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Abstract. This paper presents a non-linear technique for noise reduc-
tion in video that is suitable for real-time processing. The proposed al-
gorithm automatically adapts to detected levels of detail and motion,
but also to the noise level, provided it is short-tail noise, such as Gaus-
sian noise. It uses a one-level wavelet decomposition, and performs inde-
pendent processing in four different bands in the wavelet domain. The
non-decimated transform is used because it leads to better results for
image/video denoising than the decimated transform. The results show
that from both a PSNR and a visual quality, the proposed filter outper-
forms the other state of the art filters for different image sequences.

1 Introduction

Video sequences are often corrupted by noise, e.g., due to bad reception of tele-
vision pictures. Some noise sources are located in a camera and become active
during image acquisition under bad lightning conditions. Other noise sources are
due to transmission over analogue channels. In most cases the noise is white and
gaussian, and in some cases low-level impulse noise (which we do not consider
in this paper).

Noise reduction in image sequences is used for various purposes, e.g. for visual
improvement in video surveillance. It is achieved through some form of linear or
non-linear operation on correlated picture elements. In the recent past a number
of non-linear techniques for video processing have been proposed [1–4] and were
proved superior to linear techniques.

Video denoising is usually done by temporal-only [5, 6] or spatio-temporal
[7, 8, 4] filtering. The third possibility (spatial-only filtering) is rarely considered
in the literature, perhaps because it often leads to quite visible artifacts. It is
generally agreed that in the case of low noise corruption, which is important
in many real video applications, spatio-temporal filtering performs better than
temporal filtering [7]. However in the case of spatio-temporal filtering there is
a danger of significantly reducing the effective resolution of video, i.e. spatial
blurring, especially in case of spatio-temporal recursive filtering. In general, the
best performance can be achieved by exploiting information from both future
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and past frames, but this leads to a delay of at least one frame which is unde-
sirable in some real-time applications. For this reason, many algorithms exploit
information from past frames only (usually the current frame and one or two
previous frames).

In any case dealing correctly with motion is a very important issue in video
processing. There are two general approaches for dealing with motion:

• Motion estimation and compensation [5, 9]
• Motion detection and performing some special operations in case of detected

motion [1, 4]
Examples of the first case, are techniques that apply a time-recursive filter

over an estimated motion trajectory. This approach yields good results provided
the motion estimation is accurate. In practice for computational reasons the
motion estimates are not accurate enough, which can cause certain artifacts.

In the second approach, based on the output of the motion detector, a spatio-
temporal filter is tuned to avoid motion blur in case of motion, and to filter as
much as possible in case of no motion. Since the motion detection is imprecise
due to noise, the filter must find a compromise between noise reduction and
blurring.

In this paper, we propose an algorithm that allows fast, real-time implemen-
tation. It is based on spatio-temporal recursive filtering and multiple threshold
averaging. It automatically adapts to motion - reducing the contribution of the
pixels in the previous fields, and to detail. We explain the main principle in sec-
tion 2 and extend it to the wavelet domain in section 3. In section 4 we present
experimental results and a comparison with other techniques. Finally in section
5 we present conclusions and give possible directions for further research.

2 Adaptive multiple class averaging in the base domain

In this paper we present a spatio-temporal recursive filter, based on multiple
threshold filtering. The idea was inspired by the still image processing technique
[10] where a sigma filter was proposed. The sigma filter takes all pixel values
within a “current” 3× 3 window for which the absolute difference to the central
pixel value is less than or equal to two times the standard deviation σ of Gaussian
noise and averages them to produce an output. The idea is that 95% of random
samples lie within the range of two standard deviations. Any pixel outside the
2σ range most likely comes from a different population (e.g. on the other side of
an edge) and, therefore should be excluded from the average. Due to the binary
weighting coefficients (zero for pixel values for which the absolute difference to
the central pixel value is higher than 2σ, and one for the other pixel values) a
shot-noise like effect occurred in the processed images, which is very annoying to
the viewer. This happened because for higher noise values there were not enough
or any pixel values in the neighborhood with weighting coefficient one, and thus
they remained unfiltered.

In order to avoid shot-noise like artifacts, our method proposes the following.
We classify grey pixel values into four different classes and weight them according
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Fig. 1. The General filter description in the base domain

to their class index in the averaging process, where classes are defined according
to the absolute difference between the pixel value and the central pixel value.

In this section we propose the general description of the filter method in
the base (non-transform) domain. In the following we denote an image pixel as
I(x, y, t), where (x, y) and t indicate the spatial and temporal location, respec-
tively. We consider a 3×3×2 sliding window, that consists of 3×3 pixels in the
current and previous frame, with r = (x, y, t) being the central pixel position,
in the current frame, and r′ = (x′, y′, t′) being any pixel position in the sliding
window. In the remainder of the paper we will use terms ‘current window - CW ’
and ‘previous window - PW ’ that correspond to the pixel values of the 3× 3× 2
sliding window from the current and the previous frame respectively.

The general description of the algorithm is shown in Fig.1. There, the function
of spatial detail, d(r), equals the local dispersion of the current window. In the
same figure, m(r) is a measure for the amount of detected motion and is defined
as the difference between the average grey value of the current window and the
average grey value of the previous window.

We mathematically define the output of our new filter O(r) as follows:

O(r) =
∑

r′ W (i(r′, r), d(r),m(r), t ′)I (r′)∑
r′ W (i(r′, r), d(r),m(r), t ′)

, (1)

where the weights W (i(r′, r), d(r),m(r), t ′) in (1) for a particular pixel r′ in the
window depend on the amount of detail d(r) and motion m(r) in the current
window. Furthermore, they depend on the difference in grey scale |I (r′) − I (r)|
through the class index i(r′, r) which can assume 4 values, and on weather r′

is in the current frame or in the previous frame, t ′= 0 or t ′= 1, respectively.
The lowest index value i = 0 corresponds to pixel values that are closest to the
central pixel value. Taking that into account, we intend to give more importance
to lower index classes in case of big spatial detail, to avoid blurring. On the other
hand in case of small spatial detail we intend to give similar importance to all
classes in order to perform stronger smoothing.

Although noise will be less reduced in case of bigger spatial detail, this is not
a problem: such regions contain high spatial frequencies and according to [9, 11]
the human eye is not very sensitive to those frequencies any way.
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Table 1. Values of constants

Constants non-transform domain wavelet domain

K1 0.1105 0.1105
K2 0.00102 0.00305
K3 0.0669 0.0669
K4 0.0142 0.0284
k 1.5 0.5

For each pixel r′, we define the absolute difference with the central pixel,
∆(r′, r), as follows:

∆(r′, r) = |I (r′) − I (r)|, (2)

according to which, four different classes i(r′, r) can be distinguished, in the
following way:

i(r′, r) =




0, ∆(r, r′) ≤ kσn

1, kσn < ∆(r′, r) ≤ 2kσn

2, 2kσn < ∆(r′, r) ≤ 3kσn

3, ∆(r′, r) > 3kσn

(3)

The optimal values for the thresholds used for distinguishing classes were
found experimentally, and the value of k is given in Table 1. For each pixel, r′,
that belongs to a certain class i the weighting function W (i , d ,m, t ′) is assigned
in the following way:

W (i , d ,m, t ′) =
{

exp(−i/(η(d)σn))β(m, t ′), i = 0, 1, 2
0, i = 3 (4)

where η(d) is used to modify the exponential function in (4) depending on the lo-
cally measured spatial detail in image, d . In addition, σn represents the standard
deviation of Gaussian noise estimated in the video.

We have experimentally found an appropriate shape of the function η(d), as
follows:

η(d) = K1 exp(−K2d) + K3 exp(−K4d), (5)

where the values of the constants Kj , j = 1, . . . , 4 are shown in Table 1. The
main idea behind this function is that it is inversely proportional to d , that is
in case of bigger spatial detail it should produce lower values, and vice versa.
This way η(d) will influence the slope of the exponential function in (4), in order
to give more importance to lower class indices i in case of bigger spatial detail.
However, the performance of the filter also depends on the shape of η(d). The
particular choice in (5) works well but more research is needed to find the best
choice.
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The function β(m, t ′) in (4) is meant to make the filter more robust against
motion. This function limits the contribution of the pixels from the previous
window in case of motion. Pixel values from the previous window yield a smaller
contribution than otherwise similar pixels from the current window. The bigger
m the smaller the contribution of the pixels from the previous window is. On the
contrary to other algorithms which use binary logic (motion: no - motion: yes )
we introduced fuzzy logic in our motion detection. The fuzzy logic is introduced
through the function β(m, t ′) that takes values in range the [0, 1] and is defined
as follows:

β(m, t ′) =
{

1, t ′= 0
exp(−γm), t ′= 1 , (6)

where the parameter γ is used to control the sensitivity of the motion detector,
i.e. the shape of the function β(m, t ′). The greater γ the more sensitive the
motion detector will be, and the greater the contribution of the pixel values
from the previous frame will be in the final output of the filter. The value of
γ was experimentally determined in order to get the best PSNR, for four test
sequences. We found that γ = 1/(2σ) is the optimal value.

3 Adaptive multiple class averaging in the wavelet
domain

The wavelet transform [12] naturally facilitates spatially adaptive algorithms. It
compresses essential information in an image into relatively few large coefficients,
that correspond to the main image details at different resolution scales.

In our application we have used a non-decimated transform with the quadratic
spline-wavelet [12, 13]. We have used only one level in the decomposition for the
sake of simplicity and time cost.

The general description of the algorithm is given in Fig. 2. First the direct
wavelet transform is performed and four different bands LL, LH, HL and HH are
obtained. After that, the LL, LH, HL and HH bands are processed with filters
that are special cases of the filter of section 2, which are specifically tuned to
the properties of each of the subbands. We call these filters LLF, LHF, HLF and
HHF filters, respectively.

The LLF filter is a simplified version of the filter described in section 2. The
function W (i , d ,m, t ′) in (4) now depends only on the class index i , i.e. the pixel
grey value, and is defined as follows:

W (i, d,m, t′) =




1, i = 0
0.2, i = 1
0.1, i = 2
0, i = 3

(7)

where the border values used for multiple thresholding are adapted to the wavelet
domain, using an appropriate value of k in the (3), which is shown in Table 1.
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Fig. 2. The General filter description for the wavelet based filtering

The Filters LHF, HLF and HHF are the basically equal to the filter described
in section 2 except for the following changes:

• The value of k in (3) is adapted to the wavelet domain, and is shown in
Table 1.

• The constant values Ki, i = 1, . . . , 4 were experimentally tuned to opti-
mize the performance of the filter, i.e. to adapt to the wavelet domain, and are
presented in Table 1.

• The motion parameter m is no longer computed internally (in LHF, HLF,
HHF) but is now computed on the filtered LL band, i.e. on the output of the
LLF filter.

After all four bands HH, HL, LH and LL have been processed, an inverse
wavelet transform is done, which produces the output sequence.

4 Experimental results

To evaluate the results of the proposed time-recursive filter in the base and the
wavelet domain, in the presence of white Gaussian noise, both peak signal to
noise ratio (PSNR) and visual evaluation were used. The PSNR values equally
high and low frequency components, whereas the human eye is less sensitive to
high frequency components. Thus, both the PSNR and visual evaluation were
taken into account to give the final evaluation of the result.

The results are compared with those of the state of the art rational filter
[4] (’Rational’), the 3D K-NN filter [14] (’3D K-NN’), and the adaptive 3D K-
NN filter [15] (’Adaptive K-NN’). In Fig. 3, the filters are compared in terms
of PSNR, for the ’Salesman’, the ’Flower Garden’, the ’Trevor’ and the ’Miss
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America’ sequences respectively, for the case of Gaussian noise, σ = 10. It should
be noted that all test sequences were grey-scale images with pixel value 0 - 255.

In addition the notations ‘WAVTHR’ and ‘THRF’ in the PSNR graphs stand
for the filter explained in section 3 and section 2, respectively.

The visual evaluation has determined that our method performs much better
in comparison to the other mentioned methods. The original and processed se-
quences can be found on the web: http://telin.ugent.be/˜vzlokoli/VLBV03/.
It preserves image details well and at the same time sufficiently clears the
noise in non-detailed parts of the image. The PSNR obtained by the proposed
‘WAVTHRF’ filter is not only bigger on average for each of the test sequences,
but almost on any frame. It can be seen that PSNR is fluctuating very little
through the frames, and the averaged PSNR through the frames is around 1dB
better than for the other methods. However we realize that PSNR is not always
a good indication of the visual quality, so we also judge the visual quality. From
this point of view the proposed method proved superior on all four sequences.

5 Conclusion

A time recursive spatio-temporal filter has been presented in this paper. It is
consistently better than other methods and relatively simple. Although, the com-
putation time is relatively high the algorithm could be adapted for real-time
implementation, e.g. by piece-wise linear approximation of functions (4-6) or
quantizing certain parameter values in the algorithm, without a big loss of per-
formance. Further research could be aimed at using different wavelet functions
for decomposition, decimated transform which could demand less computation
time, or using more wavelet decomposition levels. In addition, improved motion
detection, or motion estimation could be included in the algorithm.
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(a) ‘Salesman’ (b) ‘Flower Garden’

0 10 20 30 40 50
frame index

28

30

32

34

P
S

N
R

WAVTHRF
Rational
THRF
Adaptive 3D K−NN
3D K−NN

0 50 100 150
frame index

21
21.5

22
22.5

23
23.5

24
24.5

25
25.5

26
26.5

27
27.5

28
28.5

29
29.5

30
30.5

P
S

N
R

WAVTHRF
Adaptive 3D K−NN
Rational
3D K−NN
THRF

(c)‘Trevor’ (d)‘Miss America’

0 10 20
frame index

28

30

32

34

36

P
S

N
R

WAVTHRF
Rational
THRF
Adaptive 3D K−NN
3D K−NN

0 50 100 150
frame index

30

32

34

36

P
S

N
R

WAVTHRF
Rational
THRF
Adaptive 3D K−NN
3D K−NN

Fig. 3. Comparison in terms of PSNR for different sequences


