Discovering Unbounded Episodes
in Sequential Data*

Gemma Casas-Garriga

Departament de Llenguatges i Sistemes Informatics
Universitat Politecnica de Catalunya
Jordi Girona Salgado 1-3, Barcelona
gcasas@lsi.upc.es

Abstract. One basic goal in the analysis of time-series data is to find
frequent interesting episodes, i.e, collections of events occurring
frequently together in the input sequence. Most widely-known work de-
cide the interestingness of an episode from a fixed user-specified window
width or interval, that bounds the length of the subsequent sequential as-
sociation rules. We present in this paper, a more intuitive definition that
allows, in turn, interesting episodes to grow during the mining without
any user-specified help. A convenient algorithm to efficiently discover the
proposed unbounded episodes is also implemented. Experimental results
confirm that our approach results useful and advantageous.

1 Introduction

A well-defined problem in Knowledge Discovery in Databases arises from the
analysis of sequences of data, where the main goal is the identification of fre-
quently-arising patterns or subsequences of events. There are at least two related
but somewhat different models of the sequential pattern mining. In one of them
each piece of data is a sequence (such as the aminoacids of a protein, the banking
operations of a client, or the occurences of recurrent illnesses), and one desires to
find patterns common to several pieces of data (proteins with similar biological
functions, clients of a similar profile, or plausible consequences of medical deci-
sions). See [2] or [7] for an introduction to this model of a sequential database.
The second model of sequential pattern matching is the slightly different ap-
proach proposed in [6], where data come in a single, extremely long stream, e.g.
a sequence of alarms in a telecommunication network, in which some recurring
patterns, called episodes, are to be found.

Both problems seem similar enough, but we concentrate here on the second
one of finding episodes in a single sequence. Abstractly, such ordered data can
be viewed as a string of events, where each event has an associated time of
occurrence. An example of an event sequence is represented in Figure [Il Here A,
B and C are the event types, such as the diferent types of user actions marked
on a time line.

* This work is supported in part by EU ESPRIT IST-1999-14186 (ALCOM-FT), and
MCYT TIC 2002-04019-C03-01 (MOISES)

N. Lavra¢ et al. (Eds.): PKDD 2003, LNAI 2838, pp. 83-[@4, 2003.
© Springer-Verlag Berlin Heidelberg 2003

84 Gemma Casas-Garriga

A C B

1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T -

20 24 98

Fig. 1. A sequence of events

We briefly describe the current approaches to interesting episodes, point out
some disadvantages, and then propose, as our main contribution, an alternative
approach for defining a new kind of serial episodes, i.e unbounded episodes. We
finally explain how previous algorithms for finding frequent sets can be applied
to our approach, and suggest an interpretation of parallel episodes as summaries
of serial episodes, with the corresponding algorithmic consequences. Finally, we
describe the results of a number of preliminary experiments with our proposals.

2 Framework Formalization

To formalize the framework of the time-series data we follow the terminology,
notation, and setting of [6]. The input of the problem is a sequence of events.
Given a set E of event types, an event is a pair (4,t) where A € E is an event
type and ¢ is its occurrence time.

An event sequence is a triple (s, T, T.), where T is called the starting time of
the sequence, T, is the ending time, and s has the form: s=((A1,t1!), .., (!4,,tn))
where A; is an event type, and ¢; is the associated occurrence time, with Ty <
t; <tig1 <T.foralli=1,...,n— 1. The time ¢; can be measured in any time
unit, since this is actually irrelevant for our algorithms and proposals.

2.1 Episodes

Our desired output for each input sequence is a set of frequent episodes. An
episode is a partially ordered collection of events occurring together in the given
sequence. Episodes can be described as directed acyclic graphs. Consider, for
instance episodes «, # and 7 in Figure[2l Episode « = B — C'is a serial episode:
event type B occurs before event type C' in the sequence. Of course, there can be
other events occurring between these two in the sequence. Episode § = {A, B}
is a parallel episode: events A and B occur frequently close in the sequence, but
there are no constraints about the order of their appearences. Finally, episode ~y
is an example of hybrid episode: it occurs in a sequence if there are occurences
of A and B and these precede an occurrence of C, possibly, again, with other
intervening events.

More formally, an episode can be defined as a triple (V, <, g) where: V is a
set of nodes, < is a partial order relation on V', and g : V — FE is a mapping
associating each node with an event type. We also define the size of an episode
as the number of events it contains, i.e, |V|. The interpretation of an episode is
that events in g(V') must occur in the order described by <. In this paper we
will only deal with serial and parallel episodes.

Discovering Unbounded Episodes in Sequential Data 85

e B Y

Fig. 2. Types of episodes

Definition 1. An episode § = (V',<’,¢’) is a subepisode of a = (V,<,g),
noted by 8 C «, if there exists an injective mapping f : V' — V such that ¢'(v) =
g(f(v)) for allv e V', and for all v,w € V' with v <" w also f(v) < f(w).

3 Classical Approaches to Define Interesting Episodes

In the analysis of sequences we are interested in finding all frequent episodes
from a class of episodes which can be interesting to the user. In this section
we will mainly take the classical widely-used work of [6] as a reference, i.e, we
state that to be considered interesting, the events of an episode must occur close
enough in time.

3.1 Winepi

In the first approach of [6], the user defines how close the events of an interesting
episode should be by giving the width of the time window within which the
episode must occur. The number of possible windows of a certain width win in
the sequence (s, Ts, T,) is exactly: T, —Ts +win — 1, and we denote by W (s, win)
the set of all these windows of size win. Thereby, the frequency of an episode a
in s is defined to be:

{w € W (s, win)|a occurs in w}

fr(a,s,win) =

So, an episode is frequent according to the number of windows where that episode
has occured, or to its ratio to the total number of possible such windows in the
sequence. To be frequent, the ratio fr(a,s,win) of an episode must be over
a minimum user-specified real value. The Winepi approach applies the Apriori
algorithm to find the frequency of all the candidate episodes in the sequence as
though each sliding window were a transaction with ordered events.

Once the frequent interesting episodes are discovered from the sequence, the
second goal of the approach is to create the episode association rules that
hold over a certain minimum confidence. For all episodes 8 C «, an episodal
rule § = « holds with confidence:

fr(a, s, win)

conf(f = a)=

86 Gemma Casas-Garriga

3.2 Minepi

Minepi is based on minimal occurrences of episodes in a sequence. For each
frequent episode, the algorithm finds the location of its minimal occurrences.
Given an episode o and an event sequence s, we say that the interval w = [ts, t.)
is a minimal occurrence of « in s, if:

(1) « occurs in the window w.
(2) « does not occur in any proper subwindow on w.

Basically, the applied algorithm is Apriori: it locates, for every episode going
from the smaller ones to larger ones, its minimal occurrences. In the candidate
generation phase, the location of minimal occurrences of a candidate « is com-
puted as a temporal join of the minimal occurrences of two subepisodes of a.

This approach differs from Winepi in the fact that it does not use a frequency
ratio to decide when an episode is frequent. Instead, an episode will be considered
frequent when its number of minimal occurrences is over an integer value given
by the user. This is a consequence of the fact that the lengths of the minimal
occurrences vary, so that a uniform ratio could be misleading. One advantage of
this approach is that allows the user to find final rules with two windows widths,
one for the left-hand side and one for the whole rule, such as “if A and B occur
within 15 seconds, then C follows withing 30 seconds”. So, in this approach an
episode association rule is an expression S[win,] = «[winz], where 3 and
a are episodes such that C «a, and winy and wing are integers specifying
interval widths. The informal interpretation of the rule is that if episode 3 has a
minimal occurrence at interval [ts, t.) with t, —ts < wing, then episode a occurs
at interval [ts,t.) for some t, such that ¢, — ts < win,.

The confidence of an episode association rule S[win,] = awins] with
B C « and two user-specified interval widths win; and wins is the following:

conf(Blwin] = afwiny]) =

{[ts,te)emo(B) s.t te—ts<wini and [ts,ts+wing)Emo(a)l}]
[{[ts,te)emo(B) and t;—t.<win, }|

where mo(«) are the set of minimal occurrences of the episode « in the original
input sequence. So, even if there is no fixed window size (as occurred in Winepi
approach) and apparently minimal occurrences are not restricted in length, now
the user needs to specify the time bounds win; and winy for the generation of
the subsequent episode rules and their confidences. These values force minimal
occurrences to be bounded in a fixed interval size of at most win, time units
during the mining process.

3.3 Some Disadvantages of These Previous Approaches

We summarize below some of the observed disadvantages in Winepi and Minepi.

— In Winepi the window width is fixed by the user and it remains fixed through-
out the mining. Consequently, the size of the discovered episodes is limited.

Discovering Unbounded Episodes in Sequential Data 87

Winepi just reduces the problem of mining the long event sequence to a
sequential database (such as in [2]), where now each transaction is a fixed
window.

— In Minepi the user specifies two time bounds for the creation of the sub-
sequent episode association rules. These intervals make the final minimal
occurrences to be bounded in size, since just those occurrences contained
within the bounds are counted.

— Both Minepi and Winepi require the end user to fix one parameter with
not much guidance on how to do it. Intervals or windows too wide can lead
to misleading episodes where the events are widely separated among them;
so, the subsequent rules turn out to be uninformative. On the other hand,
interval or windows set too tight give rise to overlapping episodes: if there
exists an interesting episode, «, whose size is larger than the fixed window
width, then that episode will never fit in any window and, consequently, «
will be discovered just partially.

— Minepi does not use a frequency ratio to decide whether an episode is fre-
quent. This makes difficult the application of sampling in the algorithms of
finding frequent episodes.

— In case the user decides to find the episode association rules for a different
time bound (a different window size in Winepi or a different interval length
for Minepi), then the algorithm that finds the source of frequent episodes
has to be run again, incurring in a inconvenient overhead.

— Both approaches do not seem truly compatible for those problems where the
adjancency of the events in the discovered episodes is a must (such as protein
function identification). Neither Winepi or Minepi allow to set this kind of
restriction between the events of an interesting episode.

4 Unbounded Episodes

In order to avoid all these drawbacks and be able to enlarge the window width au-
tomatically throughout the mining process, we propose the following approach.
We will consider a serial or parallel episode interesting if it fulfills the following
two properties:

(1) Its correlative events have a gap of at most tus time units (see figure [3).
(2) Tt is frequent.

tus tus tus tus
A—-B—=C {4, B, C}
a B

Fig. 3. Example of serial and parallel unbounded episodes

So, in our proposal, the measure of interestingness is based on tus, the time-
unit separation between correlative events in the episode. This number of
time units must be specified by the user. The above two episodes « and [are

88 Gemma Casas-Garriga

examples of the interpretation of our approach. In the serial episode «, the
distance between A and B is tus, and the distance between B and C is also tus
time units. Besides, despite not specifying the distance between events A and C,
it can be clearly seen they are at most 2 X tus time units away. In the parallel
episode 3, distance between correlative events A, B and C, regardless of the
order of their appearences in the sequence, must be of at most tus time units.
More generally, an episode of size e may span up to (e — 1) X tus time units.

Now, every episode that is candidate to be frequent, will be searched in
windows whose width will be delimited by the episode size: an episode with e
events will be searched in all windows in the sequence of width (e — 1) X tus time
units. Thus, the window width is not bounded, nor is the size of the episode,
and both will grow automatically, if necessary, during the mining. This explains
the name chosen: we are mining unbounded episodes.

At this point, it is worth mentioning the work of [§] (contributing with the
algorithm ¢SPADE) and (the algorithm GSP). These two papers integrate
inside the mining process the possibility to define a max-gap constraint between
the elements of the frequent sequences found in a sequential database. However,
this max-gap constraint in [§] or [7] does not lead to an unbounded class of
patterns as we present here. The reason is that they work on the sequential
database problem, and so, the frequent mined patterns turn out to be naturally
bounded by the lenght of the transactions in the database.

With our approach the window width is allowed to grow automatically with-
out any predetermined limits. The frequency of an episode can be defined in
the following way: let us denote by Wy (s, win) the total set of windows in a
sequence (s,T;,Ty) of a fixed width win = k x tus time units (the number of
such windows in the sequence is T, — Ty + win — 1). Then:

Definition 2. The frequency of an episode o of size k+1 in a sequence(s,T;, T})
18:
H{w € Wi (s, win)|a occurs in w}|

fr(a, s, tus) = (s, win)]

where win = (Jo| — 1) X tus = k X tus.

Note that the dependence on win, for fixed «, is here simply a more natural
way to reflect the dependence on the user-supplied parameter tus, but both
correspond to the same fact since win and tus are linearly correlated.

To sum up, every episode a will be frequent if its frequency is over a minimum
user-specified frequency, that is, according to the number of windows in which
it occurs; however, the width of that window depends on the number of events
in a. So, the effect in the algorithm is that, as an episode size becomes bigger
and the number of its events increases, the proper window in which that episode
is searched also increases its width; and simultaneously the ratio that has to be
compared with the user-specified desired frequency is appropriately adjusted.

Discovering Unbounded Episodes in Sequential Data 89

4.1 Episode Association Rule with Unbounded Episodes

The approach of mining unbounded episodes will be flexible enough to allow the
generation of association rules according to two interval widths (one for the left
hand side, and one for the whole rule as occurred with Minepi).

An unbounded episode rule will be an expresion 3[n;] = a[n,|, where
and « are unbounded episodes such that § C «, and n; and n,. are integers such
that n; = |G| and n, = |a] — |B]. The informal interpretation of these two new
variables n; and n, is the number of events occurring in the left hand side (n;)
and new events implied in the right hand side (n,.) of the rule respectively.

So, we can rewrite any unbounded episode rule §[n;] = aln,] in terms of a
rule with two window widths B[wi] = afws] by considering wy = (n; — 1) X tus
and wy = n, X tus. This transformation will lead to an easy and informative
interpretation of the rule: “if events in 8 occur within w; time units, then, the
rest of the events in « will follow within ws time units”.

One of the advantages of this proposed approach is that focusing our episode
search on the time-unit separation between events, will allow to generate the
best unbounded episode rule 3[n;] = «a[n,] (and so, the best rule flw;] = afws])
without fixing any other extra parameter: neither n; or n, will be user-specified
for any rule, since these values will be chosen from the best antecedent and
consequent maximizing the value of confidence for that rule (or in other words,
n; and n, will be uniquely determined by the size of the episode being the
antecedent and the size of the episode being the consequent in the best rule
according to confidence ratio).

Since in our approach we have a ratio of frequency support, we can define
the confidence of a rule g = « for § C « as:

_ fr(a, s, tus)

conf(f = a)= Fr(3. s tus)

where the value of fr(a,s,tus) for a fixed «, depends on the occurrences of «
in all windows of lenght (Ja| — 1) x tus in the sequence. Note that since [is
a subepisode of «, the rule right-hand side « contains information about the
relative location of each event in it, so the “new” events in the rule right-hand
can actually be required to be positioned between events in the left-hand side.
The rules defined here are also rules that point forward in time (rules that point
backwards can be defined in a similar way).

As we see, the values n; and n,. of a rule do not affect the confidence, and they
can be determined after having chosen the best rule by following the procedure:

for each maximal episode «,
BlIBIl = afla| — 18] = arg.maz{conf(B = a) st B C a}

So, the final windows widths (w; = |3] x tus and we = (|a] — |B]) X tus) are
determined by the best rule in terms of confidence, and this can vary from one
rule to the other, adapting always to the best combination. Note that instead of
confidence, any other well-defined metric for episodes could be used to select the
best rule in this procedure, and so, different unbounded rules would be taken.

90 Gemma Casas-Garriga

A BC B A C B A C
| Ly |
1 I 1

Fig. 4. Example of an event sequence

Example in figure [will serve to illustrate the advantatges of our unbounded
episode approach. The sequence of this figure shows that we could consider
frequent the episodes: 8 = {4, B} and v = {A, B} — C (as they are represented
as a graph in figure [2). The best association rule we can find in this example is
the following: {A, B} = C, that should have a confidence of 1 for this presented
piece of sequence.

For Winepi, at least a fixed window of 5 time units of width should be
specified to find both § and ~. But this parameter depends on the user and
it is not intuitive enough to chose the right value. In this example, if the user
decides a window width of 3 time units, then the episode v would never be fully
discovered and the rule will never be generated.

With Minepi, the problem comes when specifying the two windows widths
for the episode association rule. In case the user decides win; = 3 and winy = 4,
the generated rule would be S[3] = +[4], that has a confidence of just 1/3 in
this example. It is not the best association rule, and it is due to the value of
wing = 4, that it is set too tight. Besides, if the user wants to specify a wider
wing, the algorithm finding frequent minimal occurrences has to be run again.

For the unbounded approach however, one would find both § and ~ by just
specifing a big enough value for tus. This is an intuitive parameter, and the
best subsequent episode rule in terms of confidence would be 5[2] = «[1], with
a confidence of 1. This rule can be transformed in terms of two window widths
and interpret the following “if A and B occur within tus time units, then C' will
follow in next tus time units”.

4.2 Advantages of Our Approach

We shortly summarize some advantages of our unbounded proposal.

— Since the window increases its width along with the episode size, the final
frequent episodes do not overlap unnecesarily, and their size is not limited.

— The unbounded episode rules have better quality in terms of confidence
without any previous user help.

— Unbounded episodes generalizes Minepi and Winepi in that episodes found
with a window width of z time units can be found with our approach using
a distance of — 1 time units between correlative events.

— The application of sampling techniques are allowed.

— Once the frequent unbounded episodes are mined, finding the episode rules
with two windows widths is straight. What is more, the user can try different
windows widths for the rules, and chose the best width according to some
statistical metric. This does not affect the previous mining and the discove-

Discovering Unbounded Episodes in Sequential Data 91

red unbounded episodes, and they are always the same once we are in the
generating rule phase.

— Our proposal can be adapted to the sequential-database style by imposing
a wide gap between the different pieces of data.

On the whole, we can say that unbounded episodes are more general and
intuitive than Minepi or Winepi approaches. In particular, these unbounded
episodes can be very useful in contexts such as the classification of documents
or the intrusion detection systems. As argued in [5], a drawback of subsequence
patterns is that they are not suitable for classifying long strings over small al-
phabet, since a short subsequence pattern matches with almost all long strings.
So, the larger the episodes found in a text the better for the future predictions.

5 Algorithms to Mine Unbounded Episodes

Our proposed definition of unbounded episodes is flexible enough to still allow
the use of previous algorithms. Besides, to prove the flexibility of the proposal,
we also adapt here our strategy from [3], Best-First strategy, which is a non-
trivial evolution of Dynamic Itemset Counting (DIC, [4]) and provides better
performance than both Apriori and DIC. For better understanding, we give a
brief account of how our Best-First strategy works.

Similarly to DIC, our strategy keeps cycling through the data as many times
as necessary, counting the support of a number of candidate itemsets. Whenever
one of them reaches the threshold that declares it frequent, it immediately “noti-
fies” this fact to all itemsets one unit larger than it. In this way, potential future
candidates keep being informed of whether each of their immediate predecessors
is frequent. When all of them are, the potential candidate is promoted to can-
didate and its support starts to be counted. DIC follows a similar pattern but
only tries to generate new candidates every M processed transactions: running it
with M = 1 would be similar to Best-First strategy, but would incur overheads
that our algorithm avoids thanks to the previous online information of which
subsets of the potential candidates are frequent at each moment.

To follow the same structure, our new algorithm for mining episodes, called
Episodal Best-First (EpiBF'), will distiguish two sets of episodes: 1/ candidate
episodes whose frequency is being counted, and 2/ potential candidates that
will be incorcorated as candidates as soon as the monotonicity property of fre-
quency is fulfilled. Hovewer, given that now we are using our unbounded ap-
proach of interestingness, we must relax the monotonicity property frequency
for pruning unwanted candidates. Other Breadth-First algorithms, like Apriori
or DIC, can be also easily applied by taking into account that at each new scan
of the database for candidates of size k, the window width must be incremented
conveniently (i.e, (k —1) x tus). Apart from that, we also have to relax here the
monotonicity property of frequency used in the candidate generation phase as
we will see in short. We discuss separately the case of serial episodes first.

92 Gemma Casas-Garriga

5.1 Discovering Serial Episodes

In case of using our approach of unbounded episodes, the well-known mono-
tonicity property of frequency (stating that any frequent episode has all its
subepisodes also frequent) does not hold: that is, a frequent unbounded episode
could have some subepisode not frequent. For instance, let us consider the un-
bounded serial episode A — B — C', and its subepisode A — C'. They refer to
two different classes of unbounded interestingness: while in A — B — C, events
A and C are separated for at most 2 x tus time units, in its subepisode A — C
the events are separated at most tus time units. So, it might well be that since
the gap between events is different in both episodes, A — C' is not frequent
while A — B — C'is frequent. We cannot use this property to prune unwanted
candidates.

But we will relax this notion here and we will just consider those subepisodes
whose events follow an adjacency of tus time-unit separation. For instance, to
consider the episode A — B — C a good candidate that deserves to be counted
in the data, one has to find frequent just the subepisodes A — B and B — C
(i.e, the overlapping parts of an unbounded episode). Then, it is true that any
frequent unbounded episode has all its overlapping parts frequent.

Now, the algorithm EpiBF for serial episodes goes in the following way. It
starts by initializing the set of candidate episodes with all episodes of size 2,
and the set of potential candidates with all episodes of size 3. Then, it goes on
counting the frequency of all the candidate episodes until this set becomes empty.
When one of these candidate episodes of size k achieves the state of frequent, it
increments counters corresponding to all the potential candidates of size k + 1
that we can obtain by adding one more event before it or after it. This growth
leads to unbounded episodes. On the other hand, when a potential candidate
of size k + 1 finds that both subepisodes of size k, obtained by chopping off
either end, have been declared frequent, then it will be incorporated in the set
of candidate episodes.

It is important to highlight that, in this algorithm, the set of candidate
episodes can be made up of episodes of diferent sizes, and each episode « of size
k must be searched and counted in all windows of width (k—1) x tus time units.
This fact forces EpiBF to handle windows of different sizes at the same time by
simply taking, at every step, the largest window for the longest episode in the
set of candidate episodes. The rest of episodes in the set of candidate episodes
will be searched in the proper subwindows.

5.2 Discovering Serial and Parallel Episodes Simultaneously

In case of mining parallel episodes the problem can be reduced efficiently to
mining serial episodes in the following way. Every parallel episode of size k
lumps together up to k! serial episodes. For instance, the parallel episode {A, B}
gathers the following two serial episodes: A — B and B — A. In this case, a
serial episode will be called participant of a parallel episode. Clearly, any serial
episode is participant of one, and only one, parallel episode.

Discovering Unbounded Episodes in Sequential Data 93

Let us discuss what could be the meaning of parallel episode mining. Clearly,
if a frequent parallel episode has some (but not all) participants already frequent,
the desired output is the list of such frequent serial episodes: the parallel one,
given alone, provides less information. In such cases we should not move from
the serial episodes to the parallel one, unless actually all of them are frequent:
in this last case, the parallel episode is an effective way of representing this fact.
Thus, according to our proposal, in order to be considered interesting, a parallel
episode o must fullfil one of the two following conditions: either

1. by adding up the frequency of the serial episodes that are participants of «,
we reach the user-specified minimal frequency, but no serial episode partici-
pant of « is frequent alone; or

2. every serial episode participant of « is frequent.

From the point of view of the algorithm, any used strategy will mine serial
episodes, but these serial episodes can refer to parallel ones too. Thereby, the
set of candidate episodes will be made of serial ones, while the set of potential
candidates will be composed of parallel episodes. This means that the algorithm
will be counting the support of serial candidates, as in the previous case; however,
when declaring one of these serial episodes, «, frequent or non-frequent, the
notification must go to that parallel episode which « is participant of.

6 Experiments

In this section we present the results of running (a probabilistic version of the)
EpiBF algorithm on a variety of different data collections.

First, we experimented, as in [6], with protein sequences. We used data in
the PROSITE database of the ExPASy WWW molecular biology server of the
Geneva University Hospital and University of Geneva [10]. The purpose of this
experiment is to identify specific patterns in sequences so as to determine to
which family of protein they belong. The sequences in the family we selected
(“DNA mismatch repair proteins I”, PROSITE entry PS00058, the same one
used in [6] for comparison), are known to contain the string GFRGEAL. This string
represents a serial episode of seven consecutive symbols separated by 1 unit of
time among them. Parameter tus was set to 1, and the support threshold was set
to 15, for the 15 individual sequences in the original data. Note that no previous
knowledge of the pattern to be found is involved in this parameter setting.

As expected, we found in the database the pattern GFRGEAL along with 3,755
more serial episodes (whether maximal or not), most of them much shorter.
When comparing our approach against previous ones, we see that both Winepi
and Minepi need to know in advance the length of the expected pattern in the
protein sequence, in order to fix the window width. However, it is usual that we
do not know which pattern is to be found in a sequence; so, one must try the
experiment with different window widths.

In order to see the flexibility of the unbounded episodes, we also run experi-
ments with text data collections. In particular, we used a part of a text extracted

94 Gemma Casas-Garriga

from “Animal Farm” by Orwell [9]. Once again, setting tus close to 1 and consid-
ering each letter a new event, we are able to find frequent prepositions, articles,
suffixes of words, and concatenations of words (such as “to”, “in”, “at”, “ofthe”,
“was”, “her”, “ing”...). This experiment could have been done considering an
event to be every new word in the text; this will lead to unbounded episodes as
a tool to classify other new texts.

When it comes to the general performance of the method, we found that,
naturally, the larger the value of the parameter tus, the more discovered episodes.
Besides, discovering our serial and parallel episodes simultaneously, allows the
algorithm to discover parallel patterns when hardly serial patterns are found in
the database. For example, fed with the first 40,000 digits of the Champernowne
sequence (012345678910111213141516...), with a high frequency threshold of
50% and digits far apart at most 15 positions in the episodes (tus = 15), only 3
serial episodes were found but we discovered 15 other parallel episodes.

7 Conclusions

We present in this paper a more intuitive approach for interesting episodes. This
proposal overcomes the disadvantages of the widely-used previous approaches
(Minepi and Winepi), and it turns out to be an adaptative approach for catego-
rical time-series data. The algorithmic consequences of the unbounded episodes
are also discused and implemented. Finally, we have also introduced a new way
of considering parallel episodes as a set of participant serial episodes. First expe-
riments prove to be promising, but more experimentation on the different values
of tus and their consequences in the subsequent rules is on the way.

References

1. R.Agrawal, H.Mannila, R.Srikant, H.Toivonen and I.Verkamo. Fast Discovery of
Association Rules. Advances in Knowledge Discovery and Data Mining. 1996.
2. R.Agrawal and R.Srikant. Mining Sequential Patterns. Proc. of the Int. Conf. on
Data Engineering. 1995.
3. J.Baixeries, G.Casas-Garriga, and J.L.Balcazar. A Best First Strategy for Finding
Frequent Sets. Extraction et gestion des connaissances (EGC’2002), 100-106. 2002.
4. S.Brin, R.Motwani, J.Ullman and S.Tsur. Dynamic Itemset Counting and Impli-
cation Rules for Market Basket Data. Int. Conf. Management of Data. 1997.
5. M.Hiaro, S.Inenaga, A.Shinohara, M.Takeda and S.Arikawa. A Practical Algorithm
to Find the Best Episode Patterns. Int. Conf. on Discovery Science, 235-440. 2001.
6. H.Mannila, H.Toivonen and I.Verkamo. Discovery of frequent episodes in event
sequences. Proc. Int. Conf. on Knowledge Discovery and Data Mining. 1995.
7. R.Srikant and R.Agrawal. Mining Sequential Patterns: Generalizations And Per-
formance Improvements. Proc. 5th Int. Conf. Extending Database Technology. 1996.
8. M.J.Zaki. Sequence Mining in Categorical Domains: Incorporating Constrains.
Proc. Int. Conf. on Information and knowledge management ,422-429. 2000.
9. Data Analysis Challenge, http://centria.di.fct.unl.pt/ida01/
10. Geneva University Hospital and University of Geneva, Switzerland. ExPASy Mo-
lecular Biology Server. http://www.expasy.ch/

	1 Introduction
	2 Framework Formalization
	2.1 Episodes

	3 Classical Approaches to Define Interesting Episodes
	3.1 Winepi
	3.2 Minepi
	3.3 Some Disadvantages of These Previous Approaches

	4 Unbounded Episodes
	4.1 Episode Association Rule with Unbounded Episodes
	4.2 Advantages of Our Approach

	5 Algorithms to Mine Unbounded Episodes
	5.1 Discovering Serial Episodes
	5.2 Discovering Serial and Parallel Episodes Simultaneously

	6 Experiments
	7 Conclusions
	References

