
Exact and Efficient Verification of Parameterized Cache
Coherence Protocols�

E. Allen Emerson and Vineet Kahlon

Department of Computer Sciences and Computer Engineering Research Center
The University of Texas, Austin TX-78712, USA

{emerson,kahlon}@cs.utexas.edu

Abstract. We propose new, tractably (in some cases provably) efficient algo-
rithmic methods for exact (sound and complete) parameterized reasoning about
cache coherence protocols. For reasoning about general snoopy cache protocols,
we introduce the guarded broadcast protocols model and show how an abstract
history graph construction can be used to reason about safety properties for this
framework. Although the worst case size of the abstract history graph can be ex-
ponential in the size of the transition diagram of the given protocol, the actual
size is small for standard cache protocols as is evidenced by our experimental
results. The framework can handle all 8 of the cache protocols in [19] as well
as their split-transaction versions. We next identify a framework called initial-
ized broadcast protocols suitable for reasoning about invalidation-based snoopy
cache protocols and show how to reduce reasoning about such systems with an
arbitrary number of caches to a system with at most 7 caches. This yields a prov-
ably polynomial time algorithm for the parameterized verification of invalidation
based snoopy protocols. Our results apply to both safety and liveness properties.
Finally, we present a methodology for reducing parameterized reasoning about
directory based protocols to snoopy protocols, thus leveraging techniques devel-
oped for verifying snoopy protocols to directory based ones, which are typically
are much harder to reason about. We demonstrate by reducing reasoning about a
directory based protocol suggested by German [17] to the ESI snoopy protocol, a
modification of the MSI snoopy protocol.

1 Introduction

Cache protocols provide a vital buffer between the ever growing performance of pro-
cessors and lagging memory speeds making them indispensable for applications such as
shared memory multi-processors. Unfortunately, cache protocols are behaviorally com-
plex. Ensuring their correct operation, in particular that they maintain the fundamental
safety property of coherence so that different processes agree on their view of shared
data items, can be subtle. The difficulty of the problem is often magnified as the number
n of coordinating caches increases. Moreover, it is highly desirable that a cache protocol
be correct independent of the magnitude of n. There is thus great practical as well as
theoretical interest in uniform parameterized reasoning about systems comprised of n

� This work was supported in part by NSF grants CCR-009-8141 & CCR-020-5483, and SRC
contract 2002-TJ-1026.

D. Geist and E. Tronci (Eds.): CHARME 2003, LNCS 2860, pp. 247–262, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

248 E.A. Emerson and V. Kahlon

homogeneous cache protocols so as to ensure correctness for systems of all sizes n.
This general problem is known in the literature as the Parameterized Model Checking
Problem (PMCP). It is, in general, algorithmically undecidable, but of great practical
importance, which has led to many heuristics and algorithms for particular cases. In this
paper, we present new, tractably (in some cases provably) efficient algorithmic methods
for exact parameterized reasoning about cache coherence protocols.

First, for reasoning about general snoopy cache protocols, we introduce the guarded
broadcast protocols model wherein processes coordinate using broadcast primitives plus
boolean guards.A broadcast transmission corresponds to a cache putting a message on the
bus; reception of such a message corresponds to snooping the bus and taking appropriate
action. Boolean guards make it possible to model protocols (e.g., Illinois-MESI, Firefly,
Dragon) that need to determine the presence or absence of the required memory block in
other caches. We show how an abstract history graph construction can be used to reason
about safety properties of guarded broadcasts. In the construction, a path x leading to
global state s is represented as a tuple of the form (a, A) ∈ S ×2S , where S is the set of
local states of the given cache protocol, that reflects not merely the local states present
in s but also takes into account the local transitions that were fired along x to get to
s, viz., the history of s along x. The extra historical information, that our construction
stores, permits us to reason about safety properties for an arbitrary number of caches in
an exact fashion as opposed to the standard abstract graph construction [24] that only
takes into account the set of local states present in s and is thus sound but not guaranteed
complete. We establish a path correspondence between concrete computations of the
original system and paths in the abstract graph which also allows us to automatically
generate error traces once an erroneous ‘abstract state’ is detected. In the worst case,
the size of the abstract graph may be exponential in the size of the state diagram of the
given cache protocol, thus enabling us to reason about the more expressive framework
of guarded broadcast for the same worst case time complexity as ordered broadcasts. In
practice, however, the abstract graph tends to be small as is documented by our empirical
results.

Next we consider the PMCP for invalidation based snoopy protocols, viz., protocols
that on a write operation invalidate the memory block being written to in all other caches
of the given system [7]. We model such protocols using the new framework of initialized
broadcast protocols. For this model, we consider the PMCP for formulae of the form∧

i �=j Ah(i, j) and
∧

i �=j Eh(i, j), where h(i, j) is a LTL\X formula over a pair of
distinct processes. For such formulae, we show how to reduce reasoning for a system
with an arbitrary number of processes to systems with at most a cutoff (in fact 7) number
of processes. This yields a provably polynomial time algorithm (in the size of the state
diagram of a single cache unit) for reasoning about the PMCP for a broad class of linear
time properties of invalidation-based protocols, not just safety. Also the use of cutoffs
has the important advantage that the large system with, say 100 caches, is very much like
the small system with 7 caches. This provides a simple reduction from n to 7 processes
that automatically caters to error recovery.

Finally, we consider the PMCP for directory-based protocols wherein information
regarding cache states of individual memory blocks is stored in a centralized directory
and all transaction regarding cache state lookup, invalidations, updates etc., take place

Exact and Efficient Verification of Parameterized Cache Coherence Protocols 249

across a network. We use the observation that for most directory based protocols there
exists a snoopy protocol with exactly the same states [7] and running essentially the
same protocol except that the implementation of each snoopy broadcast transition is
broken up into several steps. Since the executions of steps corresponding to different
snoopy broadcasts can interleave among themselves, it makes directory-based proto-
cols behaviorally more complex and thus seemingly harder to verify than their snoopy
counterparts. However, we demonstrate, using a directory based protocol suggested by
German [17], that since all transactions are serviced via the centralized directory, it
leads to a serialization of steps of snoopy broadcasts in a way that there is limited over-
lap among steps corresponding to different snoopy broadcasts. We can then establish
path correspondences between computation paths of directory based protocols and their
snoopy counterparts thereby allowing us to reduce the PMCP for linear time properties
from directory based protocols to snoopy ones. Thus techniques developed for reasoning
about parameterized snoopy broadcasts can now be leveraged. As an example, we show
how to reduce reasoning about this directory based protocol to the ESI snoopy protocol,
a modification of the MSI protocol, which was verified using the abstract history graph
construction in less than 0.01 secs.

The rest of the paper is organized as follows. We begin by introducing the system
model in section 2. In section 3, we present the abstract history graph construction
for verifying safety properties of guarded broadcast protocols while cutoff results for
initialized broadcast protocols are given in section 4. In section 5, we demonstrate,
using the protocol suggested by German, how to reduce reasoning about directory based
protocols to snoopy protocols. Applications and experimental results are given in section
6 and we end with some concluding remarks in section 7.

2 The System Model

We consider systems of the form, Un, comprised of finite, but arbitrarily many, copies
of a process template, U , executing asynchronously with interleaving semantics. The
template U is formally defined by the 4-tuple U = (S, Σ, R, i), where S is a finite, non-
empty set of states; Σ is a finite set of labels including the internal transition label τ , and
broadcast send and receive labels of the form l!! and l??, respectively; R is the transition
relation; and i the initial state. Each transition of R is either an internal transition of the

form a
g:τ−→ b, a broadcast send of the form a

g:l!!−→ b, or a broadcast receive of the form

a
g:l??−→ b, where g is a boolean guard.

We assume that receives are deterministic, viz., for each label l!! appearing in some
broadcast send and for each state a in S, there is a unique corresponding receive transition
on l?? out of a. The guard g labeling a transition tr of R is either the boolean expression
true or the specialized conjunctive guard

∧
(i), or the specialized disjunctive guard∨ ¬(i), where i is the initial state of U . We assume that the guard is true for receive

transitions. In practice, the above mentioned guards suffice in modeling cache coherence
protocols as each cache only needs to know whether another cache has the memory block
it requires, expressed using the specialized disjunctive guard, or whether no other cache
has it, expressed using the specialized conjunctive guard.

250 E.A. Emerson and V. Kahlon

To capture block replacement behavior, we also require that templates be initializ-
able.1 This means that from each state a of a protocol, there is an unguarded, internal
transition of the form a

τ→ i. Such initializations model block replacement behavior,
where a cache is non-deterministically pushed into its invalid state, irrespective of the
current state of the block. For simplicity, re-initialization transitions and self-loop re-
ceptions are not drawn in state transition diagrams of cache protocols (cf. [7]).

We now introduce the following frameworks (a) Initialized Broadcast Protocols for
dealing with invalidation based snoopy protocols, and (b) Guarded Broadcast Protocols
for dealing with general snoopy cache protocols, by specifying the types of broadcast
transition allowed. The two frameworks are incomparable in that each framework can
model a protocol that the other cannot.

Initialized Broadcast Protocols. There are two major classes of snoopy cache protocols:
update based and invalidation based. In update based protocols, e.g., Dragon and Firefly,
whenever a shared location is written to by a processor, its value is updated in the caches
of all other processors holding that memory block without invalidating the block. In
contrast, with invalidation based protocols, e.g, MESI and Berkeley, on a write operation
the memory block being written to is invalidated in all other caches [7]. In this paper,
we model invalidation-based protocols using the framework of Initialized Broadcast
Protocols wherein, each broadcast transition of U is either an (a) i-flush: transition

a
l!!→ b is called an i-flush iff from each state c of U there is the (unique) matching

receive c
l??→ i, or (b) initialized-broadcast: transition tr = a

l!!→ b is an initialized
broadcast send transition provided that a = i and every matching reception transition

for tr is of the form c
l??→ d, where either both c, d �= i or both c, d = i.

Guarded Broadcasts. In Guarded Broadcasts, each broadcast transition tr is of either
of the two forms (a) Flush: Given state a of U , transition b

l!!→ c ∈ R, where c �= i,
is called an a-flush transition provided that there exists the matching receive transition

i l??−→ i in R and for each state d �= i of U , there is a matching receive transition of

the form d
l??→ a in R; a flush transition is an a-flush for some a. (b) Push: Transition

a
l!!→ b, where b �= i, is a push transition provided that there exists the matching receive

transitions i l??→ i, a
l??→ a and b

l??→ b in R and for every path c
l??→ d

l??→ e, we have d = e.

In either framework, given U , the state transition digram for Un = (Sn, Σ, Rn, in),
the system with n copies of U , is based on interleaving semantics in the standard way.
We write x.s ∈ Un to mean that finite computation path x of Un ends in global state s.
For local state a, num(a, s), denotes the number of copies of local state a in s.

The template U for a protocol, such as MSI (figure 1), is obtained from its state
transition diagram through a simple abstraction, treating the behavior of the processors
as purely nondeterministic. The transformation is straightforward, syntactic, and me-
chanical and tantamounts to relabeling the transitions of the given template to illustrate
the link between broadcast sends and their matching receives.

1 Initializability is not needed for the results in section 3.1.

Exact and Efficient Verification of Parameterized Cache Coherence Protocols 251

BusRdX/F lush

P rRd=−

BusRd/F lush

BusRdX=−
PrRd/−
BusRd/−

PrWr/BusRdX

P rRd=BusRd

S

I

M

τ

ø

P rW r!!

PrWr!!

PrRd!!

PrRd??

PrWr??

PrWr??

M

S

I

PrWr/−

PrWr/BusRdX

Fig. 1. The MSI Cache Coherence Protocol and its template

Safety Properties. For cache coherence protocols, we are typically interested in pairwise
reachability, viz., given a pair (a, b) of local states a and b of template U , deciding
whether for some n, there exists a reachable global state of Un, with a process in each of
the local states a and b, viz., Un |= ∨

i �=j EF(ai∧bj). For instance, in the case of the MSI
protocol, we are interested in showing that none of the pairs in the set {(M, M), (M, S)}
is pairwise reachable.

3 Model Checking Guarded Broadcasts for Safety Properties

In a split-transaction bus, each transaction is split into two independent sub-transactions:
a request transaction and a response transaction. Other transactions (or sub-transactions)
are allowed to interfere (interleave) between them so that the bus can be used while re-
sponse to the original request is being generated. The advantage is a more effective
utilization of the bus. To deal with the non-atomic nature of bus transactions, extra states
called transient states are introduced in the state transition diagram of split-transaction
based protocols to indicate outstanding bus requests. This however makes snoopy split
transaction bus protocols harder to reason about than their ‘non-split’ counterparts. We
now show how to reason about guarded broadcasts, which can model all snoopy pro-
tocols in [19] and their split transaction bus versions, using an abstract history graph
construction.

3.1 Protocols without Conjunctive Guards

In this section, we consider guarded broadcasts wherein template U does not have con-
junctive guards; but guards of the form true or

∨ ¬(i) are permitted. This allows us to
handle the MSI, MOESI, MESI (not the Illinois version which is handled in the next
section), Berkeley and N+1 protocols, and their split-transaction versions.

We motivate our technique with the help of an example. Consider the computation
x = (I, I) → (I, S) of the system, U2, comprised of two caches running the MSI protocol.

252 E.A. Emerson and V. Kahlon

We exploit the observation that we can pump up the multiplicity of each of the local
states I, S to be greater than or equal to any arbitrary number n, by firing the transition

I PrRd!!−→ S successively n times as shown (I, ..., I
︸ ︷︷ ︸

2n

) PrRd1−→ ...
PrRdn−→ (S, ...,S

︸ ︷︷ ︸
n

, I, ..., I
︸ ︷︷ ︸

n

).

On the other hand, consider the computation y = (I, I) → (I, M). We cannot pump up
the multiplicity of local state M, because in order for that to happen, we need to fire the

transition tr = I PrWr!!−→ M repeatedly. But a process firing tr, a flush transition, clobbers
every other process by forcing it into its initial state. Thus we can have at most one copy
of M in any global state.

Definition (representative). Given template U = (S, Σ, R, i), and a finite computation
x.s of Un, we define rep(x.s) to be the tuple (a, A) ∈ S×2S , where, if no flush transition
was fired along x, then a = i and A = {s[j]|j ∈ [1 : n]}; and if Ui is the process to last
fire a flush transition along x, then s[i] = a and A = {s[j]|j ∈ [1 : n] ∧ j �= i}.

Then the above discussion can be formalized as the following unbounded pumping
property implicitly shown in the proof of proposition 3.1. Let computation path x.s ∈ Un

be such that rep(x.s) = (a, A). Then given a positive integer p, there exists y.t ∈ Um,
for some m, such that rep(y.t) = (a, A′), where A ⊆ A′ and for each a′ ∈ A′,
num(a′, t) ≥ p. Thus we can represent x.s by the tuple (a, A′) ∈ S × 2S , representing
a formal state with (at least) one copy of a and arbitrarily many copies of each state in A′.
Given template U , we now define the abstract history graph, AU = (SU ,RU , (i, {i})),
as a transition diagram over tuples in SU = S×2S that captures the behaviour of a system
instance of arbitrary size. To define the transition relation RU , given a tuple (a, A) and
an internal or a broadcast send transition tr = c → d, we introduce the notion of the
successor of (a, A) via tr as either the 1-successor, which covers the scenario when a
process in local state a, that (possibly) has multiplicity one fires tr; or the 2-successor
of (a, A), covering the scenario when a process in one of the states in A each of which
can be thought of as having arbitrarily large multiplicity fires tr.

Definition (1-successor). Let (a, A) ∈ S ×2S and let transition tr = a→b ∈ R labeled
by guard g, be enabled in (a, A), viz., if g =

∨ ¬(i), then ∃a′ ∈ A : a′ �= i. Then
succ1((a, A), tr) = (b, B), where if tr is an internal transition then B = A and if tr is
a broadcast send transition then B = {b′|∃a′ ∈ A : ∃a′−→b′ ∈ R that is a matching
receive for tr }.

Definition (2-successor). Let (a, A) ∈ S × 2S and let transition tr = b→c ∈ R, where
b ∈ A, be such that if tr is labeled by guard g then it is enabled in (a, A), viz., if
g =

∨ ¬(i), then for some a′ ∈ {a} ∪ A: a′ �= i. Then, succ2((a, A), tr), is defined as
the tuple

– (c, {c′} ∪ {i}) if tr is a c′-flush transition
– (a, A ∪ {c}) if tr is an internal transition. Note that since we had arbitrarily many

copies of b to start with so even after firing internal transition tr we are guaranteed
arbitrarily many processes in local state b which is therefore not excluded from the
second component of the resulting tuple.

Exact and Efficient Verification of Parameterized Cache Coherence Protocols 253

(M, {I})

PrWr

P rRd

ø

P rRd

P rRd

P rRd

P rW r

P rRd

ø

P rW r

(S, {I, S})

(S, {I})

(I, {I, S})

(I, {I})

PrWr

ø

Fig. 2. The abstract history graph for the MSI Cache Coherence Protocol

– (d, B) if tr is a push broadcast transition, where a−→d is the (unique) matching
receive for tr from a and B = {c}∪{b′|∃a′ ∈ A : ∃a′−→b′ ∈ R that is a matching
receive for tr }. Since we have arbitrarily many copies of b so in B we include
the local state that results from firing the matching receive for tr from b which by
definition of a push transition is b itself.

Definition (Abstract History Graph). Given template U = (S, Σ, R, i), the abstract
history graph of U , is defined as AU = (SU ,RU , (i, {i})), where SU = S × 2S and
RU = {((a, A), (b, B))|(b, B) = succ1((a, A), tr)) or (b, B) = succ2((a, A), tr)) for
some internal or broadcast send transition tr of U}.

As an example, the abstract history graph for the MSI protocol is shown in figure 2.
Self loops are omitted for the sake of simplicity. For convenience, we have labeled each
transition of the graph by the label of the transition responsible for ‘firing’ it. We now
establish a ‘path correspondence’ between finite computations of Un and finite paths of
AU starting at (i, {i}). Let (a, A) ≥ (b, B) denote a = b and B ⊆ A.

Proposition 3.1 (Covering Projection). For any n and any finite path x.s in Un, there
exists a finite path y.t in AU starting at (i, {i}) such that t ≥ rep(x.s).

The tuple t not only stores the set of local states present in s, but also the states that
could potentially be present in a global state of a system with sufficiently many copies
of U that results by firing (a stuttering) of the same sequence of transitions as were fired
along x to get to s. Thus t drags along some ‘history’ of computation x leading to s and
thereby stores more information than rep(x.s).

Proposition 3.2 (Lifting). Let x be a path of AU starting at (i, {i}) and leading to
tuple (a, A) of AU . Then, given p ≥ 1, there exists y.t ∈ Un, for some n, such that
rep(y.t) = (a, A) and t has at least p copies of each state in A plus a copy of a.

Combining the previous two results, we have

Theorem 3.3 (Decidability Result). Pair (a, b) ∈ S × S is pairwise reachable iff there
exists a path in AU starting at (i, {i}) to a tuple of the form (c, C) where either a = c
and b ∈ C; or b = c and a ∈ C; or a ∈ C and b ∈ C.

254 E.A. Emerson and V. Kahlon

Thus we have reduced the problem of pairwise reachability for a pair of local states of a
given template U to the problem of reachability in AU . In the worst case, the size of the
abstract graph is O(|U |2|U |), however, we need only consider the set of tuples reachable
from (i, {i}) which, in practice, is much smaller (cf. section 6).

Corollary 3.4. The pairwise reachability problem for a pair of local states of a given
template U can be solved in time O(|U |2|U |), where |U | is the size of template U as
measured by the number of states and transitions in U .

3.2 Adding the Specialized Conjunctive Guard

To reason about systems wherein the templates are augmented with the specialized
conjunctive guard along with the assumption of initializability, we modify the abstract
history graph by adding for every tuple (a, A), a transition of the form (a, A) → (a′, {i}),
where either a′ = a or a′ ∈ A, to AU . Broadly speaking, the intuition behind the modifi-
cation is that we can make the specialized conjunctive guard of a process evaluate to true
starting at any global state by driving all the other processes into their respective initial
states by making use of the initializing internal transition. Then, path correspondences
as in section 3.1 can be shown and so, pairwise reachability can be decided in time
O(|U |2|U |), where |U | is the size of U . Examples include the Illinois-MESI, Dragon and
Firefly protocols and their split-transaction versions.

4 Reasoning about Invalidation Based Protocols Using Cutoffs

In this section, we consider the PMCP for formulae of the form
∧

i �=j Ah(i, j) and∧
i �=j Eh(i, j), where h(i, j) is a LTL\X formula over the local states of Ui and Uj . We

show how to reduce reasoning about a system with an arbitrary number of processes
(caches) to a system with up to a cutoff (in fact 7) number of processes. This immediately
yields a polynomial time algorithm for the PMCP at hand. The use of cutoffs has several
advantages. First, the small system with a cutoff number of processes is identical to the
large system, but with a fewer number of processes, and thus there is no need to construct,
for instance, an abstract graph that may have a complex, non-obvious structure. Secondly,
it automatically caters to error trace recovery. We later show how to reduce reasoning
about LTL\X properties from directory-based to snoopy protocols for which these results
can be leveraged.

We now present the cutoff result for properties of the form
∧

i �=j Eh(i, j). Since
all processes in the systems we consider are copies of a single template U , they are
all isomorphic up to renaming. Therefore symmetry considerations dictate that Un |=
Eh(1, 2) iff for each pair i, j, where i �= j, Un |= Eh(i, j). We shall therefore concentrate
only on the formulae Ah(1, 2) and Eh(1, 2).

Proposition 4.1 (Cutoff Result for Finite Paths). For all n ≥ 7, Un |= Efinh(1, 2) iff
U7 |= Efinh(1, 2), where Efin quantities over finite paths only.

Proof Sketch. We present the main ideas behind the proof. The proof of the cutoff result
proceeds by establishing a stuttering path correspondence between Un, where n ≥ 7,

Exact and Efficient Verification of Parameterized Cache Coherence Protocols 255

and U7, viz., constructing a finite stuttering computation path y of U7 corresponding to
a given finite path x of Un that preserves the local computation paths of processes U1
and U2, modulo stuttering, and vice versa.

(⇒) Given a finite computation x of Un, where n ≥ 7, we show how to con-
struct a finite computation y of U7 that preserves the local computations of processes
U1 and U2, modulo stuttering. Towards that end, we parse (the transitions of) x as
x = N0I0...ImNm+1, where Ii is the ith global transition to be executed along x that
results by firing either an i-flush or a transition labeled with

∧
(i). Thus Nis are strings

of transitions whereas Iis are single transitions. The construction of y proceeds by con-
structing for each subsequence NiIi, a corresponding subsequence N ′

iI
′
i by projecting

onto the local subsequences of NiIi of a set Pi of process indices defined below.
In defining Pi, there are two main considerations (a) every projected broadcast re-

ceive has a matching send, and (b) the specialized disjunctive guard is true for every
projected local transition (the conjunctive guard

∧
(i) is automatically true for all pro-

jected transitions). Clearly, we need to project on to process indices 1 and 2 as we have
to preserve the local computation sequences of U1 and U2 modulo stuttering. Also, we
need to project onto indices p3 and p4 of the processes responsible for firing the solitary
global transitions in Ii−1 and Ii, respectively. Projection on to index p3 ensures ‘conti-
nuity’ of the local computation of the process responsible for firing the global transition
constituting I ′

i−1, while projection on to index p4 guarantees that every projected receive
transition in I ′

i has a matching send in I ′
i . Finally, let Ni = xi′ ...xi′+l and let a and b

be, respectively, the least and second least among all integers c ∈ [0 : l] having the
property that xi′+c[p] �= i, for some p ∈ [1 : n] \ ({1, 2} ∪ {p3} ∪ {p4}). To ensure
that the specialized disjunctive guard is true for the projected transitions, we include
the indices p5 and p6 in Pi, where xi′+a[p5] �= i and xi′+b[p6] �= i. Then, we let Pi =
{1, 2}∪{p3}∪{p4}∪{p5}∪{p6}. A seventh process with index p7, say, is required to
ensure that in N ′

i , every projected initialized broadcast receive transition has a matching
broadcast send. Since, by definition, an initialized broadcast send is fired only from the
initial state, we use this process, which we (try to) maintain in its initial state i, to fire
the required send transition and then ‘recycle’ it by firing the initializing internal tran-
sition to make it transit back to i. The computation y, then results by ‘sewing’ up the
subsequences N ′

iI
′
i appropriately, in the same relative order as the original subsequences

NiIi along x. Note that the sets Pi may be different for different i; however, since all
processes in our system are isomorphic up to renaming, for each i, U7 can mimic the
local sub-computations of N ′

iI
′
i .

(⇐) The lifting part is simpler. Given a computation y of U7, we can construct a
valid computation x of Un, where n ≥ 7, by letting processes U1, ..., U7 execute exactly
the same local computations as in y while the rest of the processes just stutter in their
initial states without executing any non-receive transition at all (all receives from i loop
back to i). ��
The proof technique of proposition 4.1, extends to the case where we consider full
paths (and full paths under the assumption of unconditional fairness). We then have the
following.

Proposition 4.2 (Cutoff Result for Full Paths). For all n ≥ 7, Un |= Eh(1, 2) iff
U7 |= Eh(1, 2), where h(i, j) is a LTL\X formula over processes Ui and Uj .

256 E.A. Emerson and V. Kahlon

As a corollary to propositions 4.1 and 4.2, we have the following.

Proposition 4.3 (Efficient Decidability Result). For initialized broadcast protocols, the
PMCP for formulae of the types

∧
i �=j Efinh(i, j),

∧
i �=j Afinh(i, j),

∧
i �=j Eh(i, j) and∧

i �=j Ah(i, j) is decidable in polynomial time in the size of the template U specifying
the parameterized family.

5 Reducing PMCP for Directory Based to Snoopy Protocols

In this section, we present a methodology for reducing the PMCP for (stuttering insensi-
tive) LTL\X properties for directory based to snoopy cache protocols thereby enabling
us to leverage the techniques developed for snoopy protocols. We exploit the observation
that with most directory based protocols one can associate a snoopy protocol with ex-
actly the same local states [7] and executing essentially the same protocol except that the
implementation of each snoopy broadcast transition is broken down into several smaller
steps that execute asynchronously. We call such transitions distributed broadcasts. The
interleavings of the steps of different distributed broadcasts makes directory based pro-
tocols behaviorally more complex than their snoopy counterparts and thus seemingly
harder to reason about. However, the central directory can service only one distributed
broadcast at a time, and so in a given computation, x, of the system, Un

Directory, com-
prised of n caches running the directory based protocol Directory, there is a unique
serial order on the way distributed broadcasts are serviced along x. This allows us to
construct a computation y of Un

Snoop, where Snoop is the snoopy protocol corresponding
to Directory, by letting the snoopy broadcast transitions fire in the same linear order as
their distributed counterparts were serviced along x. This path correspondence allows
us to reduce reasoning about linear time properties from directory based to snoop based
protocols. We demonstrate our technique using a directory based protocol suggested by
German [17], which we denote by DIR.

Reasoning about the DIR Directory Based Protocol. In the DIR protocol, each cache
is represented as a client process with the directory being represented as the Home
process. The variables used in DIR are given below.

type message = {empty, req shared, req exclusive, invalidate,
invalidate ack, grant shared, grant exclusive}

type cache state = {invalid, shared, exclusive}
channel1, channel2 4, channel3 : array[1:n] of message
home sharer list, home invalidate list: array[1:n] of boolean
home exclusive granted : boolean
home current command: message
home current client: [1:n]
cache: array[1:n] of cache state

Each client has three possible local states, viz., invalid, shared and exclusive, rep-
resented by the variable cache state. Communication between client[i], the process
representing the ith cache, and Home, the process representing the directory, takes
place via the following variables that are shared pairwise between client[i] and Home.

Exact and Efficient Verification of Parameterized Cache Coherence Protocols 257

3: (h c co = empty ∧ ¬(ch1[cl] = empty))
→ h c co := ch1[cl]; ch1[cl] := empty; h c cl := cl;

for i : [1 : n] do ho in l[i] := ho sh l[i] endfor;
4: ((h c co = req shared ∧ heg ∨ h c co = req exclusive) ∧ h in l[cl]∧

ch2 4[cl] = empty)
→ ch2 4[cl] := invalidate; h in l[cl] := false

5: (¬(h c co = empty) ∧ ch3[cl] = invalidate ack)
→ h sh l[cl] := false; ch3[cl] := empty; heg := false;

9: h c co = req shared ∧ ¬heg ∧ch2 4[h c cl] = empty
→ h sh l[h c cl] := true; h c co := empty; ch2 4[h c cl] := grant shared;

10: h c co = req exclusive ∧ ∧i(h sh l[i] = false) ∧ch2 4[ho c cl] = empty
→ h sh l[ho c cl] := true; h c co := empty; heg := true;

ch2 4[h c cl] := grant exclusive;

Fig. 3. Transitions for Home (Directory)

1: (cache[cl] = invalid ∧ ch1[cl] = empty) → ch1[cl] := req shared

2: ((cache[cl] = invalid ∨ cache[cl] = shared) ∧ ch1[cl] = empty)
→ ch1[cl] := req exclusive

6: (ch2 4[cl] = invalidate ∧ ch3[cl] = empty)
→ ch2 4[cl] := empty; ch3[cl] := invalidate ack; cache[cl] := invalid;

7: (ch2 4[cl] = grant shared) → cache[cl] := shared; ch2 4[cl] := empty;
8: ch2 4[cl] = grant exclusive → cache[cl] := exclusive; ch2 4[cl] := empty;

Fig. 4. Transitions for Client (Cache)

– channel1[i]: used by client[i] to request the memory block in the shared or the
exclusive state.

– channel2 4[i]: used by Home to send the invalidation message or grant (shared or
exclusive) access to the memory block request by client[i].

– channel3[i]: used by client[i] to send acknowledgements for invalidation requests
by Home.

Clients cannot communicate amongst themselves. The transitions for Home and client
processes are given in the guarded command format in figures 3 and 4, respectively.
We abbeviate home current client, home current command, home sharer list,
home invalidate list and home exclusive granted as h c cl, h c co, h sh l,
h in l and heg, respectively, and the communication channels channel1, channel2 4
and channel3 as ch1, ch2 4 and ch3, respectively.
We now show how to reduce verification of DIR to that of the ESI snoopy protocol,
defined below.

The ESI Snoopy Cache Protocol. The template for the ESI protocol is defined as
U = ({I, S, E}, {PrRd, PrWr}, R, I), where the transition relation R consists of the

broadcast send transition I PrRd!!−→ S with the matching receives E PrRd??−→ I, S PrRd??−→ S

258 E.A. Emerson and V. Kahlon

and I PrRd??−→ I; and the I-flush broadcast I PrWr!!−→ M. The symbols E, S and I denote,
respectively, the exclusive, shared and invalid states.

Establishing the Stuttering Path Correspondence. Let Un
DIR represent a system with n

clients running the directory based protocol DIR. We begin by showing how the variables
used in the DIR protocol impose a relative ordering on the execution of the transitions of
the protocol. For transitions (numbered) j, k, we say that j pre-empts k, denoted by jPk,
to denote the fact that along any global computation of Un

DIR, between any two firings of k
(possibly by different clients), there must be at least one firing of j. We write (j +k)Pm
to mean that either jPm or kPm, and j0P...P jk to mean that for all l ∈ [1 : k],
jl−1Pjl. For transition j and index i ∈ [1 : n], we write ji to indicate that the execution
of transition j modifies the local variables of Ui, the process representing the ith client,
or the communication variables, channel1[i], channel2 4[i] and channel3[i], shared
pairwise between Ui and Home.

We first show that (9+10)P3. Note that variable home current command must be
set to empty for transition 3 to be enabled and that can be done only by firing transitions
9 or 10. Thus one of 9 or 10 has to be fired for 3 to be fired (except for the first time).
Also, every time 3 is fired it sets home current command to a non-empty value thus
disabling itself and so again one of 9 or 10 has to be fired for 3 to fire again. Similarly,
we may show that 3P (9+10) (via home current command) and for i ∈ [1 : n], 4iP6i

(via channel2 4), 6iP5i (via channel3) and 3P4i (via home invalidate list).
Let x be a global computation of Un

DIR. Since 3P (9 + 10)P3, therefore we have the
crucial observation that along x, the firing of 3 alternates with the firing of either 9 or 10.
Note that firing transitions 9 or 10 sets the value of home current command to empty
thus disabling transition 4. Thus along x, the firing of transition 4 is always sandwiched
between the firings of 3 and one of 9 or 10. Consider a firing of 4j along x. Then the value
of home current command during the last firing of 3 along x is either req exclusive
or req shared. If the value is req exclusive, then since 4j has been fired therefore
after firing the last 3, home invalidate list[j] = true = home sharer list[j],
and thus transition 5 (the only transition to change the value of home sharer list[j]
to false) has to be fired for 10 to be enabled to fire again. Also, since 4jP6jP5j , we have
that the firing of transitions 4j , 6j and 5j is sandwiched between the firing of 3 and 10.
If the value of home current command is req shared, then we can similarly show that
the firing of transition 4j , 6j and 5j is again sanwiched between the firings of 3 and 9.
Note that the first scenario, viz., the firing of 3; followed by the firing of the triplet 4j ,
6j and 5j for appropriate indices j ∈ [1 : n]; followed by Home firing 10 corresponds
to the firing of the snoopy broadcast of ESI labeled with PrWr in a distributed fashion.
Analogously, the second scenario, viz., the firing of 3; followed by the firing of 4j , 6j

and 5j for appropriate j; followed by Home firing 9 corresponds to the firing of the
snoopy broadcast of ESI labeled with PrRd.

The distributed versions of the snoopy broadcasts labeled with PrRd and PrWr are
denoted by d-PrRd and d-PrWr, respectively. Thus the firing of all except the first and
last steps, viz., 1, 2, 7 and 8, of each distributed broadcast are sandwiched between the
firing of transitions 3 and (9+10). We call these transitions, including transitions 3 and
(9+10), the body of the distributed transition. The crucial observation is that the bodies
of different distributed transitions do not overlap as once 3 is executed by a process, one

Exact and Efficient Verification of Parameterized Cache Coherence Protocols 259

of 9 or 10 has to be executed by the same process for 3 to be executed again possibly,
by a different process, to begin executing the body of another transition. Thus given
computation x of Un

DIR, we can arrange all the distributed broadcast transitions fired
along x in a sequence d-tr0, d-tr1,... based on the order in which their bodies were
executed. We say that a distributed transition d-tr is fired by process Uk of Un

DIR iff the
entry transition of d-tr sets the value of home current client to k. Let transition d-trj

be fired by process Uij of Un
DIR. Let y be the computation sequence of Un

ESI that results
by firing the snoopy broadcasts tr0, tr1, ... in the order listed with transition trj being
fired by process Uij of Un

ESI. Conversely, given a computation path y of Un
ESI, we can

construct a computation path x of Un
DIR by replacing the firing of each snoopy broadcast

trj by process Uij
of Un

ESI by the firing of all steps of d-trj successively back to back
by process Uij

of Un
DIR. This establishes the desired path correspondence.

For the DIR protocol, we are required to verify that in any global state u of Un
DIR,

(u[1] �= u[2] ∧ u[1] = exclusive) ⇒ u[2] = invalid. Towards that end, it suffices
to check the following: ∀n : Un

DIR |= ¬EF(a1 ∧ b2), where (a, b) ∈ {(exclusive,
exclusive), (exclusive, shared)}, viz., none of the pairs (exclusive, exclusive),
(exclusive, shared) of the DIR protocol is pairwise reachable. The next result reduces
reasoning about pairwise reachability for the DIR to the ESI protocol.

Proposition 5.1 (Reduction for Safety). For a, b �= invalid, Un
DIR |= EF(a1 ∧ b2) iff

Un
ESI |= EF(a1 ∧ b2).

Thus it suffices to check that none of the pairs (E, E), (E, S) is pairwise reachable
for the ESI protocol. This took 0.01 secs using the abstract history graph technique,
and 0.02 secs using the cutoff technique.

The above technique of establishing stuttering path correspondences also works, in
general, for LTL\X formulae. In [4], it was shown that the property A(G(channel1[1]
= request shared ⇒ F(channel2 4[1] = grant shared))), viz, once a block is re-
quested in the shared state by a cache then it is eventually granted shared access, fails.
However, if we assume unconditional fairness, viz., every process fires infinitely often,
then the property holds. We now modify the ESI protocol by introducing the inter-
mediate local states rS and rE, standing for request shared andrequest exclusive,
respectively. Before executing a broadcast send to the exclusive (shared) state, we first
transit via an internal transition to rE (rS) and then fire the broadcast send labeled with
PrWr!! (PrRd!!) to transit to the exclusive (shared) state. Then the above liveness
property can be reduced to the PMCP for A(G(rS ⇒ F(S))) for the modified ESI. This
property has a cutoff of 7 and was verified to hold under assumption of unconditional
fairness in 0.02 secs2. Note that the property fails if we do not assume fairness. In that
case an error trace is automatically generated for the 7 process instance. No manual
effort as in [4] is required to validate the erroneous path in the abstraction, an advantage
of using cutoffs.

2 Technically, we verify the LTL\X expressible assertion fair ⇒ G(rS ⇒ F(S)).

260 E.A. Emerson and V. Kahlon

6 Applications and Experimental Results

We consider PMCP for all the snoop based cache protocols presented in [19] (MSI,
MESI, Illinois-MESI, MOESI, Berkeley, Synapse N+1, Dragon, Firefly) and the split-
transaction version of the MESI protocol. Using the abstract history graph, each of
the above protocols was verified in at most 0.01 secs. Although in the worst case the
number of reachable abstract states in the modified abstract history graph for template
U = (S, R, Σ, i) could be as large as |S|2|S|, in practice it typically turns out to be much
smaller. For instance in the MESI protocol, the number of reachable abstract states was
6, against a worst case possibility of 4 × 24 = 64 states. In conclusion, the abstract
history graph construction seems to work well in practice. In fact, it seems to work
even better than the polynomial time cutoff method which too is very efficient requiring
only a fraction of a second to verify each invalidation based protocol. This, however,
may be due to the fact that whereas the abstract history graph was built directly from
the description of the protocol using a separately written code, for the cutoff method
we used SMV, possibly resulting in extra overheads from compilation of the protocol
specifications, building BDDs etc. The experiments were carried out on a machine with
a 797MHz Intel Pentium III processor and 256 Mb RAM.

Abstract History Graph Cutoff MethodProtocol
of Abstract States user time (secs.) Total # of BDD Nodes user time (secs)

MSI 5 ≤ 0.01 7913 0.02
MESI 6 ≤ 0.01 8287 0.02
Illinois 6 ≤ 0.01 7711 0.02
MOESI 7 ≤ 0.01 10284 0.04
N+1 5 ≤ 0.01 7913 0.02
Berkeley 5 ≤ 0.01 7689 0.03
Firefly 6 ≤ 0.01 NA NA

Dragon 8 ≤ 0.01 NA NA

Split MESI 82 ≤ 0.01 NA NA

7 Concluding Remarks

The generally undecidable PMCP has received a good deal of attention in the literature.A
number of interesting proposals have been put forth, and successfully applied to certain
examples (e.g, [2,3,5,20]). Most of these works, however, suffer from the drawbacks of
being either only partially automated or being sound but not guaranteed complete. Much
human ingenuity may be required to develop, e.g., network invariants; the method may
not terminate; the complexity may be intractably high; and the underlying abstraction
may only be conservative, rather than exact.3

Similar limitations apply to prior work on PMCP for cache protocols. Some concrete
examples of verification of cache protocols can be found in [6,22]. Pong and Dubois
[24] described general methods that were sound but not complete, as they were based on

3 However for frameworks that handle specialized domains, sound and complete, fully automatic
and, in some cases, efficient decision procedures can be given ([9,10,13,15,23]).

Exact and Efficient Verification of Parameterized Cache Coherence Protocols 261

conservative, inexact abstractions. In [16], it was shown that the PMCP for safety over
broadcast protocols [14] is decidable using the general backward reachability procedure
of [1]. In [21], Maidl, using a proof tree based construction, shows decidability of the
PMCP for a broad class of systems including broadcast protocols, but the decision
procedure is not known to be primitive recursive. Moreover [14,16,21] do not report
experimental results for cache protocols. In [8], Delzanno uses arithmetical constraints
to model global states of systems with many identical caches. His method uses invariant
checking via backward reachability analysis of [1] and provides a broad framework for
reasoning about cache coherence protocols but his procedure does not terminate on some
examples. More recently, a decision procedure based on a modification of the backward
reachability algorithm that guarantees termination for all snoopy cache protocols has
been given in [12]. However, the backward reachability algorithm of [1] that [8,12,16],
make use of, although general, suffers from the handicap that the best known bound
for its running time is not known to be primitive recursive. Furthermore, this technique
does not provide a way to generate error traces when a bug is detected. An elegant
cutoff method that can verify the DIR protocol was given in [23], but it was sound and
not complete and worked only for safety properties. Also in [4], a broad technique was
proposed for the verification of WS1S systems that can handle the DIR protocol as an
example, but again the resulting technique was sound but not complete.

In this paper, we made three distinct contributions to the parameterized model check-
ing of cache coherence protocols.

First, to reason about general snoopy broadcast protocols, we introduced the frame-
work of Guarded Broadcast Protocols. It is both a generalization and a significant
simplification of ordered broadcast protocols [11] which required identification of a
pre-order on the set of local states of the protocol. The extra transient states found in
split-transaction bus protocols prevent the imposition of the necessary pre-order. Our
new guarded protocol framework eliminates the need to impose a pre-order on protocol
states and thereby caters readily for split transactions. This framework is broadly appli-
cable, handling safety properties, and catering for all 8 snoopy protocols in Handy [19],
even in their split transaction formulations.

Second, we presented the framework of Initialized Broadcast Protocols, establish-
ing provably efficient reasoning about safety and liveness of invalidation based snoopy
protocols. We showed that a system with an arbitrary number of caches could be reduced
to a system with at most 7 caches. This yields a fully automatic and provably efficient
polynomial time algorithm for verifying parameterized invalidation based snoopy cache
protocols. Cutoffs have the added important advantage that the small system with 7
caches is a precise replica of large system with n caches, up to size. This not only makes
the reduction simple but also caters automatically for error recovery as there is an error
in a large system iff there is one in the system with the cutoff number of processes.

Third and last, we described a method for reducing parameterized reasoning about
directory based protocols to reasoning about snoopy protocols. We have illustrated the
method using the DIR directory based protocol as an example. We then leverage the
above cutoff and abstract history graph techniques developed for snoopy protocols to
reason about linear time properties of parameterized directory based protocols, which
typically are much harder to reason about, in an exact fashion.

262 E.A. Emerson and V. Kahlon

References

1. P. Abdulla, K. Cerans, B. Jonsson, Y. K. Tsay. General Decidability Theorems for Infinite
State Systems. LICS. 1996.

2. P. Abdulla, A. Boujjani, B. Jonsson and M. Nilsson. Handling global conditions in parame-
terized systems verification. CAV 1999.

3. P. Abdulla and B. Jonsson. On the existence of network invariants for verifying parameterized
systems. In Correct System Design – Recent Insights and Advances, 1710, LNCS, pp. 180–
197, 1999.

4. K. Baukus,Y. Lakhnech, K. Stahl. ParameterizedVerification of a Cache Coherence Protocols:
Safety and Liveness, VMCAI 2002, LNCS 2294, pages 317–330.

5. M.C. Browne, E.M. Clarke and O. Grumberg. Reasoning about Networks with Many Identical
Finite State Processes. Information and Control, 81(1), pages 13–31, April 1989.

6. E.M. Clarke, O. Grumberg, H. Hirashi, S. Jha, D. E. Long, K. L. McMillan and L. A. Ness.
Verification of the Futurebus+cache coherence protocol. In Proc. 11th Int. Symp. on Computer
Hardware Description Languages and their Applications, 1993.

7. D. E. Culler and J. P. Singh. Parallel Computer Architecture: A Hardware/Software Approach.
Morgan Kaufmann Publishers, 1998.

8. G. Delzanno. Automatic Verification of Parameterized Cache Coherence Protocols. CAV
2000, 51–68.

9. E.A. Emerson and V. Kahlon. Reducing Model Checking of the Many to the Few. CADE
2000.

10. E.A. Emerson and V. Kahlon. Model Checking Large-Scale and Parameterized Resource
Allocation Systems. TACAS 2002.

11. E.A. Emerson and V. Kahlon. Rapid Parameterized Model Checking of Snoopy Cache Pro-
tocols. TACAS 2003.

12. E.A. Emerson and V. Kahlon. Model Checking Guarded Protocols. LICS 2003.
13. E.A. Emerson and K.S. Namjoshi. Reasoning about Rings. POPL. pages 85–94, 1995.
14. E.A. Emerson and K.S. Namjoshi. On Model Checking for Non-Deterministic Infinite-State

Systems. LICS 1998.
15. E.A. Emerson and K.S. Namjoshi. Automatic Verification of Parameterized Synchronous

Systems. CAV. LNCS , Springer-Verlag, 1996.
16. J. Esparza, A Finkel and R. Mayr, On the Verification of Broadcast Protocols. LICS 1999.
17. S.M. German. Private communication.
18. S.M. German and A.P. Sistla. Reasoning about Systems with Many Processes. J. ACM, 39(3),

July 1992.
19. J. Handy. The Cache Memory Book. Academic Press, 1993.
20. R. P. Kurshan and K. L. McMillan. A Structural Induction Theorem for Processes. PODC.

pages 239–247, 1989.
21. M. Maidl. A Unifying Model Checking Approach for Safety Properties of Parameterized

Systems. CAV 2001.
22. K. McMillan and J. Schwalbe. Formal Verification of the Gigamax Cache Consistency Pro-

tocol. In Proc. Int. Symp. on Shared Memory Multiprocessors, pp 242–251, 1991.
23. A. Pnueli, S. Ruah and L. Zuck. Automatic Deductive Verification with Invisible Invariants.

TACAS 2001, LNCS, 2001.
24. F. Pong and M. Dubois. A New Approach for the Verification of Cache Coherence Protocols.

IEEE Transactions on Parallel and Distributed Systems, Vol. 6, No. 8, August 1995.

	Introduction
	The System Model
	Model Checking Guarded Broadcasts for Safety Properties
	Protocols without Conjunctive Guards
	Adding the Specialized Conjunctive Guard

	Reasoning about Invalidation Based Protocols Using Cutoffs
	Reducing PMCP for Directory Based to Snoopy Protocols
	Applications and Experimental Results
	 Concluding Remarks

