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Abstract. This paper presents a model metrics, techniques and methodology for
evaluating the critical path on the Data Flow Execution Graph (DFEG) of a
system on chip specified as a C program. The paper describes an efficient
dynamic critical path evaluation technique generating no execution graph
explicitly. The technique includes two key stages: (1) the instrumentation of the
C code and the mapping into a C++ code version, (2) the execution of the C++
code and actual evaluation of the critical path. The model metrics and
techniques aim at the estimation of the bounding speed and parallelization
potential of complex designs specified at system level.

1 Introduction

Nowadays, processing and compression algorithms, communication protocols and
multimedia systems have reached an extremely high level of sophistication.
Architectural implementation choices become extremely difficult tasks, leading to the
need of more and more intensive specification and validation by means of C/C++
software implementations. At the highest possible algorithmic level, the evaluation of
complexity and parallelization potential of the algorithm have to be derived from such
software descriptions under real input conditions [2, 4, 8] in order to be able to take
meaningful and efficient partitioning decisions. Depending on the specific goal of the
complexity analysis, different approaches and tools have been developed in [4, 6, 12,
14]: (1) profilers, modifying the program to make it produces run-time data, (2)
compilers, applying result-equivalent code replacements, (3) static methods, getting
information from the source code, (4) descriptions by means of hardware description
languages, (5) hardware specific tools, providing computational information to some
extent. Nowadays, such approaches and tools are unsuited for implementation
exploration at the C/C++ system-level description because either they apply at a stage
where architectural decision is already been taken, either they provide results that
depend too much on the simulation platform used or do not take into account the
complexity and parallelization potential features that depend only on the algorithm
itself and on the input data. Conversely, the SIT Software Instrumentation Tool [14,
13] is an automatic general instrumentation environment able to extract and measure
data flow and complexity of algorithms/systems specified in C/C++. SIT measures the
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processing complexity in terms of executed operators, data types and bandwidths of
the data exchanges, while still taking into account real input data conditions.

The problem of identifying one of the longest paths in a circuit is called a critical
path problem [7]. The length of the critical path plays a key role in setting the clock
cycle time and improving the chip performance. In message passing and shared-
memory parallel programs [1], communication and synchronization events result in
multiple paths through a program’s execution. The critical path of the program is
simply defined as the longest time-weighted sequence of events from the start of the
program to its termination. The critical path profiling is a metric explicitly developed
for parallel programs [1] and proved to be useful. The critical path profile is a list of
procedures and the time each procedure contributed to the length of the critical path.
Critical path profiling is an effective metric for tuning parallel programs and is
especially useful during the early stages of tuning a parallel program when load
imbalance is a significant bottleneck. In [7] the parallel algorithms for critical path
problem at the gate level are studied, while [1] describes a runtime non-trace-based
algorithm to compute the critical path profile of the execution of message passing and
shared-memory parallel programs. The idea described in [16] is to insert parallelism
analysis code into the sequential simulation program. When the modified sequential
program is executed, the time complexity of the parallel simulation based on the
Chandy-Misra protocol is computed. The critical path analysis also gives an effective
basis for the scheduling of computations. The work presented in [3] proposes a task
scheduling algorithm that allocates tasks with corrected critical path length. The
technique described in [5] schedules task graphs, analyzing dynamically the schedule
critical paths. The techniques based on the minimization of critical path length
estimated as the maximal clique weight of the sequential and parallel operator graphs
[9, 10] constitute an efficient approach to the generation of concurrent schedules.

Summarizing the previous results, it can be concluded that the majority of already
developed tools aim at the critical path profiling for tuning existing parallel programs
(Fig. 1a). In this paper, the objective is to propose a critical path model metric in order
to be able to find out in which degree a given algorithm described in C satisfies the
parallel implementation conditions (Fig.1b). The paper is organized as follows.
Section 2 defines the critical path model metrics on data dependences. Section 3
describes techniques for evaluating the critical path length. Section 4 presents the
mapping of the C-code into a C++-code version. Transformations for reducing the
critical path length are discussed in Section 5. Experimental results on parallelization
potential on two real world analysis cases are presented in Section 6.
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Fig. 1. Critical path profiling (a) of parallel code on event graphs versus critical path evaluation
(b) of sequential code on data dependences graphs.
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2 Definition of Critical Path on Data Dependences

The principles constituting the basis for the critical path model metric definition on a
sequential C-code are the following:

o The critical path is defined on the C-code’s execution data flow without taking
into account the true control flow.

o The critical path length and the system parallelization potential are defined in
terms of C language basic operations (including read and write operations)
complexity. The parameters of the machine executing the instrumented C-code
during evaluating the critical path are not taken into account.

¢ In the definition of the critical path, the Data Flow Execution Graph results from
the partial computation of the C-code using true input data. Therefore, such Data
Flow Execution Graph is used for the critical path definition instead of the
traditional Data Flow Graph.

The DFEG is represented as a finite non-cyclic directed weighted graph
constructed on the two types of node. The first type includes name-, address-, and
scalar value-nodes. The second type includes operator-nodes. The name- and address-

nodes are represented as and the value-nodes are represented aSIII. The
operator-nodes are denoted using the usual C-language notation: =, [], ++, --, +, *, %,
==, |=,<, >, +=, /=, read (r), write (w) and others. The graph nodes may be connected
by two types of arcs: the data dependence arc denoted — and the conditional
dependence arc denoted --*. The data dependence arc connects input names,
addresses and values with an operator and connects an operator with its output value
or address. The conditional dependence arc connects a conditional value with an
operator covered by a conditional instruction. A graph node without incoming arcs is
called an initial node and a graph node without outgoing arcs is called a final node. A
DFEG fragment for if ¢ then d*=2; C-code is shown in Fig. 2a. It contains four value-
nodes, one operator-node, three data and one conditional dependence arcs.

The DFEG is weighted with node complexities. All the complexities are
accumulated at the operator-nodes and each C-operator is represented by a fragment
in DFEG as shown in Fig. 2b. Read and write operators are associated with incoming
and outgoing arcs of the operator-node respectively. The critical path on the DFEG is
defined as a sequence of the graph nodes with the maximal sum of weights
connecting an initial node with a final node. The C-code complexity together with the
critical path length describes its parallelization potential. The complexity of the
fragment shown in Fig. 2b equals 4 basic operators. The internal critical path length
on the graph fragment equals 3 because two read operations are executed in parallel.
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Fig. 2. (a) Example DFEG fragment for if ¢ then d*=2; C-code. (b) Evaluation of the
complexity and critical path of a%=b; C-code.
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Similarly, assuming each basic operator complexity be equal to 1, Table 1
represents the C-language operator complexities and internal critical path lengths.
When the basic operator complexities are different, the table can be easily modified to
map the critical path length on any target architecture.

Table 1. Complexity and critical path length of C language operators.

Operation Operator Complexity Critical path
Assignment = 1 1
Reference & 2 2
Dereference * 2 2
Arithmetic +, - %/, % 3 2
Arithmetic-assignment t=, =, *= /=, %= 4 3
Indexing [ 3 2
Increment (decrement) ++, -- 3 3
Unary minus - 2 2
and others

void main() {
unsigned long n=21414;
int m[5], k=0,
for(int i=0; i<5; i++) m[i]=0;
while(n) {m[n%10]=1; n/=10;}
for(int j=0; j<5; j++) if(m[j]) k++;
}

Fig. 3. C-code for counting 1, 2, 3, 4 and 5 digits in integer ».
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Fig. 4. The Data Flow Execution Graph (DFEG) for the C-code shown in Fig. 3.
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Table 2. Evaluation of the complexity of graph shown in Fig. 4.

Operator Operator complexity Number of operators Total complexity
= 1 14 14
[ 3 15 45
< 3 12 36
++ 3 13 39
/= 4 5 20
% 3 5 15
read 1 5 5
> =174

An example C-code for counting digits in an integer is presented in Fig. 3. The
corresponding DFEG is shown in Fig. 4. The array components are treated as separate
scalar elements. The results evaluating the algorithm complexity are reported in Table
2. The overall complexity is 174 basic operators.

3 Techniques for Critical Path Evaluation

The approach described in this paper to evaluate the critical path length consists in the

preliminary generation of the DFEG by means of performing partial computations on

the C-code’s DFG (Fig. 5a) under certain meaningful input data sets. Given the

complexity and internal critical path length of each operator-node in the DFEG, we

can evaluate the external critical path for each address-, value- and operator-node in

DFEG using the following simple recursive technique:

1. If val is an initial name-, address- or value-node then its external critical path
length cpl(val)=0.

2. If val is a value- or address-node and op 1,...,0p_r are operator-predecessors of
val (Fig. 6b), then its critical path length cpl(val) = max(cpl(op 1), ..., cpl(op_r)).

3. If op is an operator-node and val I, ...,val k are value-address-predecessors of op
(Fig. 6a), then the operator critical path length is cpl(op) = cplint(op)+
max(cpl(val_1),...,cpl(val_k)), where cplint(op) is the op operator’s internal
critical path length.
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Fig. 5. (a) Critical path evaluation by means of explicitly generation of DFEG; (b) Dynamic
evaluation of the critical path by means of instrumenting and executing the C-code.
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Fig. 6. (a) The graph fragment for evaluating the critical path for an operator; (b) The graph
fragment for evaluating the critical path for a value (address).

Since the number of nodes in the DFEG is equal to the number of operation calls
during the program’s execution, explicitly building the graph is not practical for long
running programs. One way to overcome this limitation is to develop a technique that
does no require building the graph. Such a technique is based on the flow shown in
Fig. 5b. First, the C-code is instrumented and is transformed into an equivalent C++-
code, in terms of the operators applied to the input data. Second, the C++-code is
executed under the given input data, computing output data and evaluating the critical
path and parallelization potential of the algorithm. In the C++-code, an additional
variable ¢pl/ is bound with each actual scalar variable of the C-code (Fig. 7). The
execution of a C-code operation also results in computing a new value of the
associated additional variable in the C++-code.

In Fig. 4, address- and value-nodes are weighted with external critical path
lengths. The critical path of the whole DFEG is shown in bold. The critical path
length equals 30. The DFEG total complexity equals 174. The bounding possible
acceleration describing the parallelization potential of the C-code is equal to 5.8.

cepl(var_1) | var 1 | | var k | cpl(var_k)

@ cplint(op)

cpl(var) = cplint(op) + max(cpl(var_1), ... ,cpl(var_k)))

Fig. 7. The graph fragment for dynamic evaluation of the critical path.

4 Mapping the C-Code into a C++-Code Version

While mapping the source C-code into a C++-code version, the following parts of the
C-code have to be instrumented to evaluate the parallelization potential of the
algorithm: data types and data objects, operators, control structures, and functions. To
accomplish the evaluation, global and local classes and objects are used in the
instrumented C++-code. Among them, there is a critical path stack implementing the
mechanism of processing the conditional dependences associated with the nested
control structures.

The basic types of the C language are mapped into classes in the C++ language.
Each class contains a data element for a scalar variable from the C-code, a data
element for the external critical path length and functions defining various operators
on the data. Declarations of pointers to the basic types in the C-code are replaced with
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appropriate classes in the C++-code. An array of elements of a basic type in the C-
code is mapped to an array of objects of the corresponding instrumented type. Other
composite types of the C language are instrumented in the similar way. All the
operators on addresses and values that will be performed during the C-code execution
are instrumented during transition from the C-code to the C++-code. The operators on
the C-types are overloaded by member functions of the instrumenting C++-classes.
The C-functions are instrumented in such a way as to create transparency in
transmission of the dependences from the external environment to the function body
and from the function body to the external environment. The C-code complexity and
critical path can be evaluated for any part of the C-code by means of control elements.

5 Ciritical Path Reduction by Means of C-Code Transformation

The true control structures of the C-code do not permit the direct implementation of
the bounding acceleration [11]. The transformation methodology is a mechanism
searching for appropriate architectural implementations. It allows the reduction of the
execution time (control steps and clock cycles) at the same constraints on resources
and approaches to the bonding acceleration. Two types of transformations are
investigated in the context of architectural synthesis. The first type transformations
aim at reducing the critical path. The transformations of the second type aim at
breaking the true control structures in order to increase the effectiveness of behavioral
synthesis and scheduling techniques. The transformation methodology allows the
implementation of the parallelization potential in architectures through C-code
transformation. The transformations approach DFG to DFEG.

7R gL e )
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Fig. 8. The DFEG for the C-code shown in Fig. 3 and transformed by means of extracting
computations from conditional statements.
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The equivalent transformation of the source C-code is a way of reducing the
critical path length and increasing the parallelization potential. The control and data
flow transformation rules allowing the critical path reduction are defined as follows:
(1) restructuring, split and transformation of statements; (2) extraction of
computations from control structures; (3) algebraic transformation of arithmetic, logic
and other type of expressions; (4) merge of expressions and statements; (5) unfolding
loops and others. In order to be able to apply other transformation rules to the source
C-code, the loop statements should be preliminary transformed by moving the
iteration scheme into the loop body. Although the extraction of operators from control
structures and other transformations can imply introducing additional variables and
computations, it is an efficient way of accelerating the computations and performing
the computations in advance and in parallel.

The procedure of increasing the parallelization potential of C-code is an iterative
process. First the C-code is transformed and rebuild. Then it is instrumented and
mapped to a C++-code version. After the execution of the C++-code and estimation of
the critical path and bound acceleration, the source C-code can be transformed again
to perform the next iteration. Fig. 8 illustrates the usefulness of transformation rules
on the C-code presented in Fig. 3. The critical path length is reduced from 30 to 25.
The bounding possible acceleration potential increases from 5.8 to 6.96.

6 Results

Several experiments on the critical path and parallelization potential evaluation for
two real benchmarks have been executed: Cryptographic toolkit [15] and Wavelet
algorithm [13].

6.1 Cryptographic Toolkit

The RSAREF is a cryptographic toolkit [15] designed to facilitate rapid development
of Internet Privacy-Enhanced Mail (PEM) implementations. RSAREF supports the
following PEM-specified algorithms: (1) RSA encryption and key generation, as
defined by RSA Data Security's Public-Key Cryptography Standards (PKCS), (2)
MD2 and MD5 message digests and (3) DES (Data Encryption Standard) in cipher-
block chaining mode. The RSAREF is written entirely in C.

With RDEMO the cryptographic operations of signing, sealing, verifying, and
opening files, as well as generating key pairs can be performed. Three series of
experiments have been made: (1) Sign a file with private key, (2) Generate random
DES key, encrypt content, and encrypt signature with DES key (seal a file) and (3)
Generate RSA public/private key pair. Experimental results are presented in Tables 3
to 6. The possible bounding acceleration due to the possible parallelization of C-code
varies from 42.21 to 136.93. Fig. 9 and Fig. 10 describe the algorithm complexity,
critical path length and bound acceleration versus the file and key sizes.
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Table 3. Experimental results for RSAREF (sign a file).

Content size (Bytes) Algorithm complexity Critical path Acceleration
281 21°804°816 502’000 43.44
621 21°826°260 509’660 42.83
971 21°846°076 517°582 42.21

Table 4. Experimental results for RSAREF (seal with sign).

Content size (Bytes) Algorithm complexity Critical path Acceleration
281 26°781°944 5027685 53.28
621 29°553°488 5107345 57.91
971 32°455°414 518’267 62.62

Table 5. Experimental results for RSAREF (seal without sign).

Content size (Bytes) Algorithm complexity Critical path Acceleration
281 4°978°890 77°491 64.25
621 7°728°936 77°491 99.74
971 10°611°022 77°491 136.93

Table 6. Experimental results for RSAREF (keypair generation).

Key size (Bits) Algorithm complexity Critical path Acceleration
508 0.6E9 13.8E6 43.89
767 3.0E9 90.0E6 33.41
1024 21.9E9 806.4E6 27.12

0 Complexity * 1E6 H Critical path * 1E4 [ Acceleration * 1E
151

101

281 621 971

Fig. 9. Algorithm complexity, critical path length, and acceleration versus file size for seal.
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Fig. 10. Algorithm complexity, critical path length, and acceleration versus key size for key
pair generation.
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6.2 Wavelet Algorithm

More impressive results have been obtained for the two-dimensional Wavelet codec
implementations proposed in [13]. The possible bounding acceleration varies from
30’932 to 1’112°331. The data flow computations to be incorporated in the C-code
implementation constitute 37.9% and the control flow computations constitute 62.1%.
After the equivalent transformation of WAVELET C-code and modifying its DFG,
the critical path length has been reduced by 16.7%.

7 Conclusion

The parallelization potential evaluation tool together with the transformation
techniques complements the behavioral synthesis tools. Analyzing the results obtained
by the tool, the most promising algorithm can be selected among many alternatives.
Moreover, the equivalent transformation of algorithm such as for the bounding of
possible acceleration of the future parallel architecture can be performed. The critical
path length influences significantly the scheduling results at any constraints on
resources. The schedule cannot be faster than the critical path length. The reduction of
the critical path guarantees more powerful scheduling results and implies the
improvement in the trade off “complexity—delay” in behavioral synthesis [11].

Acknowledgements. The authors are grateful to Massimo Ravasi and Clerc
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