Semi-formal Verification of Memory Systems by
Symbolic Simulation*

Husam Abu-Haimed, Sergey Berezin, and David L. Dill

Stanford University
{husam,berezin,dill}@stanford.edu

Abstract. We propose a debugging method for data-path intensive sys-
tems, in particular, memory systems. The approach is based on strength-
ening invariants by deriving constraints on data in the design using sym-
bolic simulation with constrained inputs. A new heuristic is introduced
for finding the appropriate input constraints for the symbolic simulation.
We give up soundness in order to gain more automation and efficiency,
minimizing or even eliminating the required manual effort. While it is
no longer possible to prove the correctness of the design, experimental
results demonstrate that the technique is quite effective in finding design
€rrors.

1 Introduction

Most hardware systems of interest today are much larger than what can be
reliably tested by conventional methods, and some form of formal verification
becomes a necessity. In order for non-expert users to be able to apply formal
methods, the tools must be mostly automatic. Some of the most successful ap-
proaches to date are model checking [5], theorem proving [11], and validity check-
ing [I2]. However, these approaches are often applicable only to relatively small
systems, or require significant manual guidance.

In this paper, we are interested in verifying memory systems and similar data-
intensive designs. Due to the large sizes of data structures used in memories, we
model them as infinite systems. Proving the correctness of such designs usually
boils down to proving an invariant. The approach we propose can be used in
verifying arbitrary safety properties which can be expressed as invariants.

The standard way to prove invariants for infinite systems is by induction over
time. Most of the time, however, the invariant we want to prove is not inductive
and has to be strengthened. Often, invariants are strengthened manually in a very
tedious iterative process that requires experience and familiarity with the design.
This is the most difficult and time consuming part of the verification process.

* This research was supported by GSRC contract DABT63-96-C-0097-P00005, by Na-
tional Science Foundation CCR-0121403, and by King Fahd University of Petroleum
and Minerals, Saudi Arabia. The content of this paper does not necessarily reflect
the position or the policy of GSRC, NSF, or the Government, and no official endor-
sement should be inferred.

D. Geist and E. Tronci (Eds.): CHARME 2003, LNCS 2860, pp. 158-[163] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Semi-formal Verification of Memory Systems by Symbolic Simulation 159

Many techniques have been proposed in the literature to partially automate the
process of strengthening invariants [7/8l6IT3IT4.3l0IT02T54].

In a previous work [I] we introduced a method for strengthening and prov-
ing invariants by the technique called consistency testing which uses symbolic
simulation. In that method, the user may have to supply the consistency test
manually, and the tool then constructs the remaining part of the inductive in-
variant, proves it, and verifies that the supplied test satisfies certain properties
to guarantee soundness.

In this work, we propose a similar method, but without the soundness check
and with a simplified induction scheme. The consistency test is replaced by input
constraints constructed automatically using a special heuristic. This results in
a potentially unsound method, but it becomes completely automatic and serves
as a very efficient debugging tool. Besides skipping the soundness check, the
efficiency is also gained by reducing the number of cycles in symbolic simulation
compared to the previous method. We use CVC as a symbolic simulator and
a validity checker in our experiments.

Our approach is based on the empirical observation from several examples
that most of the invariants in data path intensive systems can be obtained by
symbolically simulating the system for a few cycles with specific inputs. The
inductive step is then proven only for the states that can be reached by such
symbolic simulation, instead of for all reachable states. In order to complete the
proof, we need to show that all the reachable state are included in this set of
states. However we do not discuss this problem in the paper.

Instead, we give up this soundness check and propose our approach as a
debugging tool. We tested the effectiveness of this approach by applying it to
several examples of memory systems. In all the examples we considered, it was
able to find all design errors in addition to several errors we inserted to test the
effectiveness of our approach. This gives us confidence in the effectiveness and
reliability of our approach as a debugging technique.

The paper is organized as follows. Sections [2 and Bl formally introduce in-
duction on time and functional equivalence, followed by a detailed description of
our verification technique in section @l An automatic technique for finding input
constraints is given in section [5. Section [6] concludes the paper.

2 Induction on Time

We model a hardware design as a transition system T = (S, so, N, R, Din, Dout),
where S is a non-empty (and possibly infinite) set of states, sop € S is the initial
state, Di, and D,y are the domains of inputs and outputs, N : S X Di, — S
is the transition function, and R : S X Dj, — Doyt is the output function. We
write N (s, a’) to denote the final state of running 7" on the input sequence o
of length ¢ starting from the state s:

N(s, a*) = N(N(...N(s, ag), a1), ..., ag_1).
y4

160 H. Abu-Haimed, S. Berezin, and D.L. Dill

It is important to note that a single transition in 7' can actually represent a com-
plex transaction in the real hardware implementation requiring multiple cycles
of execution.

A state s is called reachable in a transition system T, if there is an input
sequence af such that s = N(sq, af), where sq is the initial state of 7. In this
paper, we only consider safety properties, or invariants over the set of reachable
states. We say that a transition system T satisfies a safety property Q(s), if Q(s)
holds for every reachable state s of T'. This can be stated as follows:

Ve, ot Q(N(sg,ab)). (1)

The conventional way of proving () is by induction on time, when @ is first
shown to hold in the initial state sg, and then the transition function N is shown
to preserve Q:

Q(s0), Vs,0. Q(s) = Q(N(s,0)). (2)

In practice, this induction scheme requires finding an inductive the invariant,
which is often the hardest and most tedious part of verification process.

3 Functional Equivalence

We prove correctness of systems using the idea of functional equivalence. The
problem is stated as follows. Given two systems, the concrete system 7 (the
system we want to verify) and the abstract system 7'* (which defines the required
functionality of T¢), prove that T is functionally equivalent to T*. Two systems
are said to be functionally equivalent if they produce the same sequence of
outputs for the same sequence of inputs. Formally, this is expressed as follows:

Ve, 0 N RE(NC(s6,a%),\) = RY(N®(s2,a"), \). (3)

If we define Q(s) to be VA R*(s*,\) = R%(s%), @) becomes
Ve, af. Q(N(s,at)), which is the same as formula (). So, we can use the same
induction principle given by (@) to prove the functional equivalence () of the
two modules.

4 The Verification Method

In this section we introduce our approach through a simple example. We show
how the direct use of () to prove the correctness of a memory system fails. Then
we show how our method can be used to deal with the problem.

Consider a small example of a read-only memory with a single-line cache
given in figure [M(a). To verify the correctness of this design, we show that it
is functionally equivalent to a simple (uncached) array of data in figure M(b).
Since the memories are read-only, the input to both modules is the address
(Djn, = Addr), and the output is the data read from that address (Do, = Data).

Semi-formal Verification of Memory Systems by Symbolic Simulation 161

tag data tag data tag data

I ——
cache cache cache
[T T © m 3 ks b
o c o c o c
a 7 a 7 a d
main memory main memory main memory main memory
5 5 N°(s°,0) Ne(s", a)

(a) (b) (c) (d)

Fig. 1. Memory Example

The transition systems 7¢ and T are defined as follows. The abstract state
s of T is just an array M indexed by Addr and holding the Data elements.
The next state function N is the identity function, and R*(s*,) = M[\]. The
concrete state s¢ of T contains the state of the cache in addition to the same
array M. Initially, in s§, some arbitrary address is cached such that the cache is
coherent with the main memory M. The next state function N¢(s¢, A) adds the
address A and the data stored under that address M[A] to the cache, yielding
the new state. The output function R¢(s¢, A) is similar to N€¢, except that it
returns the data associated with the address A.

Unfortunately, proving the functional equivalence of the two memories by
simple induction fails. Consider the state in figure[d] (a) and (b) where a # b and
a = e. In this case, s¢ and s® are functionally equivalent and hence the induction
hypothesis Q(s) is satisfied. However, transitioning to the next state by reading
some address o # 7 brings T° to a new state s, shown in figure [[(c), where
the address 7 is no longer cached. Therefore, reading 7w again yields b # a, which
no longer agrees with 7*. The induction fails in this case because it starts out
from an incoherent state, which is not reachable. The natural way to strengthen
the invariant is to require the state to be coherent. In this example it means that
the cached value must be the same as in the main memory. So, in general, we
can strengthen invariants for such systems by asserting their coherence.

Now suppose we simulate the incoherent state s¢ for one step with the input
constraint C(s¢, @) = a # 7. The resulting state s¢ is shown in figure 0(d).
Clearly, state s¢’ is coherent, and the induction (@) for such a state is valid.
Formally, (B) is restricted to the set of states X’ defined as follows:

X ={(s% s) | 3", a. s = N°(s*" ,a) N # T}
The induction (@) with X’ becomes:
Q(s0), Vs e X' o Q(s) = Q(N(s,0)). (4)

Proving (@) does not complete the proof of correctness for the memory sys-
tem; it simply says that the concrete system behaves according to the specifica-
tions when started from any state in X’. To complete the proof of correctness,

162 H. Abu-Haimed, S. Berezin, and D.L. Dill

we need to prove that all reachable states X are included in X’. That can be
done by proving the following induction:

X' (s0), Vs, 0. X'(s) = X'(N(s, 0)), (5)

In general, (B) is undecidable. For some memory systems, however, proving it
can be a matter of a simple intuition of the designer. For cases where we fail to
prove (@), our approach can still be used as an effective debugging tool. For the
cache example, it is easy to show that (B) is valid and that completes the proof
of correctness for this example.

The general idea in our approach is to find an input constraint C(s, ak) on
an input vector o that when executed on an arbitrary state s will remove the
incoherences in it. For instance, in the example above, the read from a # 7
removes the incoherence by causing ¢ to be copied from the main memory to the
cache.

5 Finding Input Constraints

Data path intensive systems consist mainly of registers interconnected by buses
(or links). Each link has a condition or predicate associated with it. When the
condition is true, the data is transfered along the link. In any system transition
many data transfers may happen. These data transfers imply some constraints
on the state of the system. In the cache example, the data transfer from the main
memory to the cache implies the constraint that the cache and the main memory
are always coherent. In general, we can control which data transfers happen in
each system transition by constraining the inputs. In the cache example, we
constrained the input by « # .

Our heuristic looks for the right input constraints that will exercises the right
links and get the data synchronized. The idea is to look at counterexamples of
failed proofs. Suppose we try to prove

Vs,0.[Q(s) = Q(N(s,0))]. (6)

If the proof fails, we get back a counterexample C'. Intuitively, C' defines the data
transfers that contributed to the failure of the proof. Based on our assumption,
the proof failed due to incoherences between the data involved in these transfers.
If we simulate s for one transition and exercise the same links as in C', we are
likely to get rid of these incoherences. Let ¢; be the condition associated with a
link ;. If [; is activated in C, its condition ¢; becomes true in C. Let X’ be the
set of states where every ¢; holds for each link I; activated in C. That is, the
input constraint becomes C(s, a) = A\, ¢;. Then we try to prove:

Vs’ e X' 0.Q(s") = Q(N(s,0))]. (7)

By simulating s with the constraint C(s, «), it is likely that we will get rid of
the incoherences. If (@) is not valid, we get a new counterexample and repeat

Semi-formal Verification of Memory Systems by Symbolic Simulation 163

the process. If at any point we get a counterexample with the same set of acti-
vated links as in any previous counterexample, we report it as a potentially true
counterexample. The user can also put a limit on the number of iterations to
guarantee termination.

6 Conclusion

In this paper, we presented an automatic technique for finding design errors in
memories and data path systems. The method is based on a semi-formal version
of invariant checking using symbolic simulation with automatically generated in-
put constraints. We tested the method on various types of memory systems (one
and two-level direct-mapped cache, set-associative cache, and a memory system
with SDRAM controller), and the method found all the bugs in these designs
without any manual effort, which demonstrates its effectiveness. The longest
runtime was for the two-level direct-mapped cache, and it took 10 minutes on a
machine with a 800MHz Pentium processor.

References

1. Husam Abu-Haimed, Sergey Berezin, and David L. Dill. Strengthening invariants
by symbolic consistency testing. In CAV’03, volume 2725 of LNCS, 2003.

2. Saddek Bensalem, Yassine Lakhnech, and Hassen Saidi. Powerful techniques for
the automatic generation of invariants. In CAV’96.

3. Nikolaj Bjgrner, Anca Browne, and Zohar Manna. Automatic generation of invari-
ants and intermediate assertions. In Theoretical Computer Science, 1997.

4. Jerry R. Burch and David L. Dill. Automatic verification of pipelined micropro-
cessor control. In CAV’9/.

5. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244-263, 1986.

6. Michael Colon and Tomas E. Uribe. Generating finite-state abstractions of reactive
systems using decision procedures. In CAV’98.

7. Satyaki Das and David L. Dill. Counter-example based predicate discovery in
predicate abstraction. In FMCAD’02.

8. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV’97.

9. Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, 1993.

10. John Rushby. Integrated formal verification: Using model checking with automated
abstraction, invariant generation, and theorem proving. In SPIN’99 workshop.

11. N. Shankar, S. Owre, and J. M. Rushby. PVS Tutorial. Computer Science Labo-
ratory, SRI International, Menlo Park, CA, February 1993.

12. A. Stump, C. Barrett, and D. Dill. CVC: a Cooperating Validity Checker. In
CAV’02.

13. Jeffrey X. Su, David L. Dill, and Clark W. Barrett. Automatic generation of
invariants in processor verification. In FMCAD’96.

14. Jeffrey X. Su, David L. Dill, and Jens U. Skakkebak. Formally verifying data and
control with weak reachability invariants. In FMCAD’98.

15. A. Tiwari, H. Rue8, H. Saidi, and N. Shankar. A technique for invariant generation.
In TACAS’01.

	Introduction
	Induction on Time
	Functional Equivalence
	The Verification Method
	Finding Input Constraints
	Conclusion

