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Abstract. It has been shown that bounded model checking using a SAT solver
can solve many verification problems that would cause BDD based symbolic
model checking engines to explode. However, no single algorithmic solution has
proven to be totally superior in resolving all types of model checking problems.
We present an optimized bounded model checker based on BDDs and describe
the advantages and drawbacks of this model checker as compared to BDD-based
symbolic model checking and SAT-based model checking. We show that, in some
cases, this engine solves verification problems that could not be solved by other
methods.

1 Introduction

As the use of formal verification in industrial settings continues to grow [3l5], contem-
porary research seeks diverse ways to solve the “state explosion” problem inherent in
model checking. In recent years, the traditional methods of BDD-based symbolic model
checking [10] have been augmented by methods which are based on Boolean Satifia-
bility (SAT) [T3[11] that can solve the Bounded Model Checking (BMC) [[7] problem.
Unlike the model checking problem that, given a model M and a property ¢, tries to
determine if M = ¢, the BMC problem restricts itself to determining whether M = ¢
on the first £ iterations of M. The class of properties that can be checked this way is
smaller than the one handled by model checking, as described in Section

The BMC problem is usually solved by reducing the model and the bug detection
circuit, unfolded k cycles, to a propositional formula, and then solving this formula using
a SAT solver. However, other approaches are also applicable. Bertacco and Olukotun [6]
suggest a BDD-based algorithm that unfolds the sequential circuit k times in order to
calculate the values of signals on the first & cycles. This algorithm is based on symbolic
simulation methods [§]], and has some advantages over the SAT approach described in
[7]. The main advantage is that the unfolded structure uses BDD variables only for inputs
to the model. Therefore, when the number of inputs is small compared to the number of
state variables, as in the case of datapath, this approach is advantageous. In this paper,
we describe an optimized BDD-based BMC engine, based on this unfolded structure.

2 Basic Concepts

We consider bounded model checking to be the following problem: given a nondeter-
ministic Finite State Machine (FSM) M, n RCTL [4]| properties (¢1,...,¢,) and a
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Fig.1. An FSM Fig. 2. An unfolded FSM

bound k, we want to check if each of (¢4, . .., ¢, ) holds in the first k cycles of M. The
FSM consists of parts originating from the following sources: a synchronous hardware
design to be verified and a nondeterministic environment that defines restrictions on the
inputs to the design. In addition, for each property ¢,,, € (¢1, ..., dn), du, is translated
to an automaton and a formula of the form AG(p,,), where p,,, is a Boolean expression,
as described in [4]], and both the automaton and p,,, are included in the FSM (each p,,
is an output of a gate). Nondeterministic behavior is translated to free inputs.

An FSM can be defined by the following 6-tuple (CCy, Iy, CC, I, S, P):

e (C'(Cy is combinatorial logic that generates the initial states of the flip-flops.

o Io = (i(1,0),- - (t,0)) is an ordered set of Boolean inputs to C'Cy.

e (C'C'is combinatorial logic that generates the next state function of the flip-flops.

e [ = (i1,...,1q) is an ordered set of Boolean inputs to C'C.

e S={(s1,...,8,)is aset of symbols representing the outputs of the flip-flops.

e P = (pi,...,pn) is an ordered set of Boolean outputs representing the properties
(¢17 ) ¢n)'

(CCy, Iy, CC, I, S, P) is illustrated in Figure [T}

3 BDD-Based BMC

This section describes how an FSM is transformed into a combinatorial circuit that
represents the first k£ cycles of the FSM, as well as the computation process applied to
the combinatorial circuit in order to evaluate the properties in the first k cycles.

3.1 Circuit Unfolding

The unfolding process transforms an FSM, which is a sequential circuit, into an iterative
logic array, as depicted in Figure[2l The combinatorial logic, inputs, and properties of
the FSM are duplicated k& times, and the flip-flops are replaced by wires connecting the
copies of the different iterations. Therefore, the .S' parts do not actually exist; they are
depicted only to indicate where the flip-flops existed previously. Assuming there are no
combinatorial loops in C'Cyy and C'C' of the original FSM, there are no combinatorial
loops in the combinatorial circuit resulting from the unfolding process.
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Definition 1 (Closed machine). The circuit that results from the unfolding process is
called a closed machine.

We use the netlist representation of the unfolded FSM as our basic data structure. This
data structure is referred to as the circuit.

3.2 Verification Using the BDD-Based BMC
We use the following terms in the description of the computation process:

e Cycleis the pair (S;_1, (CC; |JI; | P;)) (corresponds to cycles in calculations of
FSM). This cycle is denoted as cycle number j.

Dm,j 18 the gate that represents property p,, in cycle j.

g; represents the replication of a certain gate g of the FSM in cycle j.

The cone of a gate g; is the set of all gates on which g; topologically depends.

A fanin of a gate g; is a gate f; whose output is a direct input to g;.

e A fanout of a gate g; is a gate h;~ that has a direct input, which is the output of g;.

Definition 2 (Gate function). The function of a gate g; (denoted f|g;|) is the parametric
representation of the gate g; depending on (I, . .., It,). f|g;] operates on all of the FSM
inputs (Iy x ... x I},) and goes to {0,1}, f : Bt — B

Definition 3 (Frontier). The frontier F' is a set of gates where for each gate g € F,
two conditions hold: all of the fanins of g have a calculated BDD and the BDD of g is
not yet calculated.

The initial frontier is built by going backwards from the properties, until we reach
primary inputs or gates for which there is a calculated BDD. (These gates were in the
cone of influence of properties in previous cycles.) The fanouts of these inputs and gates
compose the initial frontier. The frontier may change whenever we calculate a BDD of
a gate.

Foreach gate p,, j of p(1,1), - - - s P(n,k)», We build the BDD that represents the function
of the gate p,, ;. If the BDD of p,, ; equals the function frue, then p,, holds in cycle j.
Otherwise, we extract out of the BDD a non-satisfying assignment as a counter example.
In order to calculate the BDD of p,, ;, we must first calculate the BDDs in the cone of
DPm,;- When building the BDD of g;, we use the BDDs of all of the fanins of g;. Therefore,
the structure of the closed machine dictates a partial order of calculation on the gates.
Note that different copies of the same gate ¢ in different cycles may have different BDDs.

3.3 Advantages and Drawbacks of BDD-Based BMC

The BDD-based BMC approach uses a parametric representation of the state of the flip-
flops, depending only on the inputs of the model. That is, the set of reachable states
in cycle j is represented by a collection of BDDs representing f[g;], for all gates g;
that represent outputs of the flip-flops in cycle j. As a result, the BDD-based BMC
is only sensitive to the amount of nondeterminism in the model. In contrast, symbolic
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model checking and SAT solvers represent the states by state variables. Therefore, they
are sensitive both to the amount of nondeterminism and to the number of state vari-
ables. In addition, the functions computed by the BDD-based BMC describe the natural
functionality of the original model. Symbolic model checking computes a characteristic
representation of the reachable states, which is randomly shaped, and its BDD tends to be
bigger than those of the natural functions. Another advantage versus SAT is that multiple
properties are computed in the same run, without repeating calculations of overlapping
cones of influence of these properties. SAT solvers need to backtrack after a counter
example is found and thus repeat parts of the calculations. The main drawback of our
approach is its sensitivity to the number of calculated cycles. In each cycle, ¢ variables
are added and therefore the complexity of calculation increases as the cycles advance.
As aresult of these advantages and drawbacks, the BDD-based BMC approach performs
better than the other methods in wide and shallow circuits (i.e., circuits that have many
state variables, but their state space can be covered by a few cycles) and in circuits with
many state variables, but with a low amount of nondeterminism.

Due to the static unfolding, the circuit is amenable to static BDD variable ordering,
based on its topology. In many cases, this order is sufficient for calculation without a
need for dynamic BDD reordering. We can also simplify the evaluation of the properties
by performing easy calculations before the difficult ones. Our measure of difficulty is
the expected BDD size of the gate, which we estimate according to the sizes of the input
BDDs. We traverse first the easier calculations paths, and in many cases, as a result of
constant propagation during the computation process, some more difficult calculations
that were not yet performed become redundant.

4 Open Machine

We will now introduce a variation of the unfolding algorithm, which enables powerful
optimizations to the BDD-based BMC engine, as will be described later. Additionaly,
this variation enables us to prove properties in some cases, despite the fact that we are
calculating only a bounded number of cycles.

Definition 4 (Open machine). An open machine is a closed machine whose logic CCy
is replaced by free inputs, as depicted in Figure[3

These free inputs are denoted with I’. Note that the number of inputs in I’ may be
different from the number of inputs in /.

4.1 The Difference between the Open Machine and the Closed Machine

Let f°P[g;] denote a gate function in the open machine, and f<![g,] denote a gate function
in the closed machine.

Definition 5 (Equivalence between gate functions). Two gate functions f[g.] and
flgy| are equal, if and only if the BDD of g.. equals the BDD of g,,. This equivalence is
denoted by f|g.] = flg,].

Note that f°P[g;] is not necessarily equal to £[g;].
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Fig. 3. Open machine

Theorem 6. If fP[g.| = fP[g,], then V>0 fP[gz+;] = g, ;] and FUgess]) =
fe [g;+j]-

For proof see [14]]. Note that a closed machine version of Theorem[6] does not hold,
ie., if fg,] = f< [g,], we cannot conclude anything about other gates in the closed
machine or in the open machine.

Corollary 7 It stems from Theorem [0 that if f°Plg.] = b,b € {0,1}, then
Vo0 fop[gas-i-j] = band fd [gw-ﬁ-j] =b.

4.2 Uses of the Open Machine

Proving Properties

In some cases, Theorem 6l gives us the ability to prove properties, despite the fact that
we are calculating a bounded number of cycles. We prove ¢,,, by calculating the BDD
of p, ; forall j = 1,..., k in the open machine. Calculation is performed in the same
manner described for the closed machine. If we find that the BDD of p,,, ; equals true
for some 1 < j < k, we can conclude that ¢,,, holds both in the open machine and in
the closed machine for all cycles >= j. As described in [9], we can prove a property in
a bounded circuit in this way only if the circuit is k-definite in respect to the property
(i.e., the property in each cycle depends only on inputs of at most the last k£ cycles).
While the method in [9]] is performed only in order to try and prove properties, we use a
more general characteristic of the open machine (introduced in Theorem [6) mainly for
optimizations, as described in the next subsection.

An induction-based algorithm, based on a SAT solver, is suggested in [[12] for proving
safety properties. We chose a different approach in order to accommodate large, real-
world, circuits. Our method is suitable only for a subset of the circuits for which the
method in [12] is suitable. However, our method can be efficiently implemented using
the BDD-based BMC.

Optimizations Based on the Open Machine
Before applying the computation process to the closed machine, we perform two pow-
erful optimizations that simplify further calculations, based on the open machine:
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1. Constant propagation. There are constant signals in the FSM that originate in
restrictions of the environment on the design’s inputs. When we find that g; is the
constant b in the open machine, we automatically propagate b to all g;, for j > 1,
both in the open machine and in the closed machine, according to Corollary[7l Due
to the special data structure, described later, the time complexity of the propagation
is independent of k.

2. Logical equivalence. If a gate ¢ is k-definite, the copy of ¢ in cycle j has the same
BDD as the copy of g in cycle j + k, for all j > 1. Another case in which different
gates have equal BDDs occurs as a result of logic duplication in the original model.
We find in the open machine sets of gates with equal BDDs and gather them in
equivalence sets. Each equivalence set actually represents up to an infinite number
of equivalence sets, since the next cycle replications of the gates in each equivalence
set are also an equivalence set. When the computation process runs in the closed
machine, we only calculate one BDD for each equivalence set.

Data Structure for the BDD-Based BMC

Our data structure represents both the closed machine and the open machine. While our
implementation of the data structure conceptually allows us to perform operations on
each of the 2 x k replications of each gate g at any time, initially there is only one
object (whose size is independent of k) in the data structure for every gate g of the
original FSM. This representation may change as various operations are performed on
the circuit. As a result, the common size of the objects representing the replications of
g may grow and, in the worst case, depend on k. In practice, most of the data structure
remains folded during the entire run. When an operation is performed on a gate g; in
the open machine, it also applies to all of the relevant gates of the subsequent cycles,
according to Theorem [l In most cases, the time complexity is independent of &, since
all of the relevant gates are a single object in the data structure.

5 Under-Approximation

Despite the simplification methods and despite applying reordering algorithms, the
BDDs can still grow as the cycles advance and may eventually outgrow the mem-
ory resources. One solution is to perform under-approximations, although this com-
promises on coverage. Each under-approximation is performed by choosing an input
iy € I; : 0 < j < k(denoted 4; ;) and setting it to a constant value b € {0, 1} for the rest
of the run. Next, we simplify the already calculated BDDs accordingly. The heuristics
we use to choose i;,; and b, try to find the best variable assignment that will balance
between causing a significant reduction in the BDDs sizes and leaving many behaviors
in the scope of the calculation. The heuristics also take into account that if 7; ; was set
to b and we are performing a new under-approximation, then we prefer not to choose
any of the inputs 4; (;4+) for t # 0, or if we choose one of them, then set it to —b. In this
way, we degenerate the behavior of an input only in a specific cycle, rather than for the
entire run. Examples of heuristics for choosing 7; ; and b appear in [14]. Running the
computation process with under-approximations is especially useful for finding bugs
that, on one hand occur after many cycles, and therefore an exhaustive search would



An Optimized Symbolic Bounded Model Checking Engine 147

optimized BDD-based BMC SAT solver

circuit | in | FF |props| time mem cycles|res |[# app|time|mem|cycles|res
designl 412791 1 |63 353 49 |F| 0 |957| 169| 49 |F
design2(*) [ 32363 | 15 |1948 606 100 | -| O |out| 571] 70 | -
design3(**)| 58 {202 | 2 |33(535) |136 (285) 6,7 [EF| 1 |out 99 0 |-
design4 175(1124 1 |21529 |816 100 | - | O |out| 937| 35 |-
design5 3913771 1 |77(80) |[176 (200) 23 |F| 1 |415|207| 23 |F
design6 112|375 1 |17 (950) (96 (317) 10 |[F| 5 |10| 24| 10 |F
design7 141109| 1 |43(5189)(74 (memlimit)| 16 |F | 15 |23 19] 16 |F

Fig. 4. Optimized BDD-based BMC versus SAT

be difficult, and on the other hand are quite common (occur for many possible sets of
inputs) and therefore can be found even when the search is partial.

We also implemented a mode that combines under-approximations with backtrack-
ing, to perform exact evaluation of the properties. In this mode, whenever reaching the
cycle bound, we backtrack and compute parts of the search space which were neglected
as a result of previous under-approximations.

6 Experimental Results

We implemented the optimized BDD-based BMC in the framework of IBM’s model
checker RuleBase [2]], and used the CUDD package [1]] for BDD calculations. The table
in Figure [ presents the results of our engine versus an IBM zChaff-based SAT solver.
The engines ran on real-life examples taken from various projects. Both engines operated
using default configurations. We set a timeout of 36000 seconds, memory limit of 1G,
and a bound of 100 cycles.

The number of inputs, flip-flops, and properties is shown for each circuit. The total
run-time is in seconds and the memory is in MB. The cycles column is the number of
cycles the engine calculated until reaching either the cycle bound, timeout, or mem-
ory limit, or until all properties failed. The res column displays whether the engine
managed to disprove the properties. The # app column displays the number of under-
approximations performed during the computation process. We also ran several symbolic
model checkers on these examples, all of these outgrew memory resources on designl
to designS, while computing the set of initial states. When under-approximations were
used, we report, in parentheses, the time and memory consumption of the run without
under-approximations. These results demonstrate the significant decrease in time and
memory demands our under-approximations achieve.

(*) The SAT solver reached timeout after 70 cycles in each of the 15 runs.

(**) The SAT solver reached timeout while constructing the CNF formula. Using a SAT
expert advice, we ran the SAT solver without the bounded cone of influence reduction.
With this configuration, it found a counter example for the first property after 189 sec-
onds and for the second property after 139 seconds — about 10 times slower than the
unfolding engine (combining the run-time of the two properties).

The table in Figure [3 reports the run-time in seconds of the constant propagation
performed on the FSM unfolded 100 cycles. The open and closed machine column
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circuit [open and closed machine|only closed machine circuit {100 cycles|300 cycles
designl 21.5 140.2 designl 3.8 43
design2 28.5 131.3 design2 3.7 4.9
design3 6.4 191 design3 6.9 8.2
design4 12.9 out design4| 10.0 16.5
design5 5 30.5 design5 4.2 5.2
design6 29 106.7 design6 3.9 4.4
design7 2.1 53.3 design7 2.8 3.1
Fig. 5. Constant propagation time Fig. 6. Construction time

presents the run-time of constant propagation, as it is performed in our optimized engine
— first on the open machine (according to Corollary [7)) and then on the closed machine.
Note that constant propagation on the open machine changes both the topology of the
open machine and of the closed machine. The only closed machine column presents
constant propagation as it would have been performed in a standard implementation
(i.e., only on the closed machine). We conclude that there is a significant decrease in
run-time when performing constant propagation on the open machine. Note, that in many
cases, constant propagation on the closed machine alone dominates the running time and
may even cause timeout.

The table in Figure [@] reports the run-time for each circuit in seconds of unfolding
the FSM £ cycles, out of the netlist representation of the original FSM, for £ = 100 and
for k = 300. This table demonstrates the fact that, due to our data structure, the circuit
unfolding time does not have a linear dependency on the cycle-bound k.
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