The ROBDD Size of Simple CNF Formulas

Michael Langberg, Amir Pnueli, and Yoav Rodeh

Weizmann Institute of Science, Rehovot, Israel
{mikel,amir,yrodeh}@wisdom.weizmann.ac.il

Abstract. Reduced Ordered Binary Decision diagrams (ROBDDs) are
nowadays one of the most common dynamic data structures for Boolean
functions. Among the many areas of application are verification, model
checking, and computer aided design. In the last few years, SAT checkers,
based on the CNF representation of Boolean functions are getting more
and more attention as an alternative to the ROBDD based methods. We
show the difference between the CNF representation and the ROBDD
representation in one of the most degenerate cases — random monotone
2CNF formulas. We examine this model and give almost matching lower
and upper bounds for the ROBDD size in different cases, and show that
as soon as the formulas are non-trivial the ROBDD size becomes expo-
nential, thus showing perhaps one of the most fundamental advantages
of SAT solvers over ROBDDs.

1 Introduction

Automatic manipulation of formulas in propositional logic is of major importance
in both theoretical and practical computer science. In the VLSI and process
analysis communities Reduced Ordered Binary Decision Diagrams (ROBDDs)
are popular. Their usage, initiated by Bryant [B80], has caused a considerable
increase of the scale of systems that can be verified. In the last few years SAT
checkers have appeared as a very competitive alternative to the ROBDD based
techniques, Clarke et al. [BCCE99] probably being the initiator of this trend.

It is a common place saying that ROBDDs and SAT complement each other,
i.e., there are cases where the ROBDD technique will work better, and those
where SAT will. Indeed, Groote and Zantema [GZ0I] show that the ROBDD
proof of the pigeon hole principal takes exponential size ROBDDs while the unit
resolution proof is polynomial. In the other direction, they also give a family of
formulas, where an ROBDD based proof is polynomial, while already the CNF
representation is exponential. Ideally, for understanding the different faults and
merits of both techniques, we would like to have a characterization of the size
relation between the two representations of boolean formulas — in CNF form, and
in ROBDD form. Hopefully, such an understanding will help in the construction
of a new data structure which will combine the good qualities of both ROBDDs
and SAT solvers.

There has been some previous work on the size of ROBDDs, Gropl et al.
for example, investigates the largest possible size of an ROBDD over
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all functions over n variables. Bollig and Wegener [BW00| examine the worst
case ROBDD size of a function with a given number of 1-inputs (among other
questions). Woelfel gives very tight bounds on the ROBDD size of the
integer multiplication function, which was one of the first examples of a func-
tion with a polynomially sized circuit but an exponential size ROBDD, proved
originally by Bryant [B86].

In this paper we examine a very degenerate type of CNF formulas, monotone
2CNF formulas, consisting only of clauses with 2 variables, and no negation. We
consider random monotone 2CNF formulas with n variables where each of the (%)
possible clauses is chosen with probability p. These formulas are clearly always
satisfiable, and the (expected) number of satisfying assignments depends on p
(this number decreases as p increases). Moreover, the simple syntactic structure
of these formulas may lead one to believe that their ROBDD structure is succinct.
We show that this is far from being true.

In this work, we present a full characterization of the ROBDD size of random
monotone 2CNF formulas. Namely, for practically every value of p, we study the
ROBDD size of such random formulas and present matching (up to low order
terms) lower and upper bounds on this size. Our results show that except for very
small p, where the formula is degenerate, or very large p, where the formula has
only a polynomial number of satisfying assignments, the most probable ROBDD
size (under any ordering of the variables in the formula) is highly exponential,
very closely related to the number of satisfying assignments to the formula. Thus
we show that the ROBDD reductions are of little use when handling these simple
CNF formulas.

Let ¢, be a random monotone 2CNF formula with n variables, in which
each of the (g) possible clauses is chosen with probability p. Our results can be
(roughly) summarized as follows:

1. Let p < (1 —¢)1, where € > 0 is constant. Notice that in this case a random
formula ¢, is expected to have less than n/2 clauses (implying that each
variable is expected to appear at most once in ¢, ). Then w.h.p. the ROBDD
size of ¢, is polynomial.

2. Let p satisfy (a) (14 €)2 < p for some constant € > 0, and (b) For every
constant a > 0, p < 1 — n% (i.e. p is not very small or large). Then w.h.p.
the ROBDD size of ¢, is super polynomial. Specifically, we show that for

small values of p in the range defined above, the ROBDD size of ¢, is in
the range {2% poToEn , 2%p°1y1°g"}; and for large values of p, the ROBDD size

(i)
of ¢, is equal to 2 \'"*""""”/ (w.h.p.). For example for p = 1/y/n the
ROBDD size of ¢, is roughly gvrpolylogn and for p = 1/2 this size is roughly
2log”n — plogn Notice the sharp jump in the ROBDD size, with respect to

case 1 above, with a very small increase of p.

3. If there exists some constant « > 0 such that p > 1 — %, then w.h.p. the

ROBDD size of ¢, is again polynomial.
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An important point in these bounds, is that the upper bounds in items 2
and 3 above are derived by showing an upper bound to the number of satisfy-
ing assignments to the formula. The fact that these bounds practically match
the lower bounds means that the ROBDD reductions are of very little use for
these kinds of formulas — we might as well have written a list of all satisfying
assignments as a description of the formula.

Along the way, we show that for small p, it is the pathwidth of the formula
which determines the optimal ROBDD size. This parameter captures in a simple
manner the concept of information flow that is caused by the variable ordering
in the ROBDD method. In our restricted setting, this result can be seen as
a matching lower bound to Berman’s classic upper bound on ROBDD
size, relating circuit structure and ROBDD size using a notion similar to our
pathwidth. Also, this result formalizes the common sense intuition of ROBDD
ordering, and thus shows one of the fundamental drawbacks of ROBDDs, if an
ordering does not put related variables close to one another — the ROBDD size
will be large.

The remainder of this paper is organized as follows. In Section [2 we present
the main definitions and notation that will be used throughout this work. Specifi-
cally we show a natural characterization of random monotone 2CNF formulas ¢,
on n variables by the distribution G,, , on graphs with n vertices. In Section
we show a connection between the ROBDD size of monotone 2CNF formulas
and certain combinatorial graph properties. We then define the pathwidth of a
formula, a notion which plays a major role in our analysis. Finally, in Section
we state the upper and lower bounds sketched above rigorously and proceed in
their proof. Due to space limitations, some of our results appear without detailed
proof. A full version can be found at,

http://www.wisdom.weizmann.ac.il/~verify/publications/2003/LPR03.html

2 Preliminaries and Notation

2.1 Graphs

For a graph G, denote its set of vertices by V', and its set of edges by E. Let
n be the size of V, and m be the size of E. We denote by d(G) the maximum
degree of a vertex in G. For a set of vertices U C V define its set of neighbors
as Ig(U) ={veV |vgUIuel, (uv) € E}. Denote the subgraph induced
by a subset U of vertices as G|, i.e., G|, = (U, EN(U x U)). Wesay U C V is
an independent set if the edge set of G|, is empty. Let ID(G) denote the set of
independent sets of the graph G. Denote the size of the largest independent set
in G by maxID(G). The definitions above imply that,

Proposition 1. |ID(G)| < nmaxIP(©)

Let Gy be the set of graphs on vertex set V. For short, we mark G,, = Gy -
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2.2 Boolean Formulas

Let Ay denote the set of Boolean assignments to the variable set V, Ay =
{a |a:V—={0,1}}. Let &y = {p | ¢ C Ay} denote the set of all Boolean
formulas on the variable set V' (¢ is characterized by its set of satisfying assign-
ments). For a € Ay, U CV, denote by a|,; € Ay the restriction of assignment
a to the set U. We would also like to consider the restriction of the formula ¢
to a partial assignment. For ¢ € @&y, U C V| and some « € Ay, let

SD\Q = {B € AV\U ’ Eh/ € 9077|U = a and ,‘ylV\U :ﬂ}

Again we will mark @, = @1 ), and A, = Ap ).

2.3 Random Monotone 2CNF Formulas

In 2221 we considered only the semantics of boolean formulas by characterizing
them using their satisfying set of assignments. We now proceed to consider the
representation of a formula, its syntax. We consider a restricted class of CNF
formulas, monotone 2CNF formulas. A monotone 2CNF formula over variable
set V' is the conjunction of a set of clauses of the form (aV b) where a,b are in V.
We can equivalently model such a formula by a graph G € Gy, where each edge
(a,b) in the graph stands for the clause (a V b). We then get that the formula
corresponding to the graph G is

pa ={ae Ay |V(i,j) € E(G),a(i) =1ora(j) =1}

We will consider such random formulas, using the random model G, ;, where
G € Gy p is a graph on vertices [1,n], where each possible edge is in the graph
with probability p, uniformly and independently. We will say an event in G,
happens with high probability if it happens with probability tending to 1 as n
approaches infinity.

2.4 ROBDDs — Reduced Ordered Binary Decision Diagrams

Definition 1. An OBDD on [1,n] is a edge labeled directed graph, whose sinks
are labeled by Boolean constants FALSE and TRUE, and whose non sink (or
inner) nodes are labeled by elements of [1,n]. Each inner node has two outgoing
edges, one labeled by 0 and the other by 1. An edge leading from an i-node must
end in a sink or a j-node, where j > i. Each inner node v with label k, represents
a Boolean formula p, € P ) defined in the following way. In order to check
if @ € py, @ € A ), start at v. After reaching an i-node, choose the outgoing
edge with label (i), until a sink is reached. If the label of the sink is TRUE then
o € @, if it is FALSE then o &€ ¢,. The size of the OBDD is defined to be its
number of nodes.
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Bryant has already shown that the minimal size OBDD for a formula
@ € @, is unique (up to isomorphism), and is called the ROBDD of ¢. If we
add an additional requirement, that every edge leaving an i-node, reaches a sink
or an (i + 1)-node, then we get a slightly different version of ROBDDs, called
Quasi-reduced OBDDs (QOBDDs). In this paper we will actually consider this
latter type, because of the following two lemmas (see [BWOU] for example):

Lemma 1. The number of i-nodes, 1 < i < n, of the QOBDD of p € &, is
{er, aedia}

Lemma 2. If sg is the size of the ROBDD of ¢ € ®,,, and s¢ 1is the size of its
QOBDD, then %SQ <sr < 59.

The first Lemma allows us to deal with the size of QOBDD in a simple manner,
and the second Lemma shows that the size of QOBDDs is practically the same
as that of ROBDDs, especially since all size lower bounds we show will have an
exponential nature. Therefore, for the remainder of the paper, we will examine
only QOBDDs. For ¢ € @, we denote by BDD(yp), the size of ¢’s QOBDD.
For simplicity, we will not count the root node and the two leaf nodes of the
QOBDD when calculating BDD(y), this changes the QOBDD size by at most
3, and so is immaterial. We get the following proposition,

Proposition 2. For ¢ € &,,, BDD(p) = Z;ll |{<p|a | o € Ay H
We note the following useful upper bound on QOBDD size.
Proposition 3. For ¢ € @,,, BDD(¢) < n(|¢| +1).

Proof. By Proposition 2],

n—1 n—1

BDD(¢) = > [{p), lae A} < ([{a€l |g, #0}+1)

k=1 k=1

For every a € Ay, such that ¢ # 0, there is at least one § € ¢ s.t. =
Choose one of these § and mark it by (. Clearly if oy # aw then 5., # Ga,, and
so |[{a €Ay | ¢, #0}| <lel and we conclude, BDD(p) < (n—1)(J¢| +1) <

n(|lel +1). O

As is well known, the QOBDD of a formula ¢ depends on the specific ordering
of variables in . Denote by S, the set of permutations on the set [1,n]. For a
formula ¢ € @, and a permutation o € .S,,, denote

¢7 ={a |3 € p,YveV,alo(v) =B(v)}
7 is the result of changing the names of the variables of ¢. This change may
result in a change of BDD(y), and in fact there are known examples (see for
example [CGP]), where BDD(y) is polynomial, while for some o, BDD(?) is
exponential. We therefore denote,
mBDD(p) = min BDD(?)

ocES,

Clearly, Proposition Bl applies also to mBDD(p).
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3 QOBDD Size vs. Combinatorial Graph Properties

Let G be a graph in G,,. Let ¢ = pg € @,, be the 2CNF formula corresponding to
G. In this section we show various connections between combinatorial properties
of G and the size of the QOBDD of ¢. We will need the following definition. For
a€ A, denote Z, ={veV | av)=0}.

Lemma 3. ID(G)={Z, |a€p}

Proof. Let Z be an independent set in . Consider the assignment a which
assigns a value of 0 to every vertex in Z and a value of 1 to the remaining
vertices in V' \ Z. Clearly Z = Z,,, furthermore as Z is independent we conclude
that a € ¢ implying that Z € {Z, | o € p¢ }. For the other direction, consider
an assignment o € ¢. By the definitions above, Z, must be an independent set
in G. O

Corollary 1. For ¢ € ¢, BDD(¢) < n(|ID(G)| + 1).

Theorem 1. For G € G,,, Setting,
A ={r ‘ r=renpk+1n), 1 (G, ,)}

The size of the k+1 level in ¢’s QOBDD (under natural ordering) is either |Ag|
or |[Ag| +1

Proof. Consider the set

Ap =1, |a€Any, ¢, #0}.

The size of the k+ 1 level in ¢’s QOBDD (under natural ordering) is exactly the
size of Ay, possibly plus 1, if there is some « s.t. o, = (). Hence, it suffices to
present a one to one function from A, to A and vice versa. For the first direction
consider the function which associates with every ¢| the set I'c(Za)N [k+1,n]
(where Z,, is as defined above). As ¢ # ) we have that Z, in as independent set
in G‘[l, o Now assume two formulas Pla, and Pla, that are not equal. Namely

(w.l.o.g.) there exists some assignment ﬂ € A[k+1 n] such that 3 € Pla, but
B¢ Play .Fori=1,2let v; € A[y ;) be the assignment obtained by concatenatlng
«; and ﬁ By thebe definitions 71 € ¢ and 72 € . Hence, it must be the case
that o violates some clause, say the clause including the 7’th and j’th variables,
where i < j (that is v2(i) = v2(j) = 0).

Now (by contradiction) assume that It = ['¢(Za,) N[k + 1,n] is equal to
Iy = T'o(Za,) N [k +1,n]. Recall that ¢ is a monotone 2CNF formula, it is
satisfied by 77 = a1 3, and it is not satisfied by s = as/3. Moreover, Pla, is not
equal to (). By the fact that ¢ is satisfied by 71 we conclude that all variables in
Iy = I have value 1 under the assignment § implying that they have value 1
both in the assignment v, and 5. Hence, it cannot be the case that i or j belong
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to I',. By the fact that [1,%] \ Z,, is set to 1 in 7, it cannot be the case that ¢
or j are in [1, k] \ Z,,. By the fact that Plo, () it cannot be the case that both
¢ and j are in Z,,. We conclude that it must be the case that both i and j are
in [k + 1,n]\ Iz. But the value of such ¢ and j are determined by 3, and by the
fact that 73 = @18 € ¢ we conclude that either the value of i or j is 1 in 7.
For the other direction, consider the function which associates with each
I' € Ag the assignment o € A ;) which is defined as follows. Let Z be some
independent set in G|[1,k] such that I'e(Z) N [k+ 1,n] = I', define a(i) to be

zero iff i € Z. As Z in an independent set in G|[17k] it is the case that ¢  # 0
and thus in Ag,. Let It = I'g(Z1) N[k +1,n] and Iy = I'(Z3) N [k+1,n] be
two different subsets in Ag. We will show that for corresponding a; and as as
defined above the functions | —and ¢~ differ. Let (w.l.o.g.) @ be a vertex in

I''\ I'; (note that i € [k 4 1,n]). Let 8 € Ajpqq,) be defined such that (i) =

and 3(j) =1 for all j # i. The vertex ¢ is connected by an edge to Z; implying
that the assignment ; which is the concatenation of oy and 3 does not satisfy
. We conclude that 5 ¢ Plo,- On the other hand , the vertex ¢ is not connected
to any vertices in Zs, implying (in a similar manner) that 3 € Play- O

In the following, we define the notion of the pathwidth of a graph (as in-
troduced in [RS83]). Given an ordering of the vertices of a given graph G the
pathwidth of G is defined as follows:

Definition 2. For G € G,,, denote PW(G) = maxe[1,n [{G([1, K])|.

Next we present upper and lower bounds on the QOBDD size of ¢ using
the pathwidth notion. Afterwards we show that the pathwidth of a graph is
monotone with respect to edge contractions and vertex and edge deletions. We
will use this property later on in Section [l

3.1 Upper Bound

Lemma 4. BDD(yp) < n(2FW(©) +1)

Proof. Using Theorem [Il we need to show that for every k the size of the set
{FG(I) Nk+1,n] | ITe ID(G‘[M])}

is of size at most 2°W(&). However, since I C [1,k], then |I'g(I) N[k +1,n]| <
[I'c([1,k])] < PW(G), and therefore the number of possible sets of the form
T'o(I)N [k +1,n] is at most 28W(&), O

3.2 Lower Bound

We first state without proof the following lemma, which is proved using a simple
greedy strategy.

Lemma 5. For G € G,,, maxID(G) > W
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PW(G)

(
Lemma 6. BDD(yp) > 2@©)+7

Proof. Mark h = PW(G) and d = d(G)+1. Set k to be such that | I'¢([1, k])| = h.
Using Theorem [[] we want to show that

Hr ’F:FG(I)ﬂ[kJrl,n], [e1D (G‘[Lk])}’ > 9t (1)

For every vertex v € [1,k] denote A, = I'¢({v}) N[k + 1,n]. We will find a
specific independent set Z of G|[1 K such that

1. For every u € Z, A, # 0.
2. For every u,v € Z, A, N Ay =10
3. |71 > &

Finding such an Z will prove Equation (), by letting I run over all subsets of
T

Since |I'g([1,k])| = h, then | U A,| > h. Therefore there are at least 2 such
sets A, # ¢. Noticing that each vertex w € [k + 1,n] can appear in at most d
sets A,, and since |A,| < d, we have that each A, intersects at most d? other
such sets. By Lemma [J], there are at least % . d% = d—}g such sets that do not
intersect each other. Denote by H C [1, k] the set of v’s corresponding to these
A,’s. Again, using Lemmal5] and by the fact that [H| > 4 we can find a subset
T of H that is an independent set in (. This 7 satisfies all three properties
above. ad

3.3 Optimal Ordering

The previous results we have shown all consider the natural ordering of variables
in ¢. In the following we extend these results naturally to obtain the connections
needed between the properties of G and the QOBDD size of an arbitrary ordering
of p. Let ¢ € S, and G € G,,. The graph G obtained after a renaming of V'
according to o is defined as

G = (Vi{(o(i),0(4)) | (i,4) € E(G) })-

It is not hard to verify that (¢c)” = @), implying that mBDD(¢q) =
min, BDD(¢(goy). We now define the minimal pathwidth of a graph.

Definition 3. The minimal pathwidth of G is mPW(G) = min, PW(G).

It is straightforward to verify that Lemma [Bl and Lemma H now imply:

mPW(G)

Theorem 2. 20@@+0T < mBDD(pg) < n(2mPW(E) 4 1),

We believe this result to be of independent interest, since it shows the close
connection between the pathwidth of the graph and the QOBDD size of the
formula. If all orderings of the vertices result in many clauses being separated —
the QOBDD size will be large, exponential in the pathwidth.
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3.4 Minors

For a graph G € G,, and an edge (i,j) € E(G), the result of contracting
the edge (i,7) in G is the graph G‘[l \ (i} with the addition of the edges
{(,2) | (i,2) € E(G)}. We say H is a minor of G if it is the result of con-
secutive edge contractions of GG, vertex deletions and edge deletions of G. In our
application, H does not have any multiple edges (i.e. H is not a multi graph).

Lemma 7. If H is a minor of G then mPW(H) < mPW(G).

Proof. For one vertex or edge deletion the result is trivial. We therefore prove it
for one edge contraction and the Lemma follows by induction. Let G € G,,, and
assume w.l.o.g. that PW(G) = mPW(G). Assume an edge (i, 7) is contracted in
G to give H, where i < j. We claim that the following ordering of H’s vertices
gives a pathwidth of H which is at most PW(G): 1,2,...,i—1,i+1,...,n

1. Forall k <i—1, I'y([1,k]) = T'c([1,k]) \ {i}.

2. Forallk>j,FH([1 kI\{i}) = (1, k]).

3. Foralli <k <j, Fu([L, K]\ {i}) € Te([L, K]\ {i}) \ {i} U{j} € Ia([1,k])
¥

And so, for all k: [I'g([1,k]\ {i})| <

I'c([1, k])|, to conclude. O

4 QOBDD Size of Random 2CNF

We now proceed to examine the most probable QOBDD size of a random for-
mula in G, , for different values of p. Our analysis is divided into several cases,
each examining a different range of values for pn. The value pn is (approxi-
mately) twice the expected ratio between the number of clauses and the number
of variables in the formula, and is therefore a good indicator for the expected
structure and complexity of the formula. We prove the following results (with
high probability over the random formula ¢).

1. For pn < 1—¢, where € > 0 is constant, mBDD(¢) = O(nlogn). We will see
that the probable formulas in this case are very degenerate, since the graph
will most probably contain only very small connected components.

2. For 1+ ¢ < pn < o(n), where € > 0 is constant,

29(% log=%n) < mBDD(cp) < 20(% log? n)

This implies that the QOBDD size is highly exponentiaﬂ for small values of
p, and slowly decreases as p approaches 1. For example, when pn = y/n, the
QOBDD size is 2V™PoWIog" (which is still highly exponential). Notice the
sharp jump in the QOBDD size, with respect to the previous case, with a
very small increase of pn.

1 —4
1 TFor pn > 12 we show an improved lower bound of 27( 18 " ™),
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3. We improve the bounds above for large values of p. Let p satisfy (a) For every
constant € > 0, pn > n'~¢ and (b) For every constant o < 1, pn < n — n®.
(I.e. pn is large but not too large). Then

log2 n

mBDD(yp) = 2°(mr/a5)

In this case we get matching lower and upper bounds (up to constant factors
in the exponent). Since pn < n—n® for all & < 1, this means that mBDD(y)
is super polynomial. For example, when p = %, mBDD(p) = 26(og” n) —
n@(log n)

4. If there exists a constant 0 < a < 1s.t. pn > n—n®, then mBDD(y) = n®™),
i.e., is polynomial.

An important point in these bounds, is that all upper bounds (except the
one for pn < 1—¢) are derived using Corollary[I], by showing an upper bound to
the number of satisfying assignments to the formula. The fact that these bounds
practically match the lower bounds means that the QOBDD reductions are of
very little use for these kinds of formulas — we might as well have written a list
of all satisfying assignments as a description of the formula.

4.1 Casel:pn<1—c¢

We start by stating the following theorem appearing in [JLR] which states that
w.h.p. G’s connected components are all of size at most O(logn) and are all
almost trees

Theorem 3. ([ILR]): If G € G, p, where pn < 1 — € for some constant € > 0,
then w.h.p. G’s connected components are of size O(logn), and are either trees,
or trees with one extra edge.

We now show that the QOBDD size of a graph that is a tree is small. This
is done by showing that the pathwidth of a tree is small. Combining these two
facts we will conclude that w.h.p. mBDD(¢) < O(nlogn).

Lemma 8. For T € G, where T is a tree, nPW(T') < logyn

Proof. If n = 1 then clearly mPW(T') = 0 = log,(1). We order the vertices of
the tree recursively. Number the s subtrees rooted at the children of the root
vertex r according to their size, i.e., T} is the largest, 75 the second, and so on
until T, the smallest subtree. Order each of the subtrees recursively, the vertices
of Ty are ordered t1,13,. .. t,lﬁ, the vertices of T, are ordered t2,13, ... tiz and so
on. Now order all the vertices in the following way:

1,1 142 42 2 P :
ty,lg, .. Ty, 11,15, . .tkz,...tf,tg, . ..t;s,r
We claim that this ordering gives a pathwidth of at most log, n.

1. For k € [1,ky = 1], Ir({t},...,t}}) = I'n,({t,....t}}). By the induction
hypothesis this set is of size at most log, |T1| < log, n.
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2. For k=ky, Dp({t],....,th}) ={r}|=1< loan since n is at least 2.

3. For 1 <i <s, fOI‘]fE[lk FT {tl"' tkl’" . tZ} FTTl) .U
Ir([ti,th]) = {r} U Ip ([t],t}]). By the 1nduct10n hypothe51s we get that
this set is of size at most log, |T;| + 1. However, since ¢ > 1, then T; is not
the largest subtree child of 7, and therefore must satisfy |T;| < 3|T'|. Which
gives log, |T;| + 1 < log, n.

O

Theorem 4. If G € G, , where pn < 1—¢€ for some constant € > 0, then w.h.p.
mBDD(¢g) = O(nlogn).

Proof. According to Theorem Bl w.h.p. G’s connected components Cy, ... Cj are
all of size at most O(logn) and are each a tree with maybe an addition of one
edge. Since an extra edge can increase the pathwidth of a graph by at most 1,
then by Lemma B we have that for all i, mPW(G| ) < log, |C;| + 1. Therefore,
by Theorem ] we have mBDD(G| ., ) < [C] - (2log21Cil+1 1 1) < 3|C;|%. Tt is not
hard to verify that this implies
k
mBDD(pg) <n+ Y mBDD(G|,) <n+3)_ |Cf
i=1 %

Denoting M = max; |C;|, we have that mBDD () < n+ 345 M?, and since for
all 7, |C;] = O(logn), mBDD(pg) = O(nlogn). O

4.2 Lower Bound of Case 2: 1 + € < pn = o(n)

We start by showing that for pn > 12 w.h.p. mPW(G) > in. We also show that
for pn = O(1), w.h.p. d(G) = O(logn), and now using Theorem [] we get an
exponential lower bound for mBDD(y) in the case 12 < pn = O(1). From this
we easily derive a lower bound for larger pn, while pn = o(n).

The result for 1 + € < pn < 12 now follows by finding a minor H of G, that
has a large pathwidth. We show that G contains a minor H which is actually
an element of Gy ,, where Ip’ > 12, and since mPW(G) > mPW(H), we get an
exponential (in ) lower bound for mBDD(y). Details follow.

Lemma 9. For G € G, ,, where pn > 12, w.h.p., mPW(G) > %n.

Proof. We show that if pn > 12, then w.h.p., for G € G, ,, every set V C V(G),
where |V| = $n, satisfies |I'¢(V )\ > 4in This will prove the lemma.
For fixed A,B C V, where |A| = 5n and |B| =

p'rL2

Pr[I[G(A) € B] = (1 —p)/ A =(AHIBD) = (1 — p)amin < e='%
If we have that for all relevant A and B, I'¢(A) € B then the graph is as we
want it. We bound the probability of this not happening using a simple union
bound:

e n(2log2—ipn)
22" e7 T =e

This tends to zero if pn > 12. O
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It is not hard to verify that w.h.p. the maximal degree d(G) of a graph
G € G, with pn = O(1) is of size O(logn). We thus conclude, by Theorem
that

Corollary 2. For G € G, , where 12 < pn = O(1), w.h.p., mBDD(pg) >
29(10;111/)'

We now turn to study values of p that satisfy 12 < pn = o(n).

Theorem 5. For G € G, p, where 12 < pn = o(n), w.h.p., mBDD(pg) >

2()(% log % n)

Proof. Set k = =2, and examine the random behavior of G| L which is actually

an element of Q;w, Since pn = o(n), p = o(1) and therefore & is unbounded, so

. 1
by Corollary 2] w.h.p. mBDD(ng‘[1 k]) = 29(1ogkﬂ) = QQ(PIOg4 1/p). Since % <n,

we get %log74% > %log74 n.
A simple observation is that if H = G|, then mBDD(pg) > mBDD(¢n),
and this gives us the desired result. a

It is left to show our bounds for 1+ ¢ < pn < 12. To do so we show that for
G € Gpp, pn > 1+ ¢, G contains a minor H that behaves as a random graph in
Gk p, where p'k > 12. This, combined with the analysis above will prove that H
has large pathwidth.

Theorem 6. ([JLR)): If G € G, , and pn > 1+ ¢, for some constant ¢ > 0,
then there is some constant 6 s.t. w.h.p. the biggest connected component of G
18 of size at least On.

Theorem 7. For G € G, ,, where 14+€ < pn <12 and € > 0 is constant, w.h.p.
mBDD () > 22 (=)

Proof. For two reals 0 < p1,p2, < 1, s.t., p1 + (1 — p1)p2 = p, we can view G as
the union of two graphs, 1 and G, where Gy € Gy, p,, and G2 € Gy, 5, Setting
p1=1(1+ %), we get that & < npy < 12.

In the following, we find a minor H; of Gy which will contain no edges at all,
and then consider how the edges of G5 appear in H;. This gives us a minor H
of G which will have a large pathwidth.

By Theorem G we have that G; contains a tree of size 6n. As before we may
assume that the maximum degree in this tree is d = O(logn) (this will happen
w.h. p) It is not hard to verify that this implies that for any k, G; contains
l= k = disjoint connected sets Vi,... V], each of size k (such a partition can be
obtained by traversing the tree mentioned above). Now set k = 23¢d = O(logn),
notice that [ is unbounded. In the following we assume that both k and [ are
integers, otherwise we must use the |-| notation.

Define a minor H; of G, by contracting all of the edges internal to each V;,
and removing all vertices outside of U;V;, and all edges not internal to the V;’s
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— in other words, H; contains [ vertices, and no edges. Define a minor H of G,
by considering the edges of G5 as they appear in Hy. An edge of H corresponds
to k% (possible) edges of G, and so will appear with probability ps,

1
ps=pa(1+(L—pa)+...4(1—p))* 1> pok(1—po)¥ 1 > kaQE

Now,
2 Pl 5 19 _
Ps = %a™" e = 2ed
According to Lemma [ Whp mPW(H) > 1=
mPW(G) > mPW(H) > Q2(—5—

=12.

—2%—), and by Lemma []

log

). Lastly, w.h.p. d(G) = O(logn), and then by

log? n

Theorem 2] we have that w.h.p. mBDD(p¢g) > 2 () , to conclude. O

4.3 Lower Bound of Case 3: n'~¢ < pn < n — n®

Notice that the lower bound presented in the previous Section [£.2] is not super
polynomial if p is taken to be very large (namely for values of p greater than
1/ log® n). In the following section, we study large values of p and obtain super
polynomial lower bounds. To show a lower bound in these cases, we will work
directly with Theorem [Mand not with the pathwidth of the graph. To get a lower
bound using this theorem we need to first estimate the number of independent
sets in a random graph of G,, .

For the reminder of this section, we will assume (a) For every constant € > 0,
pn > n'~¢ and (b) For every constant a < 1, pn < n — n®.

Independent Sets in G,, ,. Recall that Theorem[I]shows a connection between
certain combinatorial properties of G and the QOBDD size of ¢g. In particular,
a necessary condition for a large mBDD(pq) is the existence of many (super
polynomial) number of independent sets in G. We start by showing this condition
holds w.h.p. on random graphs in G, ;,, and then use it for proving the lower
bound of case 3.

Denote ¢ = 1 — p. We will consider the number of independent sets of size
k = ke in G, p, where k = clcl)‘;gl?‘q7 and therefore ¢* = n=¢. Since ¢ > n*~! for
every constant a < 1, we get that &k is unbounded, and we can therefore assume
k is a natural number. We take ¢ to be a small constant. Since pn > n'~¢ for
every constant € > 0, we have k = O(n®logn) for every constant ¢ > 0. Let
~v > 0 be an arbitrarily small constant, in the following we will use the fact that
k<n”.

Denote the expected number of independent sets of size k. by E = E..
Clearly, F = (Z)q(g) It is not hard to verify that E = n(*) given ¢ is small
enough. Furthermore, it can be seen (using standard techniques) that the vari-
ance V of the number of independent sets of size k is at most iEZ. Thus, by
Chebyshev’s inequality,
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Corollary 3. For small enough c, the number of independent sets of size k in
GGy is n?(&) with probability greater than %

The constant % bound on the probability obtained in Corollary [3 will not suffice
for our purpose, and we will therefore amplify the probability of this result.
Roughly speaking, this is done by applying Corollary [Blon a large class of almost
disjoint subsets of vertices in G (namely subsets that share at most a single
vertex) where each subset is of polynomial size. If one of these subsets has many
independent sets, so does GG. Due to space limitations, full proof is omitted.

Lemma 10. For small enough c, the number of independent sets of size k in
G € Gy is n?) with probability greater than 1 —27" .

QOBDD Size Lower Bound. We will now use Theorem [ to prove the lower
bound of case 3 on the QOBDD size of G € G, . It is not hard to verify that it
suffices to prove

Lemma 11. Let G € G, ,,. Let k = k. be as defined in Section[{.3, For small
enough ¢, w.h.p. mBDD(pg) = n?®*),

Proof. By Theorem [1]it is enough to show that w.h.p., for every set U C [1,n],

U] = Vn,
{Ia(D) N (Ln]\U) | T€ID(G,)}| = n2®.

Since this will show, that for every ordering of the vertices of G, the size of the
Vi + 1 row in pg’s QOBDD is at least n?(F). We will therefore show that for

n

every such U this happens with probability greater than 1 — %( \/ﬁ)_l, and so
using the union bound, we get that it is true for all U w.h.p.
Let Uy and U; be two independent sets of size k in G|. For i = 1,2, let
I = I'a(U;) N ([1,n] \ U). The probability that a specific vertex is in I'; but not
Iy is greater than pg*, and therefore the probability that there is no such vertex
in [1,n]\ U, i.e., It = Iy, is at most,
(1-pd")" " < (1- L)

nC

[NE

_n_p 1
<e 2n° e 2
where v > 0 is an arbitrarily small constant. Since the number of independent
sets U; in U is at most |U|F < eFlo8™ < 71987 then the probability that all
the sets I'a(U;) N ([1,n] \ U) differ is at least

3/

B _3/4 _2/3
1762n lognen S>1l—e™

For a specific U, by Lemmal[I0, with probability at least 1 — 2*"3/4, the number
of independent sets of size k in U, is \/ﬁﬁ(k) =n?®)_ To conclude,

—1
1/ n
1_ —n2/3 2—’”3/4 >1_ —\/ﬁlogn>1_7
(e + ) ¢ n \/ﬁ
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4.4 Upper Bounds of Cases 2,3, and 4

We now prove the upper bound of case 4. The upper bounds of cases 2 and 3
are proven similarly (their proof involves setting the parameter k in the proof

log n
below to 410gg1/q).

Theorem 8. Let G € G, ;,, where pn > n —n® for some constant 0 < a < 1.
Then, w.h.p. mBDD(pg) = n°W.

Proof. The expectation of the number of independent sets of size k = [%] +1
is at most,

Since (a—1)(k—1) = (a—1)[2-] < —3, the expectation is at most n=zk = o(1),
and so by Markov’s inequality w.h.p. maxID(G) < k. By Proposition [I] and
Corollary [l mBDD(pg) < n -nF = n°W, 0
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