
Constrained Symbolic Simulation with
Mathematica and ACL2

Ghiath Al Sammane, Diana Toma, Julien Schmaltz, Pierre Ostier, and
Dominique Borrione

TIMA Laboratory, VDS Group, Grenoble, France
http://tima.imag.fr

Abstract. We use symbolic simulation for the verification of high level
circuit specifications. We combine Mathematica for algebraic computa-
tion and ACL2 for branching decision to increase the efficiency of the
method.

1 Introduction

Symbolic simulation, proposed as early as 79 by J.Darringer, is intermediate be-
tween conventional simulation and mathematical reasoning, to verify abstract,
pre-RTL design specifications. Instead of simulating a design with numerical
values, symbolic inputs are given to the symbolic simulator, which produces an
algebraic expression for the memory and output variables, as a function of the
initial state and of the inputs. These difficulties arise: (1) the symbolic expres-
sions may become exponentially large in the number of simulation cycles; (2) in
the presence of conditional statements, when the condition is a symbolic term,
all alternative paths must be explored. The simulator generates a simulation
tree, which may also grow exponentially; (3) the automatic simplification and
reduction of the computed symbolic expressions is needed, else the outputs of
symbolic simulation are unreadable.

Previous works have tackled one or more of the above difficulties: e.g. GSTE
[9] at switch and gate-level, PVS [7] and ACL2 [4] at the initial abstract design
levels. To simplify symbolic simulation by reducing algebraic expressions and
controlling the expansion of the simulation tree, most proposed solutions use an
automated reasoning tool.

A systematic approach for using ACL2 as a symbolic simulation engine was
proposed by J. Moore [6]. On this base, the semantics of a subset of VHDL [3]
were defined in ACL2 in order to simulate a VHDL design symbolically [2]. In
this paper we propose a different approach based on the separation of algebraic
computation and branching decision. We combine Mathematica [8] a computer
algebra system and ACL2 [4] an automatic theorem prover to perform what we
call constrained symbolic simulation. This association increases the efficiency
of the symbolic simulation by using two tools, each one being powerful in its
domain.

D. Geist and E. Tronci (Eds.): CHARME 2003, LNCS 2860, pp. 150–157, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

http://tima.imag.fr

Constrained Symbolic Simulation with Mathematica and ACL2 151

Fig. 1. Overview of the method

2 Overview of the Method

Figure 1 shows the overall combined verification system taking VHDL inputs.
The front-end compiler performs syntactic and static semantics checks, and
serves as common starting point to all EDA tools. NIF is an intermediate format
developed by our group. The elaboration of the Mathematica model, called M-
Code, is performed on the NIF file. During this step, data type restrictions are
extracted as constraints. Before starting the simulation, the user, who is not nec-
essary a proof expert, can add constraints on the inputs. Those are inequalities
or equalities between expressions composed of design variables or input signals
and arithmetic operators (+,−, /,×). M-code and constraints are submitted
to Mathematica for n simulation cycles, n is user defined. During simulation,
symbolic expressions are simplified using rewrite rules. Standard Mathematica
simplification rules are algebraic axioms like (x − x −→ 0) and arithmetic sim-
plifications like (n+n −→ 2n), for terms defined on real or integer types. VHDL
simplification rules were defined by us for the hardware types unknown to Math-
ematica (e.g. Bit). To reduce the simulation tree, whenever path conditions are
encountered, ACL2 is called as a reasoning engine. ACL2 evaluates a given con-
dition under simulation constraints using pre-proved theorems. Depending on
the ACL2 answer, Mathematica chooses a path. After each simulation cycle, the
values of all variables and signals are stored in a file. This is the result of the
constrained symbolic simulation of the VHDL description.

152 G. Al Sammane et al.

Table 1. Example of stabilizing concurrent assignments

cycle VHDL expressions
1 a <=(d and not(c)) or (b and c);

b <=(a and not(c)) or (d and c);
2 a <=(d and not(c)) or ((a and not(c)) or (d and c) and c);

b <=((d and not(c)) or (b and c) and not(c)) or (d and c);
3 a <= d;

b <= d;

3 Modeling VHDL in Mathematica

The VHDL supported by our tool is based on the standard subset for Register
Transfer Level (RTL) synthesis [3], enlarged with full arithmetic types. Com-
binational logic and clock-edge synchronized sequential logic may be described
using a behavioral, structural or dataflow style, or any combination thereof. A
model is a component, i.e. an entity coupled with its associated architecture.

Due to the absence of explicit time [3], the simulation algorithm is simplified,
as described in [2]: the driver of a signal only holds one current and one next
value, since right hand side waveforms are a single zero delay expression (the
after clause is not recognized in the subset). Concurrent signal assignments and
combinational processes are stabilized by performing delta computation cycles
between each two clock simulation cycles. In this context, the model is observable
only at the clock cycle level.

In the M-code, a VHDL component built from a (entity Ent, architecture A)
pair is modeled by a Mathematica function named: EntA. Its arguments are all
the objects declared in the corresponding entity-architecture: input, output and
local signals, and local variables. All are named Mathematica blank patterns,
i.e. no data type is defined. However, the information about data types is not
lost: it will serve as simulation constraints.

Two Mathematica variables are necessary to model each local or output
signal: one for the current value, passed to EntA as argument; one for the next
value, declared as temporary variable inside the body of EntA. Input signals,
that cannot be modified in the architecture, only have a current value.

The body of EntA is the Mathematica model for the VHDL statements
inside the architecture. All processes are flattened inside the body. To eliminate
simulation delta cycles, we perform a symbolic fixed point computation during
M-code generation. We repeat the execution, symbolically and sequentially, of all
concurrent signal assignments, and simplify the expressions, until they stabilize.
The next values of all signals can then be computed in one step.

Table 1 displays the three cycles needed to stabilize the symbolic value for the
concurrent assignments shown at cycle 1. In the M-code symbolic delta cycles
are no more needed. The corresponding M-code for this example is:

NextSig[a,d];

NextSig[b,d];

Constrained Symbolic Simulation with Mathematica and ACL2 153

Table 2. Examples of M-code assignment functions

VHDL M-code
A <= d + g; NextSig[Anext, Plus[d, g]];
V := 2 + j; ChangeVar[V, Plus[2, j]];
Q := V + 1; ChangeVar[Q, Plus[V, 1]];

Table 3. Syntax of VHDL branching statements in M-code

VHDL M-code
If B then state-bloc-1 If [B, state-bloc1

else state-bloc-2 ,state-bloc-2
end if ,decideACL2]
For I in start to end loop For [Set[I,start], Equal[I,end], Incr[I]

Statements decideACL2, Statements]
End loop; (*Comment: B = Equal[I,end] *)

At this stage, the body of EntA contains only sequential statements: as-
signments, conditionals or instantiations of components. Each one of them is
represented by a function in Mathematica syntax.

An assignment is modeled by NextSig for signals and ChangeV ar for vari-
ables (Table 2). NextSig assigns the next value of the signal while ChangeV ar
assigns the variable directly. NextSig[Sig, terms] or ChangeV ar[V ar, terms]
also create rewrite rules [5] that transform Sig or V ar to terms. These rules are
not applied during M-code generation, but during simulation.

Branching statements are modeled by functions in which their semantics con-
sider a three state logic (Table 3). When B is a symbolic formula that cannot
be evaluated to true or false by Mathematica, ACL2 is called to decide B un-
der constraints. Details about the decision procedure are discussed in the next
section.

4 Simulation Algorithm

First, all objects are initialized with their values according to their VHDL dec-
laration. The consistency of simulation constraints is verified by ACL2. After
that, the M-code function is executed NbCYCLE times (NbCYCLE is user defined).

At each simulation cycle, the function Test-vectors can be customized to
generate specific inputs; for instance, reset signals can be active in the first
simulation cycle, inactive otherwise. Then, the EntA function is interpreted in
Mathematica, where two operations are performed: simplification of terms and
branch decision. At the end of each cycle an execution tree is generated, which
contains all symbolic values for each signal and variable in the design.

4.1 Computation of Terms

When assignment functions NextSig[Sig, terms] or ChangeV ar[V ar, terms] are
encountered, right hand side terms are simplified into terms′, using standard

154 G. Al Sammane et al.

Initialize(Sin,Sout,Slocal,Vlocal)
Verify-by-acl2(Constraints)
For cycle:=1 to NbCYCLE do

Test-vectors(Reset,cycle,Sin)
EntA(Reset,Sin,Sout,Slocal,Vlocal)
Print-Tree(Sin,Sout,Slocal,Vlocal)

End for;

Fig. 2. Simulation algorithm

Call of ACL2 to ckeck consistency of constraints

else Lh implies branch condition B?

If Ih is not empty, show Ih to the user,

If answer is Q.E.D simulate "true" branch

else Lh implies not B?

If answer is Q.E.D simulate "false" branch

else ask the user to add constraints or fork

Prove (implies Lh B)

MATHEMATICA ACL2

ckeck_consistency(Lh)

Prove (implies Lh (not B))

Ih

Lh=>B?

answer

Lh=> (not B)?

answer

consistency Lh?

Fig. 3. Branch decision scheme

Mathematica and static VHDL rules. Then, the left hand side Sig or V ar is
assigned with terms′ and the rewriting rule Sig −→ terms′ or V ar −→ terms′
is added to a library called dynamic VHDL simplification rules. Those rules are
now available to simplify all successive assignments. This on the fly simplification
of terms is essential for time and memory efficiency.

In Table 2, ChangeV ar[V, P lus[2, j]] assigns V with Plus[2, j] and creates
the rewrite rule V −→ 2 + j. In the next assignment (V + 1) is simplified
using (V −→ 2 + j). Then, Q is assigned with 3 + j. Finally, the rewrite rule
(Q −→ 3 + j) is created.

4.2 Branch Decision

During simulation, Mathematica, whenever it cannot decide a branch condition,
calls ACL2. Figure 3 shows the principle of their interaction.

First, Mathematica asks ACL2 to check the consistency of the set of simula-
tion constraints Lh. Function check consistency takes Lh as input and returns a

Constrained Symbolic Simulation with Mathematica and ACL2 155

minimal set of contradictory hypothesis Ih, or the empty set. If Ih is not empty,
the simulation is stopped and the contradiction is shown to the user.

If Ih is empty, Mathematica sends Lh ⇒ B to ACL2. If ACL2 finds a proof,
it returns Q.E.D; the ”true” branch is considered for simulation. If ACL2 fails
or is not able to find a proof in a given time, it returns Failed. In this case,
Mathematica sends Lh ⇒ ¬B. If it succeeds, the ”false” branch is considered for
simulation. Otherwise, the simulation stops and the user is asked for more con-
straints. If more constraints are given, simulation is reinitialized. Otherwise, the
symbolic simulation forks into two branches, one assuming the branch condition
is true and the other its negation.

Branch decision is generally not decidable. However, most cases are limited
to equalities and inequalities formulae, and resolved by using some pre-proved
theorems on them (written as ACL2 books). At each cycle the proved theorems
are added to the ACL2 database and they are available for the future proofs.

Example Euclid’s GCD algorithm (Table 4):

Table 4. Euclid’s GCD algorithm

VHDL M-code
P1: process begin GCDmath[CLK ,RST ,a ,b ,OK ,

res ,a0 ,b0 ,c0]:=
wait until clk=’1’; Module[,
if RST=’1’ then If[RST==1,
a0:=a; ChangeVar[a0,a];
b0:=b; ChangeVar[b0,b];
ok<=False; NextSig[OK,False]

elsif a0=b0 then ,If[Equal[a0,b0]
ok<=True; ,NextSig[OK,True];
res<=a0; NextSig[res,a0]

elsif a0>b0 then ,If[a0>b0
a0:=a0-b0; ,ChangeVar[a0,a0-b0]

else b0:=b0-a0; ,ChangeVar[b0,b0-a0]
end if; ,decideACL2]

end process P1; ,decideACL2]
,decideACL2]]

Before beginning the simulation, the function Test vectors has been cus-
tomized to generate an active reset at the first simulation cycle and inactive
hereafter. The initial values are a = 3n and b = n and the constraints are
Lh = {n ∈ N ∗}. The simulation of four cycles runs as follows.

At Cycle1, RST has the numeric value 1 and a0 and b0 are assigned with ini-
tial values 3n and n. In all subsequent cycles, RST is set to 0 and Mathematica
will always decide to simulate the ”false” branch of the first if−then−else state-
ment. We do not mention it anymore. At Cycle2, Mathematica cannot decide if
a0 is equal to b0, i.e. if 3n is equal to n. So, it calls decideACL2, which works
as shown on Figure 3. The constraint {n ∈ N ∗} is transformed into the ACL2

156 G. Al Sammane et al.

if a0=b0

if a0>b0
ok<=true
Res:=a0

 b0:=b0-a0 a0:=a0-b0

if a0=(b0-a0) if (a0-b0)=b0

if a0>(b0-a0)
ok<=true
Res:=a0

if (a0-b0)>b0
ok<=true
Res:=a0-b0

 b0:=(b0-a0)-a0 a0:=a0-(b0-a0) b0:=b0-(a0-b0) a0:=(a0-b0)-b0

if a0=(b0-a0)-a0 if a0-(b0-a0)=b0-a0 if a0-b0=(b0-a0)-a0 if (a0-b0)-b0=b0

ok<=true
Res:=a0

ok<=true
Res:=a0-(b0-a0)

ok<=true
Res:=a0-b0

ok<=true
Res:=(a0-b0)-b0

if a0>(b0-a0)-a0 if a0-(b0-a0)>(b0-a0) if a0-b0>(b0-a0)-a0 if (a0-b0)-b0>b0

 b0:=((b0-a0)-a0)-a0

 a0:=a0-((b0-a0)-a0)

 b0:=(b0-a0)-(a0-(b0-a0))

 a0:=(a0-(b0-a0))-(b0-a0)

 b0:=(b0-(a0-b0))-(a0-b0))

 a0:=(a0-b0)-(b0-(a0-b0))

 b0:=b0-((a0-b0)-b0)

 a0:=((a0-b0)-b0)-b0

1st simulation cycle

2nd simulation cycle

3rd

Fig. 4. Execution tree of the GCD example

list ((integerp n) (< 0 n)) and its consistency is checked. As ACL2 returns an
empty list of contradictions Ih, Mathematica sends the following ”defthm event”
to ACL2 :

(defthm branch-1
(implies (and (integerp n) (< 0 n))

(equal (* 3 n) n)))

Because the ACL2 answer is ”Failed”, Mathematica sends the event :
(defthm branch-1-negation

(implies (and (integerp n) (< 0 n))

(not (equal (* 3 n) n))))

ACL2 answers ”Q.E.D”, Mathematica considers the ”false” branch for simu-
lation and simplifies a0 −b0 to 2n. The reader may be surprised by the simplicity
of the theorems, but without ACL2 Mathematica is not able to prove them. At
Cycle3, a0 is simplified to n and at Cycle4 ACL2 answers ”Q.E.D” to the event:

(defthm branch-4
(implies (and (integerp n) (< 0 n))

(equal n n)))

As four cycles have been simulated, the simulation is stopped. Figure 4 shows
the execution tree without any constraints. With constraints, only the bold path
is simulated (reset has been omitted).

Constrained Symbolic Simulation with Mathematica and ACL2 157

5 Discussion and Conclusions

Our prototype system for Constrained Symbolic Simulation takes advantage of
the best qualities of two powerful automatic systems: Mathematica to simplify
algebraic expressions, and ACL2 to decide the truth value of expressions under
a set of hypotheses. Clock synchronized sequential circuits and delay-free com-
binational circuits, written in a synthesizable VHDL subset, are automatically
translated into a M-code file, its simulation model.

The automatic generation of proof obligations for ACL2, under the form
of “defthm events” is implemented. Mathematica and ACL2 are executed as
concurrent processes, and communicate via a pipeline. Our technique efficiently
prunes the execution tree, and proves VHDL assert statements [1] on small
circuit blocks; we are working on bigger systems, like the AMBA architecture.
We intend to extend our method to more abstract specifications, as describable
in the next version of the VHDL subset for system-level synthesis, or SystemC.

References

1. Al Sammane G., Toma D., Schmaltz J., Ostier P., Borrione, D.: Constrained Sym-
bolic Simulation with Mathematica and ACL2. ISRN TIMA-RR–03/07-03–FR,
http : //tima.imag.fr/publications/files/rr/css177.pdf

2. Borrione, D., Georgelin, P., Moraes Rodrigues, V.: Symbolic Simulation and Verifi-
cation of VHDL with ACL2. In: Ashenden, P.J., Mermet, J.P., Seepold, R. (eds.):
System-on-chip Methodologies and Design Languages. Kluwer, 2001, 59–70

3. 1076.6-1999 IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis.
IEEE, 1999

4. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided reasoning : ACL2 An
approach. Kluwer Academic Press, 2000

5. Maeder, R.: Term Rewriting and Programming Paradigms. In: Keränen, V.(ed):
Mathematics with a Vision: Proceedings of the First International Mathematica
Symposium (1995). Computational Mechanics Publications

6. Moore, J.S.: Symbolic Simulation: An ACL2 Approach. In: Formal Methods in
Computer-Aided Design (FMCAD ’98) (1998), 334–350

7. Shankar, N., Owre S., Rushby J.M., Stringer-Calvert D.W.J.: PVS Prover Guide
Computer Science Laboratory, SRI International (1999) Menlo Park, CA, USA

8. Wolfram, S.: The Mathematica Book. Cambridge University Press and Wolfram
Research (2000). 100 Trade Center Drive, Champaign, IL 61820-7237, USA

9. Yang, J., Seger, C.I.: Generalized Symbolic Trajectory Evaluation Abstraction
in Action. In: Formal Methods in Computer-Aided Design (FMCAD’02) (2002).
Springer, LNCS 2517, Portland, Or, USA, 70–87

	Introduction
	Overview of the Method
	Modeling VHDL in Mathematica
	Simulation Algorithm
	Computation of Terms
	 Branch Decision

	Discussion and Conclusions

