Skip to main content

Minimum Recombinant Haplotype Configuration on Tree Pedigrees

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 2812))

Abstract

We study the problem of reconstructing haplotype configurations from genotypes on pedigree data under the Mendelian law of inheritance and the minimum recombination principle, which is very important for the construction of haplotype maps and genetic linkage/association analysis. Li and Jiang [9,10] recently proved that the Minimum Recombinant Haplotype Configuration (MRHC) problem is NP-hard, even if the number of marker loci is 2. However, the proof uses pedigrees that contain complex mating loop structures that are not common in practice. The complexity of MRHC in the loopless case was left as an open problem. In this paper, we show that loopless MRHC is NP-hard. We also present two dynamic programming algorithms that can be useful for solving loopless MRHC (and general MRHC) in practice. The first algorithm performs dynamic programming on the members of the input pedigree and is efficient when the number of marker loci is bounded by a small constant. It takes advantage of the tree structure in a loopless pedigree. The second algorithm performs dynamic programming on the marker loci and is efficient when the number of the members of the input pedigree is small. This algorithm also works for the general MRHC problem. We have implemented both algorithms and applied the first one to both simulated and real data. Our preliminary experiments demonstrate that the algorithm is often able to solve MRHC efficiently in practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceto, L., Hansen, J.A., Ingólfsdóttir, A., Johnsen, J., Knudsen, J.: The complexity of checking consistency of pedigree information and related problems. Manuscript (2003)

    Google Scholar 

  2. Daly, M., Rioux, J., Schaffner, S., Hudson, T., Lander, E.: High-resolution haplotype structure in the human genome. Nat Genet 29(2), 229–232 (2001)

    Article  Google Scholar 

  3. Douglas, J.A., Boehnke, M., Gillanders, E., Trent, J., Gruber, S.: Experimentally-derived haplotypes substantially increase the efficiency of linkage disequilibrium studies. Nat Genet 28(4), 361–364 (2001)

    Article  Google Scholar 

  4. Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12, 921–927 (1995)

    Google Scholar 

  5. Gabriel, S.B., et al.: The structure of haplotype blocks in the human genome. Science 296(5576), 2225–2229 (2002)

    Article  Google Scholar 

  6. Gary, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1, 237–267 (1976)

    Article  Google Scholar 

  7. Gusfield, D.: Haplotyping as perfect phylogeny: conceptual framework and efficient solutions. In: Proc. RECOMB, pp. 166–175 (2002)

    Google Scholar 

  8. Helmuth, L.: Genome research: Map of the human genome 3. 0. Science 293(5530), 583–585 (2001)

    Article  Google Scholar 

  9. Li, J., Jiang, T.: Efficient rule-based haplotyping algorithms for pedigree data. In: Proc. RECOMB 2003, pp. 197–206 (2003)

    Google Scholar 

  10. Li, J., Jiang, T.: Efficient inference of haplotypes from genotypes on a pedigree. J. Bioinfo. and Comp. Biol. 1(1), 41–69 (2003)

    Article  Google Scholar 

  11. Lam, J.C., Roeder, K., Devlin, B.: Haplotype fine mapping by evolutionary trees. Am J Hum Genet 66(2), 659–673 (2000)

    Article  Google Scholar 

  12. Lin, S., Speed, T.P.: An algorithm for haplotype analysis. J Comput Biol 4(4), 535–546 (1997)

    Article  Google Scholar 

  13. Lippert, R., Schwartz, R., Lancia, G., Istrail, S.: Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem. Briefings in Bioinformatics 3(1), 23–31 (2002)

    Article  Google Scholar 

  14. Liu, J.S., Sabatti, C., Teng, J., Keats, B.J., Risch, N.: Bayesian analysis of haplotypes for linkage disequilibrium mapping. Genome Res 11(10), 1716–1724 (2001)

    Article  Google Scholar 

  15. Niu, T., Qin, Z.S., Xu, X., Liu, J.S.: Bayesian haplotyping interface for multiple linked single-nucleotide polymorphisms. Am J Hum Genet 70(1), 157–169 (2002)

    Article  Google Scholar 

  16. O’Connell, J.R.: Zero-recombinant haplotyping: applications to fine mapping using snps. Genet Epidemiol 19(Suppl. 1), S64–S70 (2000)

    Google Scholar 

  17. Qian, D., Beckman, L.: Minimum-recombinant haplotyping in pedigrees. Am J Hum Genet 70(6), 1434–1445 (2002)

    Article  Google Scholar 

  18. Seltman, H., Roeder, K., Delvin, B.: Transmission/disequilibrium test meets measured haplotype analysis: family-based association analysis guided by evolution of haplotypes. Am J Hum Genet 68(5), 1250–1263 (2001)

    Article  Google Scholar 

  19. Service, S.K., Lang, D.W., Freimer, N.B., Sandkuijl, L.A.: Linkage-disequilibrium mapping of disease genes by reconstruction of ancestral haplotypes in founder populations. Am J Hum Genet 64(6), 1728–1738 (1999)

    Article  Google Scholar 

  20. Stephens, M., Smith, N.J., Donnelly, P.: A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4), 978–989 (2001)

    Article  Google Scholar 

  21. Tapadar, P., Ghosh, S., Majumder, P.P.: Haplotyping in pedigrees via a genetic algorithm. Hum Hered 50(1), 43–56 (2000)

    Article  Google Scholar 

  22. Thomas, A., Gutin, A., Abkevich, V., Bansal, A.: Multilocus linkage analysis by blocked gibbs sampling. Stat Comput, 259–269 (2000)

    Google Scholar 

  23. Toivonen, H.T., Onkamo, P., Vasko, K., Ollikainen, V., Sevon, P., Mannila, H., Herr, M., Kere, J.: Data mining applied to linkage disequilibrium mapping. Am J Hum Genet 67(1), 133–145 (2000)

    Article  Google Scholar 

  24. Wijsman, E.M.: A deductive method of haplotype analysis in pedigrees. Am J Hum Genet 41(3), 356–373 (1987)

    Google Scholar 

  25. Zhang, S., Zhang, K., Li, J., Zhao, H.: On a family-based haplotype pattern mining method for linkage disequilibrium mapping. Pac Symp Biocomput, 100–111 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doi, K., Li, J., Jiang, T. (2003). Minimum Recombinant Haplotype Configuration on Tree Pedigrees. In: Benson, G., Page, R.D.M. (eds) Algorithms in Bioinformatics. WABI 2003. Lecture Notes in Computer Science(), vol 2812. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39763-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39763-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20076-5

  • Online ISBN: 978-3-540-39763-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics