # Second is a list of the variables to return, 

# in order 
 = data (query {  
  ?x rdf:type ?y 
  ?y rdfs:subClassOf ?z 
 } @(?x ?z)) 
  
 # Assert base class types 

 for x in data 
  # Here, x[0] refers to ?x  
  # and x[1] refers to ?z 
  add { x[0] rdf:type x[1] } 

The impetus for creating this language is twofold. The first key motivation is 
having the language’s syntax support the data model. Introducing the RDF data model 
into a standard object-oriented language is fairly straightforward; after all, object-
oriented languages were designed specifically to be extensible in this fashion. 
Normally, one creates a class library to support the required objects. However, more 
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advanced manipulation paradigms specific to an object model begin to tax the syntax 
of the language. In languages such as C++, C#, and Python, operator overloading 
allows programmers to reuse built-in operators for manipulating objects, but one is 
restricted to the existing syntax of the language; one cannot easily construct new 
syntactic structures. In Java, operator overloading is not supported, and this results in 
verbose APIs being created for any object-oriented system.  

Arguably, this verbosity can be said to improve the readability of code. On the 
other hand, lack of syntactic support for a specific object model can be a hindrance to 
rapid development. Programs can end up being much longer than necessary because 
of the verbose syntactic structures used. This is the reason behind the popularity of 
domain-specific programming languages, such as those used in Matlab, Macromedia 
Director, etc. Adenine is such a language. It includes native support for RDF data 
types and makes it easy to interact with RDF stores and RDF-based services. 

4.1   RDF Representation 

The other motivation for creating Adenine was to be able to combine executable code 
with data in the same representation. To achieve this, Adenine is compilable directly 
into RDF according to the Adenine ontology. The benefits of this capability can be 
classified as portability and extensibility. Since 1996, bytecode-based virtual machine 
execution models have resurged as a result of Java’s popularity. Their key benefit has 
been portability, enabling interpretation of software written for these platforms on 
vastly different computing environments. In essence, bytecode is a set of instructions 
written to a portable, predetermined, and byte-encoded ontology. 

Adenine takes the bytecode concept one step further by making the ontology 
explicit and extensible and by replacing byte codes with RDF. In other words, 
instructions are represented as RDF resources, connected by “next instruction” 
predicates. Execution occurs by following a chain of such instruction resources. 
Instead of dealing with the syntactic issue of introducing byte codes for new 
instructions and semantics, Adenine takes advantage of RDF’s ability to extend the 
directed “object code” graph with new instruction node types. 

One recent example of a system that uses metadata-extensible languages is 
Microsoft’s Common Language Runtime (CLR). In a language such as C#, 
developer-defined attributes can be placed on methods, classes, and fields to declare 
metadata ranging from thread safety to serializability. Compare this to Java, where 
serializability was introduced only through the creation of a new language keyword 
called “transient”. The keyword approach requires knowledge of these extensions by 
the compiler; the attributes approach delegates this knowledge to the runtime and 
makes the language truly extensible. 

In Adenine, RDF assertions can be applied to any statement, such as comments, 
classifications, authorship attributions, and information about concurrency safety. 
This fact enables a number of different features, from self-modifying code to 
automated object code analysis. Most importantly, it means that Adenine can be 
packaged together with schemas and other ontological metadata and manipulated in 
the same fashion as other RDF data. In particular, one feature that has proven to be 
highly useful is the ability to annotate functions with specialized types such as 
“asynchronous constructor” or “query operator”. This feature is used heavily in the 
implementation of operations, which is discussed later in this paper. 
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Adenine’s RDF representation and its treatment of the RDF triple as a native data 
type make Adenine very similar to Lisp, in that both support open-ended data models 
and both blur the distinction between data and code. However, there are some 
significant differences. The most superficial difference is that Adenine’s syntax and 
semantics are especially well-suited to manipulating RDF data. Adenine is mostly 
statically scoped, but exposes dynamic variables that address the current RDF 
containers from which existing statements are queried and to which new statements 
are written. (An RDF container is simply a data structure that holds RDF statements.) 
Adenine’s runtime model is also better adapted to being run off of an RDF container. 
Unlike most modern languages, Adenine supports two types of program state: in-
memory, as is with most programming languages, and RDF container-based. Adenine 
in effect supports two kinds of closures, one being an in-memory closure as is in Lisp, 
and the other being persistent in an RDF container. This affords the developer more 
explicit control over the persistence model for Adenine programs and makes it 
possible for services written in Adenine to be distributed. 

4.2   Defining Data in Adenine 

RDF data is written in much the same way in Adenine as it is in Notation3. Double 
quotes enclose RDF literals and create instances of the Literal class. Angle brackets 
(<>) enclose URIs and create instances of the Resource class. 

Prefixes can be declared as a convenient way of referring to frequently-used URIs. 
For example: 

@prefix test: <http://test.org/> 
 
if (== test:hi-there <http://test.org/hi-there>) 
    print ’Success!’ 

The rdf, rdfs, daml, xsd, and adenine prefixes are predefined with their standard 
values.1 

Collections of RDF statements are enclosed within curly braces ({}). The tokens 
within the {} operator are of the form: 

{ [subject] [predicate] [object]  
  [subject2] [predicate2] [object2] … } 

No separator is required between consecutive statements, unlike Notation3. The 
semicolon (;) can be used in the subject field to refer to the last used subject. 
Expressions within the {} operator are handled as follows: Expressions that evaluate 
to Resource or Literal objects are used directly. Lists are expressed with the @() 
operator and are expressed as DAML+OIL lists. Other objects are converted into 
Literal’s. The {} expression itself evaluates to an object exposing the 
IRDFContainer interface. 

                                                           
1  rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# 
 rdfs: http://www.w3.org/2000/01/rdf-schema# 
 daml: http://www.daml.org/2001/03/daml+oil# 
 xsd: http://www.w3.org/2001/XMLSchema# 
 adenine: http://haystack.lcs.mit.edu/schemata/adenine# 
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Anonymous nodes can be created from Adenine using the ${} operator (the 
equivalent of the [] operator in Notation3). Syntactically, an anonymous node 
expression has type Resource and can be used anywhere a resource is needed. This 
feature is useful when you need a unique, “anonymous” URI for a set of statements. 
The following set of statements states that Mary’s son is 15 years old and is named 
“Bob” (add is the command used to insert RDF statements into the store): 

add { 
    <urn:person:mary> <urn:person:hasSon> ${ 
        <urn:person:age> “15” ;  
        <urn:person:name> “Bob”  
    } 
} 

4.3   Writing Executable Code 

The syntax of Adenine code resembles a combination of Python and Lisp. As in 
Python, indentation levels denote lexical block structure (indentation is ignored within 
{} expressions). Adenine is an imperative language, and as such contains standard 
constructs such as functions, for loops, arrays, and objects. Function calls resemble 
Lisp syntax in that they are enclosed in parentheses and do not use commas to 
separate parameters. Arrays are indexed with square brackets as they are in Python or 
Java. Also, because the Adenine interpreter is written in Java, Adenine code can call 
methods and access fields of Java objects using the dot operator, as is done in Java or 
Python. The execution model is quite similar to that of Java and Python in that an in-
memory environment is used to store variables; in particular, execution state is not 
represented in RDF. Values in Adenine are represented as Java objects.  

Adenine methods are functions that are named by URI and are compiled into RDF. 
To execute these functions, the Adenine interpreter is instantiated and passed the URI 
of the method to be run and the parameters to pass to it. The interpreter then 
constructs an initial in-memory environment binding standard names to built-in 
functions and executes the code one instruction at a time. Because methods are simply 
resources of type adenine:Method, one can also specify other metadata for methods, 
as was mentioned earlier. In the example given, an rdfs:comment is declared and the 
method is given an additional type, and these assertions will be entered directly into 
the RDF container that receives the compiled Adenine code.  

Adenine methods are usually executed by interpretation of a method’s instructions 
from an RDF store. A prototype interpreter has been implemented in Java and is used 
to run much of Haystack. However, to improve performance, a tool is available for 
compiling Adenine methods into Java Virtual Machine bytecode. While eliminating 
some of the dynamic nature of Adenine, translation into Java does provide a 
significant performance increase. 

The top level of an Adenine file is used for data (i.e., add instructions) and method 
declarations and cannot contain executable code. This is because Adenine is in 
essence an alternate syntax for RDF. Within method declarations, however, is code 
that is compiled into RDF; hence, method declarations are like syntactic sugar for the 
equivalent Adenine RDF “bytecode”. 

Development on Adenine is ongoing, and Adenine is being used as a platform for 
testing new ideas in writing RDF-manipulating services and user interface 
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components. More information about Adenine can be found at the following URL off 
of our website: http://haystack.lcs.mit.edu/documentation/adenine.pdf. 

5   Services 

In the past, programs that aggregated data from multiple sources, such as mail merge 
or customer relationship management, had to be capable of speaking numerous 
protocols with different back ends to generate their results. With a rich corpus of 
information described in a single format, namely RDF, the possibility for automation 
becomes significant because services can now be written against a single unified 
abstraction. In Haystack, services encapsulate key pieces of functionality that 
manipulate RDF data and execute independently of the user interface. Furthermore, 
services can be written to help users deal with problem such as information overload 
by extracting key information from e-mail messages and other documents and 
presenting the user with summaries. In short, services massage data of importance to 
the user for consumption by the user interface. 

Services in Haystack are callable entities that expose a Java interface. (A Java-
implemented stub class that calls Adenine methods is also available and frequently 
used.) The core services are mostly written in Java, but some are written in Adenine 
and some in Python (these services are hosted by the Jython interpreter). We utilize an 
RDF ontology derived from WSDL [6] for describing the interfaces to services as 
well as for noting which server processes hosts which services. As a consequence, we 
are able to support different protocols for communicating between services, from 
simply passing in-process Java objects around to using HTTP-based RPC 
mechanisms such as HTTP POST and SOAP [8]. In other words, Haystack services 
are in effect Web Services whose implementation implements the 
edu.mit.lcs.haystack.server.service.IService Java interface and where the 
appropriate WSDL metadata has been entered into the store; the system takes care of 
exposing services via whatever protocols are supported.  

One specific class of service is of great importance in Haystack: the RDF store. 
RDF stores, as their name implies, hold RDF statements and allow clients to query 
their contents. As all persistent system state is described in RDF, Haystack uses RDF 
stores much as modern software uses the file system.  

5.1   Core Infrastructure 

Sitting at the core of the Haystack system is a service manager, a Java process that is 
responsible for starting up the services it hosts. At system startup the service manager 
reads an RDF configuration file to determine where the root RDF store is. The service 
manager then connects to this root store, much as a UNIX system mounts its root file 
system at startup, and determines what services should be started based on the values 
of the config:hostsService property of the service manager’s resource (all service 
managers are named by URIs). 

All services are run within the context of a root store and a service manager. The 
root store provides a container for services to persist their state. Furthermore, the 
service manager is responsible for allowing services to connect to one another. If a 
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service requests to connect to a service running on the same service manager, the 
service manager can return a reference to the other service directly; otherwise, the 
service manager uses the information about the service encoded in the WSDL 
ontology to construct a proxy. 

Because services in Haystack share an underlying store, services can interoperate 
with each other by treating the store as a “blackboard”. Blackboard architectures 
permit multiple services to attack a problem by allowing services to use information 
on the blackboard to perform some specific analysis and to pose new information that 
is derived from that analysis. RDF stores have built-in support for registering events, 
which allows services to learn when new information (i.e., RDF statements) has been 
posted to the store. New functionality can be introduced by adding services that 
perform certain tasks when specific forms of information enter the system. 

5.2   Automation 

One useful application for services that is core to the Semantic Web is automation. 
Services are used in Haystack to automatically retrieve and process information from 
various sources, such as e-mail, calendars, the World Wide Web, etc. Haystack 
includes services that retrieve e-mail from POP3 servers, extract plaintext from 
HTML pages, generate text summaries, perform text-based classification, download 
RSS subscriptions on a regular basis, fulfill queries, and interface with the file system 
and LDAP servers. 

Services are particularly useful for analyzing collections of documents and finding 
patterns, which can then aid the system when trying to present such a collection to the 
user. Modern information retrieval algorithms are capable of grouping documents by 
similarity or other metrics, and previous work has found these automatic 
classifications to be useful in many situations [19]. Additionally, users can build 
collections prescriptively by making a query. A service, armed with a specification of 
what a user is looking for, can create a collection from the results of a query, and it 
can watch for new data entering the system that matches the query. For example, one 
service that exists in Haystack automatically filters a user’s e-mail for documents that 
appear to fit in one or more collections defined by the user, such as “Website Project” 
or “Letters from Mom” [19].  

6   Ozone Presentation Ontology 

We have defined an ontology called Ozone that can be used to encode page layout 
and content much like that expressible in HTML. The following code snippet 
illustrates how a simple page (Fig. 1) can be authored in Ozone: 

@prefix slide: 
<http://haystack.lcs.mit.edu/schemata/ozoneslide#> 
 
= mySlide ${ 
   rdf:type   slide:Slide ; 
   slide:margin  "10" ; 
   slide:bgcolor  "lightGray" ; 
   slide:color  "#444444" ; 
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Fig. 1. Sample slide 

   slide:fontFamily  "Arial" ; 
   slide:fontSize  "10" ; 
   slide:child ${ 
     rdf:type  slide:Paragraph ; 
     slide:children @( 
      ${  rdf:type  slide:Text ; 
          slide:text  "Welcome to Haystack" ; 
          slide:fontSize "120%" ; 
          slide:fontBold "true" 
      } 
      ${  rdf:type  slide:Break } 
      ${  rdf:type  slide:Text ; 
          slide:text "The current user is:" 
      } 
      ${  rdf:type  slide:Block ; 
          slide:marginLeft "20" ; 
          slide:borderWidth "1" ; 
          slide:child ${ 
            rdf:type slide:Paragraph ; 
            slide:children @( 
              ${  rdf:type  ozone:ViewContainer ; 
                  ozone:initialResource (__identity__.getResource) ; 
                  ozone:viewPartClass   ozone:InlineViewPart 
              } 
            ) 
          } 
      } 
    ) 
  } 
} 

The code specifies a new slide (analogous to an HTML page) with all margins set 
to 10 pixels, the background color set to light gray, and the foreground (text) color set 
to a dark shade of gray as defined by an RGB triple. The text on the page will be in 
Arial, 10 point. These color and font settings are inherited by all descendant resources 
of the slide; they can also be overridden by the descendant resources when necessary, 
as is the case with Cascading Style Sheets. 

The sample slide has one child, a slide:Paragraph resource (similar to the <P> tag 
in HTML). The slide:Paragraph resource has four child resources: two slide:Text 
resources, one slide:Break resource, and one slide:Block resource. The first 
slide:Text resource redefines its font size and boldens its text. The Block resource is 
like the <DIV> tag in HTML: it allows specification of block-specific attributes such 
as margins, borders, clearances, drop shadow, etc. Inside the Block resource is a 
placeholder for a view (discussed later), which renders the name of the current user. 
The current user is expressed by the Adenine expression 
(__identity__.getResource), which is embedded within the slide definition. 
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Note the hierarchical form of the code snippet: in this way, Ozone is very similar to 
HTML and should be somewhat familiar to HTML programmers who know RDF. 
Adenine makes it easy to write pieces of code that can both manipulate RDF data and 
generate Ozone data. This is important when, as in many cases, the Ozone data to be 
generated depends on data in the RDF store. 

More information about Ozone can be found on our website at the following URL: 
http://haystack.lcs.mit.edu/documentation/ui.pdf. 

7   Views as Representations of Resources 

Using Ozone we can construct user interface elements called views that present 
information about resources in the RDF store. Specifically, a view is a component that 
displays certain types of resources in a particular way. A given RDF class may have 
any number of different views associated with it. Furthermore, views are described in 
RDF, allowing a view to be characterized according to the RDF classes it supports 
and how it displays resources (e.g., full screen, in a one line summary, as an applet-
sized view, etc.). When a resource needs to be displayed in Haystack in a certain way, 
such as full screen, a view is chosen that possesses the necessary characteristics. 

As components, views enable pieces of user interface functionality to be reused. 
The developer of a one line summary view for people (perhaps displaying a person’s 
name and telephone number) provides an RDF description to the system that enables 
developers that need to display summaries of contacts to reuse the component. The 
best example of reuse can be seen in the case of views that embed views of other 
resources. For example, a view of an address book containing contacts and mailing 
lists needs not implement views for displaying contacts and mailing lists; Ozone 
provides a way for views to specify that a resource needs to be displayed at a certain 
location on the screen in a certain fashion (e.g., as a one line summary). In this way 
composite views can be constructed that leverage the specialized user interface 
functionality of the child views that are embedded. 

When a view is instantiated, the system passes the view a context object that 
informs it of the resource to be displayed. The context object also contains a pointer 
to the parent view’s context object, if one exists as a result of a view being embedded 
within another view. In this way views are made aware of the context in which they 
are displaying information. For example, if an address book view is displaying a list 
of people by embedding individual person views, the person view can know not to 
display the “Add to Address Book” button, since it knows that it is embedded within 
the address book’s view and hence is displaying a resource that is already in the 
address book. 

Also, because the system is responsible for instantiating views and keeping track of 
where child views are to be embedded within parent views, the system can provide 
default implementations of certain direct manipulation features for free. A good 
example is drag and drop: When the user starts to drag on a view, the system knows 
what resource is being represented by that view, such that when the view is dropped 
elsewhere in the user interface, the drop target can be informed of what resource was 
involved instead of simply the textual or graphical content of the particular 
representation that was dragged. 
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Take the example of filling in a list of meeting attendees on a form. Instead of 
retyping or copying and pasting names of people from an address book, a user can 
drag and drop contacts from an address book into the list. Because the views 
representing contacts in the address book are associated with the resources they 
represent and not just the names of the contacts, the identities of the contacts’ 
resources can be preserved. The alternative opens the possibility for ambiguity 
because information is lost. For example, what if there are two people named “John 
Doe” known to the system? Specifying the text string alone is not sufficient to 
disambiguate which John Doe is intended, even though it is clear that the John Doe 
desired is the one that the user selected in the address book. 

8   Operations 

Most systems provide some mechanism for exposing prepackaged functionality that 
can be applied under specific circumstances. For example, in Java one can expose 
methods in a class definition that perform specific tasks when invoked. In C one can 
define functions that accept arguments of particular types. Under Windows, one can 
define verbs, which are bound to specific file types and perform actions such as 
opening or printing a document when activated through a context menu in the 
Windows Explorer shell. In general, these mechanisms all permit parameterized 
operations to be defined and exposed to clients. 

In Haystack, the analogous construct is called an operation, which can accept any 
number of parameters of certain types and perform some task. Operations are Adenine 
methods annotated with key metadata such as parameter types [18]. The operation 
ontology is best explained in the context of an example. The definition of the “Browse 
To” operation is given in the following code snippet. 

@prefix op: <http://haystack.lcs.mit.edu/schemata/operation#>  
 
add { :target 
    rdf:type  op:Parameter ; 
    rdf:type  daml:ObjectProperty ; 
    rdfs:label  "Target" ; 
    op:required  "true" ; 
    rdfs:range  daml:Thing 
} 
 
method :browseTo :target = target ;  
rdf:type       op:Operation ; 
dc:title        "Browse to" ; 
ozone:icon      <http://haystack.lcs.mit.edu/icons/verbs/browseto.gif> ; 
adenine:preload "true" 
  ozone:navigate target[0] 

The definition of an operation (e.g. :browseToOperation) includes basic 
information such as its name, an icon, as well as a set of named parameters. Notice 
that operations are defined using the method syntax; this is possible because operation 
is a subclass of Adenine method. Parameters (e.g. :target) are also given names, but 
in addition parameters can also be typed, in a variety of different ways. The most 
basic mechanism for typing is simply specifying an rdfs:Class as a parameter’s class 
using the rdfs:range predicate. A parameter’s type can also be constrained by giving 
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an Adenine validator method, which given a value verifies that it can be used for that 
parameter. Finally, parameters can be specified to be either mandatory or optional. 

 

Fig. 2. Operations in Haystack 

When an operation is invoked, the values assigned to the operation’s parameters 
are passed to the operation. Parameters can have multiple values; for example, a send 
mail operation may allow multiple recipients to be specified. To allow for this, the 
Adenine method receives a list of all values for each named parameter. 

The Haystack user interface exposes the operations installed in the system in 
various ways. Operations are displayed on the tool pane (the right hand pane) in 
Haystack as well as in context menus (Fig. 2). In fact, operations are also used for 
commands such as “Shutdown Haystack”, where no parameters are needed. In this 
way, operations can play the roles normally 
played by menus and toolbars in applications 
today. 

Furthermore, the Haystack framework 
eliminates the need for developers to create 
specialized user interfaces for user-performable 
operations in many cases. When an operation 
that requires parameters is activated, Haystack 
checks to see if the target object (in the case of 
the command being issued from a context menu 
or the tool pane) satisfies any of the operation’s 
parameters. If there are unresolved parameters, 
Haystack presents a UI continuation, depicted 
in Fig. 3 [18].  

Fig. 3. Sample UI continuation 
(taken from left hand pane) 
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Like a dialog box, a UI continuation prompts the user for needed information – in 
this case, the unresolved parameters. However, unlike most dialog boxes, which are 
modal, UI continuations are modelessly placed on the left hand pane, allowing the 
user to use whatever tools in the system he or she is most familiar with to find the 
information needed to complete the operation. By default, the system takes the user to 
a convenient place to find the required information, such as in the case of a send e-
mail operation, the user’s address book. This interface is similar to a shopping cart on 
an e-business website: the user can drag and drop relevant items into the “bins” 
representing the operation’s parameters. The user can even decide to perform other 
tasks and come back to the operation later. When the user has finished obtaining the 
necessary information and is ready to commence the operation, he or she can click the 
“Done” button on the UI continuation. The system then returns to the state that was 
present when the operation was initiated (hence the term continuation) and performs 
the operation. By providing UI continuation functionality, the system frees the 
developer from needing to design specialized, miniature user interfaces for retrieving 
information from within modal dialog boxes by reusing the existing browsing 
environment and at the same time providing the user with a seamless experience. 

The operation abstraction allows the functionality of the system to be arbitrarily 
extended, without special plug-in interfaces or points of extensibility needing to be 
defined on a per-application basis. Furthermore, developers can declaratively specify 
new functionality to the system rather than modify monolithic dialog boxes, menus, 
or toolbars. However, since the UI continuation is displayed using Haystack’s view 
technology, developers are free to customize the display of a UI continuation by 
defining new view parts. 

9   Constructors 

The operations ontology is able to describe a large portion of the functionality 
exposed by an application. However, one particular type of functionality provided by 
many applications deserves special focus: object creation. Object creation manifests 
itself in many different forms, ranging from the addition of a text box to a slide in a 
presentation graphics program to the composing of an e-mail. Applications that 
support object creation usually expose interfaces for allowing users to choose the 
appropriate type of object to create or to find a template or wizard that can help guide 
them through the process of creating the object. 

In RDF, the process of creation can naïvely be thought of as the coining of a fresh 
URI followed by an rdf:type assertion. The corresponding choice list for creating 
objects in RDF could be implemented by displaying a list of all rdfs:Class resources 
known by the system. However, there are many issues not addressed by this solution. 
The user’s mental model of object creation may map onto three distinct activities in 
the programmatic sense: (1) creation of the resource; (2) establishing some default 
view; (3) population of the resource with default data. For example, the creation of a 
picture album from the perspective of the data model is straightforward in that a 
picture album is simply a collection of resources that happen to be pictures. However, 
if the user begins viewing this blank picture album with an address book view, he or 
she may believe that the system has created the wrong object. With respect to the 
third point, Gamma et al. assert that object creation can come about in various ways, 
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ranging from straightforward instantiation to creating objects according to some fixed 
pattern [4]. 

Furthermore, the classical framing of the object creation problem does not address 
the user interface implications entailed by certain kinds of instantiations. Some 
objects can be created without further input from the user, such as empty collections, 
while some objects require configuration data 
or other information to be properly initialized, 
such as a POP3 mail service. 

To solve these problems, Haystack makes 
use of a constructor ontology, which describes 
resources called constructors that create 
objects. Constructors have type 
construct:Constructor, which derives from 
adenine:Method. (Constructors that are ex-
posed to the user also have type 
op:Operation.) Like all other objects in 
Haystack, constructors can be browsed to in the 
user interface and have custom views associ-
ated with them. The default view for a 
constructor’s UI continuation simply contains a 
button that invokes the constructor and browses 
to the created object. However, for constructors 
that require a custom user interface to be 
presented, a custom view part can be provided 
with specific controls for creating the object. 
Fig. 4 shows an example of the annotation pane 
in Haystack, which takes advantage of this 
functionality. Annotations in Haystack are not 
limited to text but can be constructed from any 
kind of object. The annotation pane exposes a 
drop down list of possible constructors; when 
the user completes the constructor, the newly 
created annotation is hooked to the object being 
annotated. 

10   Conclusion 

In this paper we have explored a number of the tools built into Haystack for 
developing Semantic Web applications for end users. These tools focus on applying 
RDF technology to improving the developer experience, by allowing developers to 
declaratively define concepts such as operations and user interface components. Many 
of these technologies have been built on top of Adenine, which facilitates the 
manipulation of RDF data and provides syntactic sugar for defining RDF ontologies 
and user interface designs. We believe these tools have lowered the barrier for 
creating truly usable and compelling applications that can deliver on the promises of 
automation and uninhibited data exchange on the Semantic Web. 

 

Fig. 4. Annotation UI 
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