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Abstract. Many industrial verification teams are developing suitable
event sequence languages for hardware verification. Such languages must
be expressive, designer friendly, and hardware specific, as well as efficient
to verify. While the formal verification community has formal models for
assessing the efficiency of an event sequence language, none of these mod-
els also accounts for designer friendliness. We propose an intermediate
language for event sequences that addresses both concerns. The language
achieves usability through a correlation to timing diagrams; its efficiency
arises from its mapping into deterministic weak automata. We present
the language, relate it to existing event sequence languages, and prove
its relationship to deterministic weak automata. These results indicate
that timing diagrams can become more expressive while remaining more
efficient for symbolic model checking than LTL.

1 Introduction

The increasing adoption of formal verification has led to a flurry of research
into property specification languages for hardware verification. Large-scale ef-
forts include Accellera’s standardization of Sugar [1], Synopsys’ OVA [13], and
Intel’s FTL [4]. Generally speaking, these are event sequence languages: they
allow designers to express sequences of events to monitor and check during ver-
ification. The proliferation of work from industry on event sequence languages
emphasizes that they must be designer friendly, expressive, and specific to the
hardware domain in addition to efficient to verify. Although practical experience
and theoretical results give insights into how to achieve these goals individually,
few formal models attempt to address usability and efficiency simultaneously.

In the space of event sequence languages, timing diagrams provide an ap-
pealing combination of usability and efficiency. Designers have established their
utility by regularly employing them as an informal design tool. Mappings from
formalized timing diagrams to deterministic weak automata [8] provide effec-
tively linear symbolic verification algorithms [5]. That timing diagrams are not
more widely used as event sequence languages suggests that they lack the ex-
pressiveness needed in industrial verification [3]. Their combination of utility and
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[1,3]a

b

c

LTL: ¬a ∧ X(a ∧ ((¬b ∧ X(b ∧ F(¬c ∧ Xc)))∨
X(¬b ∧ X(b ∧ F(¬c ∧ Xc)))∨
XX(¬b ∧ X(b ∧ F(¬c ∧ Xc))))

Sugar: ¬a & next!(a & next e![1,3](¬b & next! (b & eventually! (¬c & next! c))))

Fig. 1. Expressing an event sequence in three languages.

efficiency, however, raises an interesting question: how expressive can we make
an event sequence language while retaining both diagrammability and efficiency?

This paper explores this question by proposing a (textual) intermediate lan-
guage for capturing event sequence languages. To target diagrammability, we de-
sign the core of the language around timing diagrams. To target expressiveness,
we extend the core language to capture constructs from other event sequence lan-
guages. To target efficiency, we syntactically characterize which expressions in
this language map to deterministic weak automata. The results of this work are
twofold: first, our language provides a framework in which to assess both usabil-
ity and efficiency of other event sequence languages; second, our characterization
proves that timing diagrams can be extended with several new features—such
as partial orders between events, interleaved environmental assumptions, escap-
ing conditions, and event clocks—without losing their mapping to deterministic
weak automata. Our long-term goal is to develop formal models that simulta-
neously characterize both usability and efficiency in event sequence languages.
This paper focuses on the efficiency of verifying our proposed language; future
papers will treat formal models of diagrammability as a measure of usability.

2 Preliminaries

2.1 Event Sequences and Timing Diagrams

Event sequences, as their name implies, capture sequences of events on signals in
a design; they express properties for verification or simulation. Regular expres-
sions and linear temporal logic have similar goals, but also some subtle differ-
ences. Event sequences often monitor transitions on signals in the design, rather
than just boolean values of propositions. In addition, event sequences generally
capture timing constraints between events. While both regular expressions and
linear temporal logic can capture these features, the resulting expressions can
be rather cumbersome, especially in contrast to event sequences and timing di-
agrams. Figure 1 shows a simple example of the same event sequence expressed
as a timing diagram, in linear temporal logic (LTL), and in Sugar.

Although timing diagrams present event sequences somewhat intuitively, they
are not as expressive as some other event sequence languages. For example, tex-
tual event sequence languages easily express disjunctions, while diagrams in gen-
eral capture disjunctive information poorly. The mapping from timing diagrams
to weak automata, which does not hold for full LTL, demonstrates benefits to
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a

c

b
[2,5]

[3,9] C = 〈{a ↑, b ↑, c ↑, a ↓}; b ↓〉
T = {〈a ↑, c ↑, 2, 5, true〉,

〈c ↑, a ↓, 1, ∞, true〉,
〈a ↓, b ↓, 3, 9, true〉}

Fig. 2. A timing diagram with partial orders and its mapping into an event sequence.

this limited expressive power. The question, then, is how far we can push timing
diagrams while retaining this mapping. The timing diagram shown in Figure 2,
for example, expresses some disjunction as the order of events is left unspecified
(a partial order rather than a total one). This extension adds expressive power
without sacrificing diagrammability or weakness. We are interested in similar
extensions based on constructs from modern event sequence languages.

2.2 Weak Automata

A Büchi automaton 〈Q, Σ, q0, R, L,F〉 is weak if it has only one fair set and
each of its strongly connected components has either all states fair or no states
fair [10]. Weak automata are attractive in verification because symbolic cycle
detection is effectively linear for weak automata, as opposed to quadratic for full
LTL [5]. Deterministic weak automata are particularly interesting for their prop-
erties under complementation. Automata-based verification approaches comple-
ment automata that capture properties. In the general case, complementing a
Büchi automaton can blowup the number of states exponentially. Complement-
ing a deterministic weak automaton, however, requires only complementing the
fair set; the structure of an automaton and its complement are otherwise iden-
tical. This represents a substantial savings in construction time, and more im-
portantly, in the size of automata used to represent complemented properties.

3 An Intermediate Language for Event Sequences

This section presents a regular-expression-like notation for event sequences. We
motivate the development of the language using the example timing diagram
shown in Figure 2. We explain the semantics of the diagram informally; the
formal details appear elsewhere [7].

To capture the diagram, the language must express transitions on signals and
constraints (timing and ordering) between these transitions. Let propositional
literals (p, ¬q) denote boolean values and propositional variables annotated with
arrows (p ↓, p ↑) denote falling and rising transitions, respectively. Let semicolons
denote concatenation (temporal sequencing) of events. Using these notations
and reading off the timing diagram from left to right suggests the expression
〈a ↑; b ↑; c ↑; a ↓; b ↓〉. If we interpret semicolons as implying order between events
(a common interpretation of concatenation), this expression is inconsistent with
the semantics of the timing diagram. The rising transitions on a and b may
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occur in any order since no constraint orders them (the falling events on a and
b, in contrast, must occur in order). The event sequence language must therefore
support partial, rather than only total, orders between events.

Timing diagrams consist of totally-ordered regions within which individual
events are partially ordered. For sake of generality, our event sequence language
supports hierarchical combinations of ordered, unordered and iterated groups
of events. In the formal syntax and semantics that follows, we refer to these
groups of events as clusters. We capture partial orders within unordered clusters
using a separate annotation for transition (timing) constraints between events;
a timing constraint specifies the events covered, lower and upper bounds on the
time between the events, and the clock against which the bounds are measured
(true specifies the system clock). This approach treats constraints between events
uniformly, whether they occur in ordered or unordered clusters. Figure 2 shows
the resulting event sequence for our example timing diagram.

3.1 Syntax

The timing diagram example suggests the following syntax for event sequences:

Definition 1 Clusters are defined hierarchically as follows:

– An event is a conjunction of values of and transitions on variables that
contains at least one transition. Propositional literals (p, ¬q) denote boolean
values; propositions with arrows (p ↓, p ↑) denote transitions.

– A cluster is either:
• a single event, or
• an unordered cluster {C1, . . . , Ck} where each Ci is a cluster, or
• an ordered cluster 〈C1; . . . ; Ck〉 where each Ci is a cluster, or
• a repeating cluster CM where C is a non-repeating cluster and M is a

positive number, ∗, or + (called a repetition marker; markers ∗ and +
are called unbounded).

An event sequence consists of a (top level) cluster and three kinds of mod-
ifiers. Temporal constraints, already motivated, may be relative to a designer-
specified event clock, as captured by a boolean expression (this is a common
feature in event sequence languages). To indicate that certain variables hold
value during regions (between events) in a diagram, holding patterns constrain
variable values within clusters. To allow portions of diagrams to serve as assump-
tions rather than requirements, escape conditions capture circumstances under
which the sequence should be immediately rejected or accepted.

Definition 2 An event sequence is a tuple 〈C, H, T, S〉 where C is a cluster, H
(the holding patterns) is a partial function from C to propositional formulas, T
is a set of temporal constraints and S is a set of escape conditions.
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C = 〈a ↑+; {b ↑, c ↑}; d ↑〉
H = {b ↑, c ↑} → a
T = {〈c ↑, d ↑, 2, 5, true〉}
S = {accept-if-don’t-complete(a ↑+)}

dbcaa

Fig. 3. A sample event sequence and an example of its semantics.

– A temporal constraint is a tuple 〈e1, e2, l, u, clk〉 where e1 and e2 are (uniquely
identified1) events in C, l is a positive integer, u is either an integer at least
as large as l or the symbol ∞, and clk is a boolean expression (the clock for
the constraint; true indicates the system clock). Events e1 and e2 may lie in
different clusters, but then they must lie in the same repeated clusters.

– An escape condition has one of three types, where X is a boolean expression
over events (the events need not be in C) and C ′ is a cluster within C:

• “accept if don’t complete C ′”
• “reject if see X in C ′”
• “accept if see X in C ′”

Figure 3 illustrates an event sequence of some number of rising transitions on
a, followed by rising transitions on b and c (in either order), followed by a rising
transition on d. The transition on d must occur between 2 and 5 ticks (inclusive)
after the transition on c (the timing constraint), signal a must remain true until
the transition on d occurs (the holding pattern), and the rest of the sequence is
only checked if the transition on a occurs (the escape condition).

The language contains some redundancy for sake of clarity: ordered clusters,
for example, can be viewed as unordered clusters plus timing constraints. To
simplify the semantics and proofs, we assume that all sequences are in reduced
form, in which all clusters C+ are replaced with 〈C; C∗〉, all CM for a concrete
number M are replaced with an ordered cluster of M copies of C, and all ordered
clusters 〈C1; . . . ; Ck〉 are replaced with unordered clusters and timing constraints
that require an event from each Ci to occur before an event from each Ci+1.

3.2 Semantics

The semantics of event sequences is defined in terms of languages over infinite
words, where each character in a word is an assignment of boolean values to
variables. An infinite word models an event sequence if there exists a mapping
from the clusters in the sequence to ranges of indices into the word (herein called
windows) such that the windows assigned to each cluster preserve the cluster’s
constraints; these mappings are called index assignments.

As an example, consider the event sequence and word shown in Figure 3.
The word is divided into windows per cluster (demarcated by solid lines), and
subwindows as necessary for nested clusters (demarcated by dashed lines). We
first formalize the mappings from clusters to windows.
1 A numbering scheme could distinguish syntactically similar events.
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Definition 3 Given a word W , a window of W is a subword of W ; a pair of
indices into W , denoted [i, j] where i ≤ j, defines a window. Furthermore,

– An individual index i defines a trivial window [i, i].
– Window [i1, i2] contains window [i3, i4] iff i1 ≤ i3 and i4 ≤ i2.
– Window [i1, i2] is earlier than window [i3, i4] iff i1 < i3 or i1 = i3 and i2 < i4.
– Given a window w = [start, end], a sequence [s1, e1], . . . , [sk, ek] forms a non-

overlapping covering sequence of windows for w if s1 = start, ek = end, and
for all 1 ≤ j < k, ej < sj+1.

Definition 4 A (partial) index assignment for event sequence V and word W
is a (partial) function from the clusters in (including nested within) V to non-
empty sets of windows of W .

A window must meet certain requirements in order to capture the constraints
of a cluster. The following definitions formalize those requirements.

Definition 5 Let E = v1 ∧ . . . ∧ vk where each vi is a proposition, its negation,
or a rising or falling transition on a proposition. Let W be a word and i an index
into W . Let Wi(q) denote the value of proposition q at index i into W . Index i
satisfies E if for every vi, Wi(p) = 0 if vi = ¬p, Wi(p) = 1 if vi = p, Wi(p) = 0
and Wi+1(p) = 1 if vi = p ↑, and Wi(p) = 1 and Wi+1(p) = 0 if vi = p ↓.

Definition 6 Given an unordered cluster C = {C1, . . . , Ck}, a schedule of C is
a sequence CO1, . . . , COj of non-empty subsets of C such that

– CO1, . . . , COj partition C,
– In every COi that contains multiple elements of C, all elements of COi are

single events (rather than other complex clusters), and
– For each timing constraint 〈e1, e2, l, u, clk〉 such that e1 ∈ COi and e2 ∈ COj ,

i < j.

Definition 7 Let V be an event sequence, W a word, and I a partial index
assignment for V and W . I is structurally valid iff for every cluster C in V :

– If C is an event, then for every [i, i] ∈ I(c), i satisfies C (Defn 5).
– If C is a repeating cluster C ′∗, then for every wp in I(C ′∗) there exists

a natural number m and some sequence wp1, . . . , wpm of non-overlapping
covering windows for wp such that each wpi ∈ I(C ′).

– If C is an unordered cluster {C1, . . . , Ck}, then for every window w ∈ I(C)
there exists a schedule CO1, . . . , COj for C and a sequence w1, . . . , wj of
non-overlapping covering windows for w such that for all i ≤ h ≤ j and all
e ∈ CPh, wh ∈ I(e).
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Definition 8 Let V = 〈C, T, H, S〉 be an event sequence, let W be a word, and
let I be an index assignment for V and W . I is constraint valid for V and W iff

1. I satisfies the holding patterns, in that for all clusters C ′, every x ∈ H(C ′)
and every window [w1, w2] ∈ I(C ′), every index w1 ≤ i ≤ w2 satisfies x, and

2. I satisfies the timing constraints, in that for every 〈e1, e2, l, u, clk〉 ∈ T and
every t1 ∈ I(e1) and t2 ∈ I(t2) such that t1 and t2 fall in a common window
for the smallest cluster containing both e1 and e2, the number of indices
satisfying clk between t1 and t2 (inclusive) is within the range [l, u].

Constraint validity handles timing constraints and holding patterns, but not
escape conditions. The next two definitions handle escape conditions. Defini-
tion 12 relates words and event sequences based on the existence of index as-
signments that may or may not invoke escape conditions. Given index assignment
I, let I be the inverse of I (mapping windows to sets of clusters).

Definition 9 Let V be an event sequence, W a word, and I a structurally
valid index assignment for V and W . Let E be an escape condition of type
“accept/reject if see X in C”. Index i into W invokes E under I if i ∈ I(C),
i satisfies X, and I is defined for all clusters in the images of I for windows
occurring before i. We also say that I invokes an escape condition of V .

Definition 10 Let V be an event sequence, W a word, and I a structurally
valid index assignment for V and W . I loops under escape condition E if E is
of the form “accept if don’t complete C” and I is defined for all clusters in the
images of I for windows occurring before i, but not for a window containing i.

For the semantics to yield a deterministic procedure for checking whether
a word satisfies an event sequence, index assignments must assign the fewest
and earliest possible windows to clusters (in particular, this renders both * and
scheduling deterministic). We formally define this notion of minimality as follows:

Definition 11 Let V be an event sequence and let W be a word. Let I and I ′

be non-equivalent index assignments for V and W . Let Rg denote the range of
a function. I ≺ I ′ iff

1. the earliest window in one but not both of Rg(I) and Rg(I ′) is in Rg(I), or
2. Rg(I) = Rg(I ′) but for w, the earliest window such that I(w) �= I ′(w),

I ′(w) ⊂ I(w).

Given a set Σ of index assignments, I ∈ Σ is minimal in Σ iff for all I ′ ∈ Σ,
I ≺ I ′. (≺ does not order all pairs, but is sufficient for our theorems [9].)

We now define when a word models an event sequence:

Definition 12 Let V be an event sequence and let W be a word. W |= V if
there exists a minimal and structurally valid index assignment I for V and W
such that I is a total function and constraint valid, or I loops under some escape
condition in V , or I invokes some escape condition in V .
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The semantics captures one occurrence of an event sequence, rather than
the multiple occurrences needed to treat an event sequence as an invariant. The
one-occurrence semantics offers two benefits: it provides a foundation for defining
different multiple occurrence semantics [7], and it enables the mapping to weak
automata. This restriction is not as limiting as it might seem: in prior work [8],
we showed that relabeling fair sets and adding a few transitions constructs the
automaton for a negated invariant event sequence (the machine most commonly
needed for verification) from the machine that accepts one occurrence.

4 Relationship to Existing Event Sequence Languages

To motivate the intersection between our simultaneous goals of diagrammability
and efficiency, this section shows how several features of existing event sequence
languages do or do not map into the proposed intermediate language.

4.1 Timing Diagrams

Section 3 illustrated the connection between timing diagrams and our proposed
event sequence language. The language presented here extends our previous re-
sults on the relationship between timing diagrams and weak automata [8] in
two ways. The previous result held for timing diagrams with a total order on
their transitions and a prefix of the diagram as an environmental assumption
(as in, “if the rising transition on a occurs, then match the whole diagram”).
As a corollary to the results in this paper, timing diagrams with partial event
orders and multiple non-contiguous assumptions on the environment also map
to deterministic weak automata. We view environment assumptions as events
that are only constrained if they occur [6]; unlike other events, their failure to
occur does not violate the diagram’s requirements. For the diagram in Figure 2,
we could treat the two transitions on a as environment assumptions by rewrit-
ing the event chain using nested clusters (as 〈{a ↑, b ↑, c ↑, a ↓}; b ↓〉 and adding
“accept-if-don’t-complete” escape conditions on the two clusters for a.

The proposed language is more expressive than our current timing diagram
formalization. Consider the cluster 〈a ↑∗; b ↑〉. The timing diagram semantics
requires all depicted transitions to occur unless an escape condition matches, so
this expression (without escape conditions) is currently not expressible as a tim-
ing diagram (since a ↑ might not occur). Similar examples involving repetitions
also exist. Enriching the timing diagram notation could resolve some of these
issues; this remains an issue for future work.

4.2 LTL, Sugar, and FTL

Sugar and FTL are similar in that each extends conventional LTL. Since there
exist LTL formulas that cannot be captured by weak automata, certain FTL
and Sugar formulas will not map into our intermediate language. Weakness
primarily characterizes the location of fair sets in automata. In LTL, fairness
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qp r rqp

Fig. 4. Automata for two LTL formulas.

constraints arise from combinations of eventualities and cycles (the operators U
and G). Figure 4 shows automata that capture two formulas: (p U q) U r and
p U(G(q U r)). The first example yields a weak automaton and corresponds to
cluster 〈(p∗; q)∗; r〉. The second corresponds to cluster 〈p∗; 〈q∗; r+〉∗〉 with escape
condition “accept if don’t complete r+”; this expression violates our syntactic
restrictions for weakness presented in Theorem 3 (Section 5.3).

One key difference between these two formulas is that the second contains a
repetition within its last cluster, while the first does not. This same difference
characterizes the automata for the regular expressions (aa)∗ and (aa)∗b, the
first of which cannot be captured by a deterministic weak automaton while
the second one can. An automaton can recognize a nonrepeating final pattern
without creating a fair set. This motivates our characterization of weakness: the
final cluster cannot end with an unbounded repetition marker.

Certain other features of Sugar and FTL do not adversely impact weakness.
FTL’s change on and reject on constructs indicate when a sequence should be
immediately accepted or rejected; escape conditions capture such scenarios in
the proposed intermediate language. For example, augmenting (p U q) U r with
escape condition “accept if see reset in q” would introduce a new state labeled
reset with an incoming edge from the state for q; this automaton is also weak.

4.3 OVA

Of the recent event sequence languages discussed in this paper, OVA most closely
matches the proposed language. Unlike Sugar and FTL, OVA does not explicitly
support LTL or CTL operators. The OVA istrue construct maps into holding
patterns, and their non-overlapping event clocks map into ours. Unlike the pro-
posed language, however, OVA can express disjunction among sequences and
negation of sequences. Our language does not support negation because negated
sequences generally cannot be realized diagrammatically. Our language does,
however, still support constructing deterministic weak automata for the nega-
tions of event sequences, as outlined at the end of Section 3.

5 Relationship to Deterministic Weak Automata

This section characterizes which sequences in our language map to determinis-
tic weak automata; almost all do, with the exception of those with particular
interactions between escape conditions and repeated clusters. We construct an
automaton corresponding to the semantics, prove the construction sound, then
characterize when the resulting machine is both weak and deterministic.
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C11 C13

C11 p,!qp,!q q!p

Fig. 5. Overview of the automaton construction algorithm.

Given an event sequence V , we construct a Büchi automaton that accepts all
words with a prefix that models V . Figure 5 illustrates the intuition behind the
expansion. The construction recursively expands states corresponding to clusters
until all states correspond to individual events. Holding patterns, escape condi-
tions, and the ordering aspects of timing constraints are incorporated as this
expansion proceeds. The durational aspects of timing constraints are handled in
a final phase once all states correspond to individual events.

Each intermediate machine during the computation abstracts the final ma-
chine, in that if there is no edge from one abstract state to another, then there
is no edge from any state in the expansion of the first to the expansion of the
second in the final machine. For sake of space, we present the detailed algorithm
only up through creating states for each event; this is sufficient for our theorems.

The construction creates edges between abstract states based on which clus-
ters can precede or follow other clusters; it also relies on notions of the first and
last subclusters that could be encountered in a cluster. These concepts match
intuition. For sake of space, we defer all but the definition of next clusters to the
full paper [9]; examples of all four notions follow the definition. The theorem in
Section 5.2 also refers to first and last events, which are obtained by iterating
the first and last computations on clusters until they contain only events.

Definition 13 Let C be a cluster immediately contained in a cluster CP (if C
has no enclosing cluster, next(C) is empty). If CP = 〈C1; . . . ; Ck〉 and C = Ci

for i < k, then next(C) is Ci+1 if Ci+1 is not an repeating-* cluster and {Ci+1}∪
next(Ci+1) if Ci+1 is an repeating-* cluster. If C = Ck, then next(C) is next(CP ).
If C is an repeating-* cluster, next(C) also includes C. The case for unordered
clusters unions similar results over all possible schedules, and repeated clusters
C have next(C) as {C}∪ next(CP ).

Examples: Given sequence 〈C1; C2; C∗
3 ; C+

4 〉, next(C2)=next(C3)={C3, C4} and
prev(C3)={C2, C3}. Given sequence 〈C1; {C21, C

∗
22}; {C31, C32}∗; C4〉 with a tim-

ing constraint from C21 to C22, next(C21)={C22, C31, C32, C4}. For the first and
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last sets, first({C21, C
∗
22})={C21}, last({C21, C

∗
22})={C∗

22}, and first({C31, C
∗
32})

= last({C31, C
∗
32}) = {C31, C

∗
32}.

Algorithm 1 To construct an automaton for event sequence 〈C, T, H, S〉:
1. Create a state Final with a self loop and mark it fair.
2. Create a state for C and mark it initial, final, and unexpanded.
3. Repeatedly select an unexpanded state N for some non-event cluster C and

– Add holding patterns and edges for the escape conditions for C to N .
– Expand N according to the type of C and remove N .
– If N was marked initial (resp. final), mark the new states for all first

(resp. last) clusters of C initial (resp. final). Copy all other propositional
annotations (including fair) from N to the new states from the expansion.

4. Add an edge from each state marked final to the state Final.

Expand Repeated Clusters. For a state for repeated cluster C∗, add an edge from
the state for each previous cluster of C∗ to that for each next cluster of C∗.

Expand Unordered Clusters. For a state N for unordered cluster C =
{C1, . . . , Ck}:

– For every schedule CO1, . . . , COh of C, create a chain of abstract states
CON1, . . . , CONh. For every non-self-loop edge coming into N , add an edge
from the same source to CON1. For every non-self-loop edge leaving N , add
an edge from CONk to the target of the original edge.2

– Eliminate unnecessary nondeterminism by merging states with the same
incoming transitions and labels into single states (this shares common prefix
states across the various permutations).

– If N had an edge to itself, add an edge from each sink state in the subgraph
that expands N to each source state in the subgraph that expands N .

Handle Escape Conditions and Holding Patterns

– For each escape condition E of the form “reject if see X in C”, create a new
abstract state NE for E, label NE with X, add an edge from each abstract
state corresponding to C to NE and add a self-loop at NE .

– For each escape condition E of the form “accept if see X in C”, create a new
abstract state NE for E, label NE with X, add an edge from each abstract
state corresponding to C to NE , add a self-loop at NE , and mark NE as fair
(with a new fairness constraint).

– For each escape condition E of the form “accept if don’t complete C”, mark
every abstract for C as fair (with a new fairness constraint).

– For each holding pattern h for cluster C and each abstract state NC corre-
sponding to or expanded from C, add h as a propositional label to NC .

2 To reduce the machine size, we could perform a bisimilarity minimization on the
subgraph of all states that expanded N .
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Following Algorithm 1, all states correspond to single events but the du-
rations of timing constraints have not been enforced. We handle this using a
similar algorithm to that in our prior work [8]. For sake of space, and since the
expansion into events does not affect weakness or determinism by construction,
we do not reproduce the details here. To handle the event clock clk in a timing
constraint over events e1 and e2, the construction adds a unique label for clk to
each state between e1 and e2, and creates an automaton that outputs this label
whenever clk is true. A final step cross-products the core machine with the clock
machines; this does not affect weakness.

The results on determinism and weakness that follow apply to those event
sequences that end with a concrete event rather than a repetition (for reasons
motivated in Section 4.2). We call such sequences event chains.

Definition 14 An event sequence 〈C, T, H, S〉 is an event chain if the iterative
expansion of last(C) contains no repeated clusters.

5.1 Soundness

Theorem 1. Let V be an event sequence and let M be the automaton obtained
for V from Algorithm 1. Let W be an infinite word. M accepts W iff W |= V .

Proof Sketch: Intuitively, the proof develops a correspondence between states
in the abstract machines and the windows in the range of an index assignment
for W and V . The theorem follows from an argument that the windows occurring
in accepted (resp. rejected) words correspond to accepting (resp. rejecting) paths
through the automaton.

5.2 Characterization of Determinism

Theorem 2. Given an event chain, Algorithm 1 produces a deterministic au-
tomaton if all of the following conditions are satisfied:

– For every unordered cluster {C1, . . . , Ck}, the first events of each Ci are
pairwise logically inconsistent with those of each Cj �= Ci unless a timing
constraint orders Ci and Cj.

– For each repeated cluster C∗, the first events of C are pairwise logically
inconsistent with the first events of each next cluster of C∗ (other than C).

– For each “accept/reject when see X in C” escape condition, X is logically
inconsistent with all holding patterns for C.

Proof Sketch: The machine is deterministic if the choice among multiple next
states is deterministic. The construction yields multiple next states in four cases:
possible transitions to the Final state, when choosing between schedules for an
unordered cluster, possible skips of repeated clusters, and when invoking escape
conditions. The restriction to event chains guarantees that states with transitions
to Final have no other outgoing transitions. By construction, transitions into the
states that expand clusters occur when a first event is recognized for that cluster.
If these events are logically inconsistent, then the corresponding transitions must
be deterministic. This covers the remaining cases.
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5.3 Characterization of Weakness

We call a cluster C fair if there exists an escape condition of the form “accept if
don’t complete C”. A cluster is all-fair if it is either fair or all of its sub-clusters
are all-fair. A cluster is non-fair if neither it nor any of its sub-clusters is fair.

Lemma 1. If an event sequence contains no all-fair repeated clusters, then the
automaton from Algorithm 1 requires only one fair set.

Proof Sketch: If no cycle contains states from more than one fair set, then a
single fair set suffices. Cycles can contain states from multiple fair sets under two
conditions. First, two “accept don’t complete” conditions could exist for clusters
C1 and C2 where C1 contains C2. In this case, a cycle that satisfies C2 satisfies
C1, so only one fairness constraint is required. Second, a repeated cluster could
have all sub-clusters fair, thus creating a cycle that visits each sub-cluster then
self-loops for the repeated cluster. The theorem statement rules out this case.

Theorem 3. Given an event chain, Algorithm 1 produces a weak automaton iff
every repeated cluster in the chain is non-fair.

Proof Sketch: Non-trivial strongly-connected components (SCCs) arise from
abstract states with self-loops, which in turn arise from expanding states for
repeated clusters. With the exception of the Final state and the states for “ac-
cept/reject if see” escape conditions (which form their own SCCs), states are
marked fair only if they correspond to or expand from clusters that have “ac-
cept if don’t complete” conditions. If a repeated cluster is non-fair, then it has no
fair SCCs embedded within self-loops (other, larger SCCs). If a repeated cluster
is all-fair, it requires multiple fair sets and is not weak by definition. All other
repeated clusters contain cycles with both fair and non-fair states.

Our mapping to deterministic weak automata is not complete; in other words,
our language does not logically characterize deterministic weak automata. Con-
sider the regular expression ab∗ + bc∗: a deterministic weak automaton accepts
it, but it is not expressible in our language due to the use of disjunction.

6 Related Work

We are unaware of logical characterizations of weak automata, much less ones
that account for diagrammability or other forms of usability. The original
work on the efficiency of verifying weak automata is due to Bloem, Ravi and
Somenzi [5]. Other timing diagram formalizations have supported some of the
language extensions discussed here [2,6,12], but none related the diagrammatic
features of these languages to efficiency in verification.

Amla et al.’s work on modular timing diagrams has much in common with
this work [3]. Their work makes timing diagrams more expressive by combin-
ing them through non-diagrammatic operators for conjunction, iteration, and
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deterministic choice. Expressions in their language encompass several timing
diagrams, while our work pushes the limits of a single timing diagram. Accord-
ingly, they target efficiency through a different model of automata. The core
differences between our works appear to be philosophical; ours focuses on un-
derstanding the interplay between diagrammability and efficiency, while theirs
focuses on building a practical verification framework around timing diagrams.
The full paper provides a more detailed comparison [9].

7 Conclusions and Future Work

The relationships between timing diagrams and deterministic weak automata
suggest that there exist formal models of event sequences that simultaneously
address both usability and efficiency. A traditional theoretical approach to de-
signing languages towards efficiency would be to find a syntactic (logical) char-
acterization of weak automata. This approach, however, fails to account for the
usability of that logical characterization. This is perhaps justifiable, as ”usabil-
ity” is an inherently informal notion. If we refine our notion of usability to mean
diagrammability, however, formal models become possible. Formal characteriza-
tions of diagrammability usually rely on topological or spatial arguments [11];
appropriate characterizations for discrete linear events remain an open problem.

The event sequence language proposed in this paper targets diagrammabil-
ity by allowing only a restricted form of disjunction; in particular, disjunction
governs the ordering of events, but not their occurrence. This is consistent with
diagrams’ tendency to imply that all depicted items actually exist (maps, for
example, indicate that all depicted features are actually there). Such nuances
in the different uses of logical operations appear fundamental to formal models
of diagrammability. This limited nature of disjunction also targets efficiency by
supporting our criteria for deterministic automata. Restricted forms of iteration
enable the mapping to weak automata. Single timing diagrams support lim-
ited forms of iteration, and hence satisfy the criteria for weakness. Overall, the
generality of our language substantially enriches the set of features our timing
diagrams can support while retaining efficiency for verification.

Several avenues remain open for future work. Given that the proposed lan-
guage is more expressive than our current timing diagrams, characterizing dia-
grammability is an important next problem in this project. We expect restric-
tions on cluster nesting similar to those in timing diagrams to be key to such
a characterization. We also plan to explore formal relationships between other
event sequence languages and ours; this would help identify subsets of other
languages that could be visualized and verified efficiently through a mapping to
weak automata. Finally, many general questions remain regarding the nature of
diagrammatic representations and their relationship to computational concerns
such as efficiency and decidability that are so important in verification. We hope
that our work will contribute to better understanding of these issues.
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