Skip to main content

Memory Compaction and Power Optimization for Wavelet-Based Coders

  • Conference paper
  • 1021 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2799))

Abstract

A methodology for memory optimization in wavelet-based coders is presented. The dynamic memory requirements of the ASAP forward Wavelet Transform (WT) in three different output data grouping modes are studied: (a) independent output blocks with dyadically decreasing sizes; (b) zero-tree blocks and (c) independent equally-sized blocks. We propose an optimal approach of data clustering and calculation scheduling aiming at minimal memory requirements. This goal is reached using an appropriate subdivision of the filter inputs and it is verified with the assistance of an automatic design tool. The importance of the data dependencies between the different functional modules is shown to be dominant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Catthoor, F., Wuytack, S., De Greef, E., Balasa, F., Nachtergaele, L., Vandecappelle, A.: Custom memory management methodology: exploration of memory organization for embedded multimedia system design. Kluwer Acad. Publ., Dordrecht (1998) ISBN 0-7923-8288-9

    Google Scholar 

  2. Catthoor, F., Danckaert, K., Kulkarni, C., Brockmeyer, E., Kjeldsberg, P.G., Van Achteren, T., Omnes, T.: Data access and storage management for embedded programmable processors. Kluwer Acad. Publ., Boston (2002) ISBN 0-7923-7689-7

    MATH  Google Scholar 

  3. Catthoor, F., Danckaert, K., Kulkarni, C., Brockmeyer, E., Kjeldsberg, P.G., Van Achteren, T., Omnes, T.: Information technology - Coding of audio-visual objects - Part 2: Visual, ISO/IEC JTC 1/SC 29/WG 11 N 3056 Maui (December 1999)

    Google Scholar 

  4. Sodagar, I., Lee, H.J., Hatrack, P., Zhang, Y.Q.: Scalable Wavelet Coding for Synthetic/ Natural Hybrid Images. IEEE Transactions on Circuits and Systems for Video Technology 9(2), 244–254 (1999)

    Article  Google Scholar 

  5. Sodagar, I., Lee, H.J., Hatrack, P., Zhang, Y.Q.: JPEG, Image Coding System, ISO/IEC JTC 1/SC29/WG1, FCD 15444-1 (2000)

    Google Scholar 

  6. Skodras, A., Christopoulos, C., Ebrahimi, T.: The JPEG 2000 still image compression standard. IEEE Signal Processing Magazine 18(5), 36–58 (2001)

    Article  Google Scholar 

  7. Taubman, D.S., Marcellin, M.W.: JPEG 2000: Image compression fundamentals, standards and practice. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  8. Lafruit, G., Bormans, J.: Assessment of MPEG-4 VTC and JPEG 2000 Dynamic Memory Requirements. In: International Workshop on System-on-Chip for Real-Time Applications, pp. 276–286 (2002) (invited paper)

    Google Scholar 

  9. Vishwanath, M.: The Recursive Pyramid Algorithm for the Discrete Wavelet Transform. IEEE Transactions on Signal Processing 42(3), 673–676 (1994)

    Article  Google Scholar 

  10. Lafruit, G., Nachtergaele, L., Bormans, J., Engels, M., Bolsens, I.: Optimal Memory Organization for Scalable Texture Codecs in MPEG-4. IEEE Transactions onCircuits and Systems for Video Technology 9(2), 218–243 (1999)

    Article  Google Scholar 

  11. http://www.imec.be/atomium

  12. Lafruit, G., Andreopoulos, Y., Masschelein, B.: Reduced Memory Requirements in Modified JPEG 2000 codec. In: International Conference on Digital Signal Processing 2002, CD-ROM T2C.4, pp. 1–8 (2002)

    Google Scholar 

  13. Chen, C.Y., Yang, Z.L., Wang, T.C., Chen, L.G.: A Programmable Parallel VLSI Architecture for 2-D Discrete Wavelet Transform. Journal of VLSI Signal Processing 2001 28, 151–163 (2001); Revised April 2000

    Article  MATH  Google Scholar 

  14. Simons, T., Chandrakasan, A.P.: An Ultra Low Power Adaptive Wavelet Video Encoder with Integrated Memory. IEEE Journal of Solid State Circuits 35(4), 218–243 (2000)

    Google Scholar 

  15. Ferretti, M., Rizzo, D.: A Parallel Architecture for 2-D Discrete Wavelet Transform with Integer Lifting Scheme. Journal of VLSI Signal Processing 2001 28, 165–185 (2001); Revised April 2000

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferentinos, V., Milia, M., Lafruit, G., Bormans, J., Catthoor, F. (2003). Memory Compaction and Power Optimization for Wavelet-Based Coders. In: Chico, J.J., Macii, E. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2003. Lecture Notes in Computer Science, vol 2799. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39762-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39762-5_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20074-1

  • Online ISBN: 978-3-540-39762-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics