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Abstract. Intrusion-tolerance is the technique of using fault-tolerance
to achieve security properties. Assuming that faults, both benign and
Byzantine, are unavoidable, the main goal of Intrusion-tolerance is to
preserve an acceptable, though possibly degraded, service of the over-
all system despite intrusions at some of its sub-parts. In this paper, we
present a correctness proof of the Intrusion-tolerant Enclaves protocol [1]
via an adaptive combination of techniques, namely model checking, the-
orem proving and analytical mathematics. We use Murphi to verify au-
thentication, then PVS to formally specify and prove proper Byzantine
Agreement, Agreement Termination and Integrity, and finally we math-
ematically prove robustness of the group key management module.

1 Introduction

A substantial progress in the formal verification of cryptographic protocols has
been achieved during the last decade. A wide variety of techniques has been de-
veloped to verify a number of key security properties ranging from confidentiality
and authentication to atomic transactions and non-repudiation [2,3]. Neverthe-
less, all the focus was either on two-party protocols (i.e., involving only a pair
of users) or, in the best cases, on group protocols with centralized leadership
(i.e., a presumably trusted fault-free server managing a group of users). In the
present work, we are concerned with the verification of the intrusion-tolerant
Enclaves [1]: a group-membership protocol with a distributed leadership archi-
tecture, where the authority of the traditional single server is shared among a set
of n independent elementary servers, of which at most f could fail at the same
time. The protocol has a maximum resilience of one third (i.e., f ≤ �n−1

3 �) and
uses an algorithm similar to the consistent broadcast of Bracha and Toueg [4].

The primary goal of Enclaves is to preserve an acceptable group-membership
service of the overall system despite intrusions at some of its sub-parts. For
instance, an authorized user u who requests to join an active group of users
should be eventually accepted, despite the fact that faulty leaders may coordi-
nate their messages in such a way as to mislead non-faulty leaders (the majority)
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into disagreement, and thus into rejecting user u. Moreover, in order to prevent
malicious leaders from leaking sensitive information (e.g., group keys) or provid-
ing clients with fake group keys, Enclaves uses a verifiably secure secret sharing
scheme.

To achieve its intrusion-tolerant capabilities, Enclaves relies on the combina-
tion of a cryptographic authentication protocol, a Byzantine fault-tolerant leader
agreement protocol and a secret sharing scheme. Although we assume the un-
derlying cryptographic primitives and fault-tolerant components to be perfect,
one cannot easily guarantee security of the whole protocol. In fact, several pro-
tocols had been long thought to be secure until a simple attack was found (see
[20] for a survey). Therefore, the question of whether or not a protocol actually
achieves its security goals becomes paramount. To date, most of the research in
protocol analysis has been devoted to finding attacks on known, either two-party
or centralized protocols. In this paper we are concerned with the verification of
a distributed multi-leader group communication protocol.

An important issue that arises in formal verification of Byzantine fault-
tolerant protocols, is the modeling of Byzantine behavior. How much power
should be given to a Byzantine fault and how general should the model be to
capture the arbitrary nature of a Byzantine fault behavior? These questions
have been extensively studied [7,9,10] and continue to be a center of focus. In
this paper, faults are only limited by cryptographic constraints. For instance,
faulty leaders can arbitrarily send random messages, reset their local clocks and
perform any action without satisfying its precondition. They cannot, however,
decrypt a message without having the appropriate key, or impersonate other
participants by forging cryptographic signatures. More details about our fault
assumptions are discussed in Section 2.

In this work, we discuss a formal analysis of the overall Byzantine fault-
tolerant Enclaves protocol. We experiment with an adaptive combination of
techniques, chosen according to the nature of the correctness arguments in
each module, the environment assumptions, and the easiness of performing
verification. For instance, we found it more profitable to model-check the au-
thentication module by taking advantage of the reduction techniques available
in Murphi [15]. The Byzantine leaders agreement module, however, was a little
trickier. In fact, the latter relies, to a large extent, on the timing and the
coordination of a set of distributed actions, possibly performed by Byzantine
faulty processes whose behavior is hard to represent in a model-checker. Instead,
we use PVS [21] and formalize the protocol in the style of Timed-Automata
[5]. This formalism makes it easy to express timing constraints on transitions.
It also captures several useful aspects of real-time systems such as liveness,
periodicity and bounded timing delays. Using this formalism, we specified the
protocol for any number of leaders, and we proved safety and liveness properties
such as Proper Agreement, Agreement Termination and Integrity. Finally, the
group-key management module is based on a secret sharing scheme whose
security relies fundamentally on the hardness of computing discrete logarithms
in groups of large prime order. Due to the hardness of expressing the latter
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correctness arguments in a formal language, we found it more convenient to
give a manual proof of the module’s robustness and unpredictability properties,
using the Random Oracle model [19].

The remainder of this paper is organized as follows. In Section 2, we give an
overview of the architecture and design goals of Enclaves, and we explicitly state
our system model assumptions. In Section 3, we describe the model checking of
the authentication module in Murphi. In Section 4, we present how we model
the elementary components of the Byzantine leader agreement module in PVS
and how we build the final protocol model out of these ingredients. In Section 5,
we formulate and prove our correctness theorems. In Section 6, we briefly give
the mathematical proof of robustness and unpredictability of the group key
management module. In Section 7, we discuss some related work. Finally in
Section 8, we conclude the paper by commenting on our results and stating
some perspectives for future work.

2 The Enclaves Protocol

Enclaves [1] is a protocol that enables users to share information and collabo-
rate securely through insecure networks such as the Internet. Enclaves provides
services for building and managing groups of users. Access to a given group is
granted only to sets of users who have the right credentials to do so. Authorized
users can dynamically, and at their will, join, leave, and rejoin, an active group.
The group communication service relies on a secure multicasting channel that
ensures integrity and confidentiality of group communication. All messages sent
by a group member are encrypted and delivered to all other group members.

The group-management service consists of user authentication, access con-
trol, and group-key distribution. Figure 1 shows the different phases of the pro-
tocol execution. Initially at time t0, user u sends requests to join the group to a
set of leaders. These leaders locally authenticate u within time interval [t1, t2].
When done, the agreement procedure starts and terminates at time t4 by reach-
ing a consensus as whether or not to accept user u. Finally on acceptance, user
u is provided with the current group composition, as well as information to re-
construct the group-key. Once in the group, each member is notified when a new
user joins or a member leaves the group in such a way that all members are in
possession of a consistent image of the current group-key holders.

In summary, Enclaves should guarantee the following properties, even in the
presence of up to f corrupted leaders:

– Proper authentication and access control: Only authorized users can join the
group and an authorized user cannot be prevented from joining the group.

– Confidentiality of group communication: Messages from a member u can be
read only by the users who were in u’s image of the group at the time the
message was sent.
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Fig. 1. Enclaves protocol execution

The description of Enclaves in [1] assumes a reliable network where messages
eventually reach their destinations within an upper bound delivery time. In this
paper we make the same assumptions. Concerning the intruder, we adopt a stan-
dard model where an intruder fully monitors the network, proactively augments
its knowledge, and chooses to send, either adaptively or randomly, messages on
the network. The intruder, however, cannot block messages from reaching their
destination and is limited by cryptographic constraints. For instance, the in-
truder cannot decrypt messages without having the right key, or impersonating
other participants by forging cryptographic signatures. For the leaders agree-
ment module, in particular, we assume the cryptography layer to be perfect
(i.e., messages format is well chosen to prevent any leakage of sensitive informa-
tion), and we concentrate rather on the Byzantine fault-tolerance capabilities of
the protocol.

Given the above assumptions, we prove that the Proper authentication and
access control requirement holds through (1) the model checking of the Proper
Authentication invariant in Murphi (cf. Section 2), and (2) the proofs of Proper
Agreement, Agreement Termination and Agreement Integrity theorems in PVS
(cf. Sections 3 and 4). In addition, we prove the Confidentiality of group com-
munication requirement via a mathematical analysis of the Robustness and Un-
predictability properties of the group key management module of Enclaves (cf.
Section 6).
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3 Model Checking Authentication in Murphi

Murphi has a language that supports scalable models. In a scalable model one
typically starts with a small protocol configuration and gradually increases the
protocol size. In many cases, errors in the general protocol (possibly infinite
state) will also show up in down-scaled (finite state) version of the protocol.
The Murphi tool is based on explicit state enumeration and supports a number
of reduction techniques such as symmetry and data independency [16,17]. The
desired properties of a protocol can be specified in Murphi by invariants. If a
state is reached where some invariant is violated, Murphi prints an error trace
exhibiting the problem.

Our verification has been conducted as follows. First, we formulated the
protocol by identifying the protocol participants, the state variable and messages,
and the key actions to be taken. Then we added an intruder to the system. In
our model, the intruder is a participant in the protocol, capable of eavesdropping
messages in transit, decrypting cipher-text when it has the appropriate keys, and
generating new messages using any combination of previously gained knowledge.
Finally, we stated the desired correctness conditions and ran the protocol for
some specific size parameters.

The main property we are concerned about in this paper is mutual au-
thentication between a given pair of leader and client. More precisely, at the
end of a protocol execution between a leader Li and a client C, Li should
be able to assert that it has been talking, indeed, to client C, and vice-
versa. The verification has been done by means of invariant checking un-
der the above mentioned assumptions. The client proper authentication in-
variant is given below. It basically states that for each leader i, if it com-
mitted to a session with a client, this client (whose identifier is stored in
lead[i].client), must have started the protocol with leader i, i.e., have stored
i in its field leader and be awaiting for acknowledgment (i.e., in state
C ACK).

invariant "client proper authentication"
forall i: LeaderId do
lead[i].state = L_COMMIT &
ismember(lead[i].client, ClientId)
->
clnt[lead[i].client].leader = i &
clnt[lead[i].client].state = C_ACK

end;

In addition to the above invariant, we have checked a similar one for leaders
proper authentication (i.e., the clients are sure about the identity of the lead-
ers they are communicating with). Table 1 shows the number of reached states
and CPU run times taken on a 440 Mhz Sparc machine with 256 MB of mem-
ory for different sizes of the protocol. The instances we consider, have been
chosen to emphasize the weight of each size parameter. For example, the in-
truder is modeled to be very powerful (intercepts, replays, and generates mes-
sages), so adding a second intruder does not increase the intrusion power, it
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Table 1. Model checking experimental results

Number of
Clients Leaders Intruders Network size States CPU time

2 4 1 1 4591 13.25 s
2 4 1 3 125793 331.00 s
1 4 2 3 277176 1481.35 s
4 10 1 3 797000 –

just multiplies the complexity. Also, the last row in Table 1, shows a non con-
clusive result, where Murphi runs out of memory before reaching all possible
states.

4 Modeling Byzantine Agreement in PVS

Most group communication protocols, including Enclaves, can be modeled by
an automaton whose initial state is modified by the participants’ actions as
the group mutates (new members join). Because Enclaves depends also on time
(participants timeout, timestamp group views, etc.), it was convenient to model
it as a timed automaton. In the current verification, timing is used only to
ensure actions progress. Timing, however, is essential to prove upper bounds on
agreement delays (e.g., a maximum join delay), but this is beyond the scope of
this paper. Participants in a typical run of Enclaves consist of a set of n leaders
(f of which are faulty), a group of members, and one or more users requiring to
join the group.

In the remainder of this section, we first explain our general PVS theory
about timed automata. The parameters of this theory are used here to formalize
Enclaves by defining the actions, the states, and the precondition and effect of
each action. Finally, the resulting executions of the protocol and fault assump-
tions are described.

4.1 Timed Automata

We present a general, protocol-independent, theory called TimedAutomata.
Given a number of parameters, it defines all possible executions of the pro-
tocol as a set of Runs. A run is a sequence of the form s0

a0→ s1
a1→ s2

a2→ s3
a3→ . . .

where the si are states, representing a snapshot of the system during execution
and the ai are the executed actions. A particular protocol (an instance of the
timed automaton) is characterized by sets of possible States and Actions, a con-
dition Init on the initial state, the precondition Pre of each action, expressing
in which states that action can be executed, the effect Effect of each action,
expressing the possible state changes by the action, and a function now which
gives the current time in each state. In a typical application, there is a special
delay action which models the passage of time and increases the value of now.
All other actions do not change time1.
1 For more details about the PVS theories and proofs, we refer the reader to the web

page: http://hvg.ece.concordia.ca/Research/CRYPTO/Enclaves.html
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4.2 Leaders Actions

To define the actions of the leaders, we first state a few preliminary definitions.
Let n be the number of leaders and let f be such that 3f +1 ≤ n (the maximum
number of faulty leaders). For simplicity, leaders are identified by an element of
{0, 1, . . . , n − 1}. Users are represented by some uninterpreted non-empty type,
and time is modeled by the set of non-negative real numbers.

The actions of the protocol are represented in PVS as a data type, which
ensures, e.g., that all actions are syntactically different. Thereafter, we define
the following actions:

– A general delay action which occurs in all our timed models; it increases the
current time (now), and all other clocks that may be defined in the system,
with the amount specified by a delay parameter del.

– An announce action is used to send announcement messages of new locally
authenticated users to the other leaders of the protocol.

– A trypropagate action allows a user announcement to be further spread
among leaders. This action is executed periodically, but it only changes the
state of the system if enough announcements (f + 1) have been received for
the considered user and it has not already been announced or propagated
by the leader in question before.

– An action Tryaccept used to let leaders periodically check whether they have
received enough announcements and/or propagation messages for a given
user. Once this condition is satisfied, the user is accepted to join the group.

– A receive action allows a leader to receive messages; it removes a received
message from the network and adds corresponding data to the local buffer
of the leader.

– A crash action models the failure of a leader. After a crash, a leader may still
perform all the actions mentioned above, but in addition it may perform a
misbehave action.

– An action misbehave models the Byzantine mode of failure and can only be
performed by a faulty (crashed) leader.

Besides, we define three time constants for the maximum delay of messages in the
network, the maximum delay between trypropagate actions and the maximum
delay between tryaccept actions.

4.3 States

In order to properly capture the distributed nature of the network, it is suitable
to model two kinds of states: a local state for each leader, accessible only to the
particular leader, and a global state to represent global system behavior which
includes the local state of each leader, the representation of the network and a
global notion of time.

An important part of the local state is the group view, which is a set of users
in the current group. In fact, the ultimate goal of Enclaves is to assure consistency
of the group views. Moreover, we use a Boolean flag (faulty) marking the leader
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status as faulty or not, some local timers (clockp and clocka) to enforce upper
bounds on the occurrence of trypropagate and tryaccept actions, and finally a
list (received) of the leaders from which the local leader received proposals for
a given user.

Views : TYPE = setof[UserIds]

LeaderStates : TYPE =
[# view : Views,

faulty : bool,
clockp : Time, % clock for the trypropagate action
clocka : Time, % clock for the tryaccept action
received : [UserIds -> list[LeaderIds]] #]

We model Messages as quadruples containing a source, a destination, a proposed
user and a timestamp indicating an upper bound on the delivery time, i.e., the
message must be received before the tmout value.

Messages : TYPE = [# src : LeaderIds,
tmout : Time,
proposal : UserIds,
dest : LeaderIds #]

In the global states, the network is modeled as a set of messages. Messages
that are broadcast by leaders are added to this set, with a particular time-out
value, and they are eventually received, possibly with different delays and at a
different order at recipient ends. The global state also contains the local state of
each leader and a global notion of time, represented by now.

GlobalStates : TYPE = [# ls : [LeaderIds -> LeaderStates],
now : Time,
network : setof[Messages] #]

s, s0, s1 : VAR GlobalStates

Furthermore, we define a predicate Init that expresses conditions on the initial
state, requiring that all views, received sets and the network are empty, and all
clocks and now are set to zero.

4.4 Precondition and Effect

For each action A, we define its precondition, expressing when the action is
enabled, and its effect. An announce action may always occur and hence has
precondition true. Similarly for trypropagate and tryaccept, which should occur
periodically. Action receive(i) is only allowed when there exists a message in
the network with destination i. For simplicity, a crash action is only allowed
if the leader is not faulty (alternatively, we could take precondition true). A
misbehave action may only occur for faulty leaders.
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Most interesting is the precondition of the delay(t) action. This action in-
creases now and all timers (clockp and clocka) by t. To ensure that messages are
delivered before their time-out value, we require that the condition prenetwork,
defined below, holds in the state before any delay(t) action is taken, which fits
our informal assumptions about network reliability.

prenetwork(s, t) : bool = FORALL msg :
member(msg, network(s)) IMPLIES now(s) + t <= tmout(msg)

Similarly, there is a condition preclock which requires that all timers (clockp
and clocka) are not larger than MaxTryPropagate and MaxTryAccept, re-
spectively. Since the trypropagate and tryaccept actions reset their local timers
to zero, this may enforce the occurrence of such an action before a time delay is
possible.

Next we define the effect of each action, relating a state s0 immediately before
the action and a state s1 immediately afterwards.

– delay(t) increments now and all local timers by t, as defined by s0 + t.
– announce(i, u) adds, for each leader j a message to the network, with source

i, time-out now(s0) + MaxMessageDelay, proposal u, and destination j.
– trypropagate(i) resets clockp to zero and adds to the network messages,

to all leaders, containing proposals for each user for which at least f + 1
messages have been received.

– tryaccept(i) resets clocka to zero and adds to its local view all users for
which at least (n − f) messages have been received.

– receive(i) removes a message with destination i from the network, say with
source j and proposal u, and adds j to the list of received leaders for u,
provided it is not in this list already.

– crash(i) sets the flag faulty of i to true.
– misbehave(i) may just reset the local timers clockp and clocka of i to zero,

as expressed by ResetClock(s0, i, s1), or it may add randomly as well as
maliciously chosen messages to the network (provided that timeouts are not
violated). A misbehaving leader, however, cannot impersonate other protocol
participants, i.e., any message sent on the network has the identifier of its
actual sender.

4.5 Protocol Runs and Fault Assumption

Runs of this timed automata model of Enclaves are obtained by importing the
general timed automata theory. This leads to type Runs, with typical variable r.
Let Faulty(r, i) be a predicate expressing that leader i has a state in which it is
faulty. It is easy to check in PVS that once a leader becomes faulty, it remains
faulty forever. Let FaultyNumber(r) be the number of faulty leaders in run r
(it can be defined recursively in PVS). Then we postulate by an axiom that the
maximum number of faults is f (MaxFaults : AXIOM FaultyNumber(r) <= f).
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5 Proving Byzantine Agreement in PVS

We are interested in verifying the following properties of the Enclaves protocol:

– Termination: if user u wants to join an active group and has been an-
nounced by enough non-faulty leaders, then eventually user u will be ac-
cepted by all non-faulty leaders and become a member of the group.

– Integrity: a user that has been accepted in the group should have been
announced by a non-faulty leader earlier during the protocol execution.

– Proper Agreement: if a non-faulty leader decides to accept user u, then
all non-faulty leaders accept user u too.

In the remainder of this section, we briefly outline proofs of the above theorems.

Theorem 1 (Termination)
For all r and u, announced by many(r,u) implies accepted by all(r,u)
where
– announced by many(r,u) expresses that at least (f + 1) non-faulty leaders

announced user u during run r;
– accepted by all(r, u) asserts that eventually all non-faulty leaders have

user u in their view during run r.

Proof. Assume announced by many(r,u), which implies that at least (f + 1)
non-faulty leaders broadcast a proposal for u. Because of the reliability of the
network, eventually these messages will be delivered to their destination, and
in particular to the (n − f) non-faulty leaders of the network. They all receive
(f +1) announcement messages for user u, which is enough to trigger the propa-
gation procedure (for u) for all non-faulty leaders who did not participate in the
announcement phase. Now because of the network reliability, we conclude that
eventually all non-faulty leaders will receive at least (n − f) approvals for user
u, enough to make a majority, since (n − f) > f follows from n > 3f . �

Theorem 2 (Integrity)
For all r and u, accepted by one(r,u) implies announced by one(r,u)
where
– accepted by one(r,u) holds if at least one leader eventually included u in

its view during run r.
– announced by one(r,u) expresses that at least one non-faulty leader an-

nounced user u during run r;

Proof. We proceed by contrapositive and use the non-impersonation property.
We assume that for all non-faulty leaders no announcement for user u has been
done during run r. Now because of non-impersonation, faulty leaders cannot
send more than f different announcements. This implies that the leaders would
receive no more than f announcements for user u, which is not enough to trigger
propagation actions. This yields that u will never be proposed by any of the non-
faulty leaders, and hence none of them will receive as much as (n − f) messages
for u (recall (n − f) > f). As a result, user u will never be accepted by any of
the non-faulty leaders. �
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Theorem 3 (Proper Agreement)
For all r and u, accepted by one(r,u) implies accepted by all(r,u)

Proof. accepted by one(r,u) implies that there exists a non-faulty leader
that received at least (n − f) approvals (i.e., announcements or propagation
messages) for user u. Among these approvals, at least (n − 2f) come from non-
faulty leaders (by non-impersonation). Now because these leaders are non-faulty,
they broadcast the same approval to all the other leaders. In addition, because
of the network reliability, these messages are eventually delivered to destination.
This implies that all (n − f) non-faulty leaders receive eventually the above
(n − 2f) approvals. Since (n − 2f) ≥ (f + 1), all (n − f) non-faulty leaders have
received at least (f +1) messages for u. Similar to the proof of Termination, the
latter implies the start of the propagation procedure, then the reception of at
least (n−f) approvals for user u, and finally the acceptance of u by all non-faulty
leaders. �

The above proofs were conducted successfully in PVS and required over 40
lemmas. Integrity and Termination were the most challenging to prove and they
helped deduce Proper Agreement.

6 Group Key Management: Mathematical Proof

In the previous sections we discussed authentication and leaders agreement. We
saw also that once the leaders agree on accepting a client C, they proceed with
providing it with a group key. We direct our focus here to the Enclaves group
key management module [1]. This module is based on a secret sharing scheme
which ensures that (1) the f dishonest leaders cannot obtain the group key even
if they conspire altogether (at least (f + 1) shares are needed to reconstruct the
secret); (2) the group key is renewed every time the group changes (new join
or leave); and (3) the clients are able to discern valid key shares from fake ones
(possibly issued by malicious leaders).

The group key management protocol of Enclaves is based on previous work
of Cachin et al. [19]. The security property of the protocol relies on the hardness
of computing discrete logarithms in a group of large prime order. Such a group
Gq can be constructed by selecting two large prime numbers p and q such that
p = 2q + 1 and defining Gq as the unique subgroup of order q in Zp

∗. The
protocol works as follows. Initially, we assume that a dealer chooses a generator
g of Gq and a random secret integer x ∈ Zq. The dealer then generates n shares
x1, · · · , xn ∈ Zq using an f -threshold 2 Shamir’s secret sharing scheme [18]. The
dealer secretly transmits the shares xi to their corresponding leaders and makes
public hi = gxi for all leaders {Li}i≤n. We denote by g̃ = H(G) the output of a
hash function H applied to the most recent set of clients forming the group G.
In this scheme, the secret group key to be reconstructed by the clients is g̃x.
In addition to p, q and g, we assume that H is also known to all the participating
leaders. Given the above assumptions, the protocol works as follows:
2 The secret cannot be reconstructed unless (f + 1) shares are available.
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1. Leader Li picks randomly s ∈ Zq and computes (a, b) = (gs, g̃s).
2. Leader Li, then, computes c = H ′(yi, g̃, a, b), where yi = g̃xi , and with

H ′ : Gq
4 → Zq a public hash function.

3. Now leader Li computes r = s + cxi and sends each client the quadruple
(yi, a, b, r), that is the share yi and the proof of validity (a, b, r).

4. Now the client computes c′ = H ′(yi, g̃, a, b), supposed to be equal to c, and
accepts the share yi only if the following equations hold:

gr ?= a hi
c′

(1)

g̃r ?= b yi
c′

(2)

Let S be any set of f +1 (or more) shares yi that a given client has received. For
simplicity, assume S = {y1, y2, ..., yf+1}. We denote by (ai)1≤i≤f+1 the Lagrange
interpolation coefficients3, such that

∑f+1
i=1 aixi = x, where ai =

∏

j �=i

j
j−i .

Given the above shares, the clients recover the secret group key as follows:

g̃x = g̃(∑f+1
i=1 aixi) =

f+1∏

i=1
(g̃xi)ai =

f+1∏

i=1
yi

ai

6.1 Security Analysis: Manual Proof

We sketch proofs of two key properties, namely, robustness and unpredictability.

Theorem 4 (Robustness) In the random oracle model 4, a dishonest leader
cannot forge, with a non-negligible probability, a valid proof for a non valid share.

Proof sketch: Let yi be the share provided by leader Li and (a, b, r) be the
corresponding correctness proof. yi, a, b and r should then satisfy the following
equations:

gr = a hi
c (3)

g̃r = b yi
c (4)

where c = H ′(yi, a, b, g̃). Equation (3) yields a ∈ Gq, since hi
c and gr are both in

Gq (Closure of Gq under multiplication). The latter implies that it exists γ ∈ Zq

such that a = gγ . Equation (3) gives: gr = gγgcxi , which implies: r = γ + cxi.
Now equation (4) becomes:

g̃r = b yi
c ⇐⇒ g̃(γ+cxi) = b yi

c

⇐⇒ g̃γ b−1 = (g̃−xi yi)c

This yields two possible cases:
3 The ai depend only on the leaders indexes and hence are publicly known.
4 In this model, the hash function can be seen as an oracle producing a random value

at each query. If the same query is asked twice, an identical answer is given [19].
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1. yi = g̃xi . In this case, the share is correct. b = g̃γ and for all c ∈ Zq the
verifier equations trivially hold.

2. yi 	= g̃xi . In this case, we must have c = log(g̃−xi yi)(g̃
γ b−1).

Once the triplet (yi, a, b) is chosen, if yi is not a valid share, then there ex-
ists a unique c ∈ Zq that satisfies the verifier equations. In the random oracle
model, the hash function H ′ is assumed to be perfectly random. Therefore,
the probability that H ′(yi, a, b, g̃) equals c, once (yi, a, b) fixed, is 1

q . On the
other hand, if the attacker performs an adaptively chosen message attack by
querying an oracle N times, the probability for the attacker to find a triplet
(yi, a, b), such that c = H ′(yi, a, b, g̃), is PSuccess = 1 − (1 − 1

q )N ≈ N
q for large

q and N . Now if k is the number of bits in the binary representation of q, then
PSuccess ≤ N

2k . Since a computationally bounded leader can only try a poly-
nomial number of triplets, then when k is large, the probability of success is
negligible (PSuccess = N

2k � 1). �

Theorem 5 (Unpredictability) An attacker that corrupts up to f leaders
cannot, with a non-negligible probability, learn the secret group key g̃x.

This has been proved by Cachin et al. [19] and relies on both:

– The perfect cryptography assumption (i.e., conditional entropy is no greater
than simple entropy)

S(yif+1 | yi1 , yi2 , · · · , yij ) = S(yif+1) for all j ≤ f

– The Computational Diffie-Hellman assumption [22], which states that there
is no polynomial time probabilistic algorithm that computes yi = g̃xi given
g, g̃, and hi = gxi , with a non-negligible probability of error.

As a result, the knowledge of up to f shares does not help the attacker to
predict any extra valid shares. Therefore, the data to which an attacker might
have access is not sufficient to reconstruct the group key with a non-negligible
probability of error.

7 Related Work

Much work has been done to formally verify fault-tolerance in distributed proto-
cols. Some of these verifications deal with the Byzantine failure model [7], while
others remain limited to the benign form [8]. A variety of automata formalisms
has been adopted to specify such protocols.

Castro and Liskov [7] specified their Byzantine fault-tolerant replication al-
gorithm using the I/O automata of Tuttle and Lynch [6]. They have manually
proved their algorithm’s safety, but not its liveness, using invariant assertions
and simulation relations. This work, although similar to our Byzantine agree-
ment module, has never been mechanized in any theorem prover.
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Kwiatkowska and Norman [9] analyzed the Asynchronous Binary Byzantine
Agreement [19] (based on a concept similar to our key management module) us-
ing a combination of mechanical inductive proofs (for non-probabilistic proper-
ties) and finite state checks (probabilistic properties) plus one high-level manual
proof. Our approach, too, takes advantage of the easiness and performance of
the different earlier mentioned techniques to prove the overall Enclaves protocol.

Timed automata were also used to model the fault-tolerant protocols PAXOS
[11] and Ensemble [14]. The authors assume a partially synchronous network
and support only benign failures. This bears some similarities with our Enclaves
verification in the sense that we assume some bounds on timing, but unlike the
work in [11,14] we are dealing with the more subtle Byzantine kind of failure.

In [13], Archer et al. presented the formal verification of some distributed
protocols using the Timed Automata Modeling Environment (TAME). TAME
provides a set of theory templates to specify and prove I/O automata similar to
those we use in our specification.

8 Conclusion and Future Work

This paper reports results about the formal verification of an Intrusion-Tolerant
protocol. We experimented with an adaptively chosen combination of techniques
based on the nature of the correctness arguments in each module of the protocol,
the environment assumptions and the easiness of performing verification.

We believe to have achieved a promising success in verifying a complex pro-
tocol such as Enclaves. Nevertheless, our results could be improved further in
various aspects. For instance, the feasibility of model checking is always limited
to instances with a finite number of states, which may, in some cases, prevent
from discovering security flaws in realistic implementations of the protocols. This
can be improved by the use of rank functions [2]. We believe that using rank
functions is a very efficient way to mechanically prove authentication properties
and we are considering it among our future work plans.

Thanks to the high level of expressiveness of the Timed-Automata formalism,
as well as the rich datatype package of PVS, we succeeded to formalize the
Byzantine agreement module for any number of leaders, in a way that thoroughly
captures the many subtleties on which the correctness arguments of Enclaves
rely. We have proved the protocol to satisfy its requirements of Termination,
Integrity and Proper Agreement. Yet, we have not proved the consistency of group
membership when members leave the group. This is also among our future work.
Finally, one promising direction for further development would be to perform the
mathematical analysis mechanically in PVS. This requires the elaboration of
some general purpose theories (e.g., probabilities) not yet available in PVS. The
current specification can be further extended by widening the Byzantine faults
capabilities and by introducing the joint cryptographic layers that have been
abstracted away. Also results about an upper bound on Agreement establishment
delays can be further investigated.
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