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Abstract. Naive Bayesian classifiers assume the conditional indepen-
dence of attribute values given the class. Despite this in practice often
violated assumption, these simple classifiers have been found efficient,
effective, and robust to noise.

Discretization of continuous attributes in naive Bayesian classifiers has
achieved a lot of attention recently. Continuous attributes need not neces-
sarily be discretized, but it unifies their handling with nominal attributes
and can lead to improved classifier performance.

We show that optimal partitioning results from decision tree learning
carry over to Naive Bayes as well. In particular, it sets decision bound-
aries on borders of segments with equal class frequency distribution. An
optimal univariate discretization with respect to the Naive Bayes rule
can be found in linear time but, unfortunately, optimal multivariate op-
timization is intractable.

1 Introduction

The naive Bayesian classifier, or Naive Bayes, is surprisingly effective in classifi-
cation tasks. Therefore, even if it does not belong to state-of-the-art methods, it
plays an important role —alongside decision tree learning — as standard baseline
methods of inductive algorithms. Naive Bayesian classifiers have been studied
extensively over the years [I8IT9/7].

In Naive Bayes numerical attributes can be handled without explicit dis-
cretization of the value range [7I5] unlike in, e.g., decision tree induction. An
often made assumption is that within each class the data is generated by a
single Gaussian distribution. To model actual distributions more faithfully one
can abandon the normality assumption and, rather, use nonparametric density
estimation [7J15].

Treating numerical attributes by density estimation, Gaussian or other, indi-
cates that numerical and discrete attributes are handled differently. Furthermore,
discretization has been observed to increase the prediction accuracy and make
the method more efficient [2J6]. There are discretization methods that are specific
to Naive Bayes [2[6l25l4126] as well as general approaches that are often used
with naive Bayesian classifiers [I3]. A particularly interesting fact is that Naive
Bayes permits overlapping discretization [16l27] unlike many other classification
learning algorithms.
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In decision tree setting the line of research stemming from Fayyad and Irani’s
[12] seminal work on optimal discretizations for evaluation functions of ID3 has
led to more efficient preprocessing approaches and a better understanding of
the necessary and sufficient preprocessing needed to guarantee finding optimal
partitions with respect to common evaluation functions [SIYTO/TT]. In this paper
we show that this type of analysis carries over to naive Bayesian classifiers despite
the difference of univariate inspection in decision trees and multivariate one in
naive Bayesian classifiers. The decision boundaries separating decision regions —
class prediction changes— of naive Bayesian classifiers fall exactly on the so-
called segment borders. No other cut point candidates need to be considered in
order to find the error-minimizing discretization.

We show that with respect to one numerical attribute, a partition that opti-
mizes the naive Bayes rule can be found in linear time using the same algorithm
as in connection with decision trees. However, simultaneously satisfying the op-
timality with respect to more than one attribute, unfortunately, has recently
turned out to be NP-complete [23]. This does not leave us with possibilities to
solve the problem efficiently.

In Sect. 2 we first recapitulate the basics on naive Bayesian classification.
In Sect. 3 the optima-preserving preprocessing of numerical value ranges is
reviewed. In Sect. 4 we prove that the same line of analysis applies to naive
Bayesian classifiers as well. We also briefly consider multivariate discretization
in this section. Finally, Sect. 5 concludes this article by summarizing the work
and discussing further research possibilities.

2 Naive Bayes

Naive Bayes gives an instance x = (ay, ..., a,) the label
P 1
argmax Pr (¢ | z), 1)

where C' is the set of classes. In other words, the classifier assigns for the given
instance the class that is most probable. The computation of the conditional
probability Pr (¢ | «) is based on the Bayes rule

_ Pr(c) Pr(x|c)

Pr(c|x) Pr(z)

and the (naive) assumption that the attributes Ay, ..., A4, are independent of
each other given the class, which indicates that

Pr(:c|c):HPr(Al-:ai|c).
i=1

The denominator Pr(x) of the Bayes rule is the same for all classes in C.
Therefore, it is convenient to consider the quantity

P Nx) = P P
arg max r(cNx) arg max r(c|x)Pr(x)
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instead of (). The two formulas, of course, always predict the same label.

Probability estimation is based on a training set of classified examples E =
{(x,y;) }i~,, where y; € C for all i. Let m, denote the number of instances
from class ¢ in E. Then, the data prior for class ¢ is P (¢) = me/m. Discrete
attributes are easy to handle: we just estimate Pr (z | ¢) based on the training set
by estimating the conditional marginals P (4; = a; | ¢) by counting the fraction
of occurrences of each value 4; = a; in me.

Unless discretized, continuous values are harder to take care of and require a
different strategy. It is common to assume that within each class ¢ the values of
numeric attributes are normally distributed. Then by estimating from the train-
ing set the mean p. and standard deviation o, of the continuous attribute given
¢, one can compute the probability of the observed value. After obtaining p. and
o, for an attribute A; the estimation boils down to calculating the probability
density function for a Gaussian distribution:

Pr(A; = a; | ¢) = W)

1
———exp | —
Nz < 202

Using Dirichlet prior, or more generally Bayesian estimation methods [17/4],
and kernel density estimation are some alternatives to the straightforward
normality assumption for estimating a model for the distribution of the contin-
uous attribute. In this paper, however, we are only concerned with probability
estimates computed as data priors P (-).

Despite the unrealistic attribute independence assumption underlying Naive
Bayes it is a very successful classifier in practical situations. Some explanations
have been offered by Domingos and Pazzani [5], who showed that Naive Bayes
may be globally optimal even though the attribute independence assumption is
violated. It was shown that, under 0-1 loss, Naive Bayes is globally optimal for
the concept classes conjunctions and disjunctions of literals. Gama [14] discusses
Naive Bayes and quadratic loss.

It is well-known that the naive Bayesian classifier is equivalent to a linear ma-
chine and, hence, for nominal attributes its decision boundary is a hyperplane
[[127)5]. Thus, Naive Bayes can only be globally optimal for linearly separa-
ble concept classes. Ling and Zhang [20] consider the representational power of
Naive Bayes and more general Bayesian networks further. They characterize the
representational power through the maximum XOR contained in a function.

3 Discretizing Continuous Attributes

The dominating discretization techniques for continuous attributes in Naive
Bayes are unsupervised equal-width binning [24] and the greedy top-down ap-
proach of Fayyad and Irani [13]. These straightforward heuristic approaches
have also been offered some analytical backing [4]. However, in other classi-
fier learners— decision trees in particular —analysis of discretization has been
taken much further. In the following we recapitulate briefly the line of analysis
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Data is sorted by an attribute value, classes recorded

AV dY1/2 2/4 1/4 NaY a Y1/1¥ 2/2
1A 2 3 4 5 6A 7 8 9

Bins are separated by cut point candidates

3/-¥1/2 2/4 1/4 4/- / 2/2
1-2 3 4 5 6-7 8 9
Blocks are separated by boundary points

3/ 3/6 1/4 4= 3/3
1-2 34 5 6-7 89

Segments have different relative class distributions

Fig. 1. The original set of 27 examples (top) can only be partitioned at bin borders
(second from top) where the value of the attribute changes. Class uniform bins can be
combined into blocks (second from bottom). Block borders are the boundary points of
the numerical range. Furthermore, partitions can only happen between blocks with dif-
ferent relative class distribution. Thus, we may arrange the data into segments (below).
Segment borders are a subset of boundary points

initiated by Fayyad and Irani [T2]. The goal is to reduce the number of examined
cut points without losing the possibility to recover optimal partitions.

In decision tree learning the processing of a numerical value range usually
starts with sorting of the data points [122]. If one could make its own partition
interval out of each data point in the sorted sequence, this discretization would
have zero training error. However, only those points that differ in their value can
be separated from each other. Therefore, we can preprocess the data into bins,
one bin for each existing data point value. Within each bin we record the class
distribution of the instances that belong to it (see Fig.[). The class distribution
information suffices to evaluate the goodness of the partition; the actual data
set does not need to be maintained.

The sequence of bins attains the minimal misclassification rate. However,
the same rate can usually be obtained with a smaller number of intervals. The
analysis of the entropy function by Fayyad and Irani has shown that cut
points embedded into class-uniform intervals need not be taken into account, only
the end points of such intervals —the boundary points —need to be considered
to find the optimal discretization. Elomaa and Rousu [8] showed that the same
is true for several commonly-used evaluation functions.

Subsequently, a more general property was also proved for some evaluation
functions [9]: segment borders — points that lie in between two adjacent bins with
different relative class distributions— are the only points that need to be taken
into account. It is easy to see that segment borders are a subset of boundary
points.
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For strictly convex evaluation functions it was shown later that examining
segment borders is necessary as well as sufficient in order to be able to dis-
cover the optimal partition. For Training Set Error, which is not strictly convex,
it suffices to only examine a subset of the segment borders. These points are
called alternations and they are placed on segment borders where the frequency
ordering of the classes changes [TOJIT].

These analyses can be used in preprocessing in a straightforward manner:
we merge together, in linear time, adjacent class uniform bins with the same
class label to obtain example blocks (see Fig. [[). The boundary points of the
value range are the borders of its blocks. Example segments are easily obtained
from bins by comparing the relative class distributions of adjacent bins (see Fig.
[[). This can be accomplished on the same left-to-right scan that is required to
identify bins. Also alternations can be detected during the same scan.

4 Decision Boundaries of Naive Bayes

We show now that segments in the domain of a continuous attribute are the loca-
tions where Naive Bayes changes its class prediction, i.e., its decision boundaries.
We start from undiscretized domains, go on to error-minimizing discretizations,
and finally consider optimal partitions with respect to several attributes.

4.1 Decision Boundaries for Undiscretized Attributes

We start by examining the decision boundaries that Naive Bayes sets when the
continuous attribute is not discretized, but each numerical value is treated sep-
arately. When we consider the decision boundaries from the point of view of one
attribute, we assume an arbitrary fixed value setting for the other attributes. In
the following, notation P (-) is used to denote the probability estimates computed
by Naive Bayes, to distinguish them from true probabilities.

Theorem 1. The decision boundaries of the naive Bayesian classifier are situ-
ated on segment borders.

Proof. Let A; be a numerical attribute and let V' and V" be two adjacent
intervals in its range separated by cut point v;. For any other attribute Aj;,
i # j, let V; be an arbitrary subset of the values of A;. Let us denote by

T=Vix---xViy1 xViyg x---xV,

the Cartesian product of these subsets. We assume that the prediction of naive
Bayesian classifier within V’ x T is ¢ € C, and the prediction within V" x T
is ¢’ € C. In other words, looking at the situation only from the point of view
of A; and taking all other attributes to have an arbitrary (but fixed) value
combination, the decision boundary is set between intervals V/ and V. Then

P( |V xT)=P()PV' |)][[PWV;|¢)
JFi
>P) PV [PV | ¢)=P(" |V xT).
J#i
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By reorganizing the middle inequality we get

PV |y P IPVilc"
P

Wil PEOILLPW; @)
T

On the other hand, within V' x T" we obtain, by similar manipulation,

()L P (Vi ] )

/f(v// | C/) P .
(c) Hj;éip(‘/j | )

P(Vl/ | c//)

<

) )

Put together, @) and B) imply

V1)
(V' lem)

PV P (1, P (Vi ")
Pvrlery PPl

By using the Bayes rule to the conditional probabilities and canceling out equal
factors we get

P
< =
P

PV _ PV

13(6// | V) A( a V’)
Hence, the relative class distributions must be strictly different within the inter-
vals V/ and V" making v; thus a segment border.

The above result does not, of course, mean that all segment borders would
be places for class prediction change. However, the class prediction changes of an
undiscretized domain are confined to segment borders. Consequently, no loss is
incurred in grouping the examples in segments of equal class distribution. On the
contrary, we expect to benefit from the more accurate probability estimation.

4.2 Decision Boundaries in k-Interval Discretization

Let us now turn to the case where the continuous range has been discretized
into k intervals. We will prove that in this case too segment borders are the only
potential points for the decision boundaries.

The following proof has the same setting as the proofs in connection with
decision trees [9]. The sample contains three subsets, P, ), and R, with class
frequency distributions

m m
:ij Z a5, anderrj,
=1 j=1

Jj=1

where p is the number of examples in P and p; is the number of instances of
class j in P. Furthermore, m is the number of classes. The notation is similar
also for @ and R.

We consider the k-ary partition { Sp,..., Sk } of the sample, where subsets
Sp and Sp41, 1 < h < k—1, consist of the set PUQ U R, so that the split point
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Fig. 2. The following proofs consider partitioning of the example set P U Q U R into
two subsets S}, and Sj+1 within Q. No matter where, within @, the cut point is placed,
equal class distributions result

is inside @, on the border of P and @, or that of @ and R (see Fig.[). Let ¢ be
a real value, 0 < ¢ < ¢ [ Let Sh(¢) denote partition interval S, that contains
P and the ¢ first examples from Q. In the same situation Sy11(¢) denotes the
interval Sp41. We assume that splitting the set @ so that ¢ examples belong to
Sp(¢) and ¢ — ¢ to Sp41(¢) results in identical class frequency distributions for
both subsets of @ regardless of the value of £.

Let T again be the Cartesian product of the (arbitrary) subsets in dimensions
other than the one under consideration. In this setting we can prove the following
result which will be put to use later.

Lemma 1. The sum maxcec P (¢N Sy (€) x T)4+maxeec P (¢ N Shypr(£) x T) is
convex over £ € [0, q].

Proof. Let £y,...,¢._1 be the class prediction change points within [0, ¢]. With-
out loss of generality, let us denote by ¢;, 1 <17 < r—1, the class predicted within
Sh(€), € €]l;,£;+1]. The probability of instances of class ¢ within Sp,(¢) x T' can
be expressed as

ﬁ(msh(z)xT)zp”'PTngc)+z-qa/q'Z(T|c)

~ ~

which describes a line with offset (p./n)P (T | ¢) and slope ((¢./q)/n)P (T | ¢)
(see Fig. Bl). Now, it must be that the offsets satisfy

L(T‘Cl)>.”>pc,,,l-P(T|cT,1)

n n
and the slopes of the lines satisfy
ge, /0 P (T | c1) . o/t P(T]er)

n n

Interpreting the situation geometrically, we see that max, P (cNSp(6) xT)
forms a convex curve (Fig. B). By symmetry, max. P (¢ N Sp41(¢) x T) also is
convex, and the claim follows by the convexity of the sum of convex functions.

! No harm is done considering splitting @ in other points than those corresponding to
integral number of examples, since we are proving absence of local extrema.
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Fig. 3. The maxima of the sum of the most probable classes in Sj, (¢) and Sp+1(£) forms
a convex curve over [0, ¢

The following proof shows that a cut point in between two adjacent subsets
Sy, and Sp,4+1 in one dimension is on a segment border, regardless of the context
induced by the other attributes. Due to the additivity of the error, the result
also holds in the multisplitting case, where a number of cut points are chosen in
each dimension.

Theorem 2. The error-minimizing cut points of Naive Bayes are located on
segment borders.

Proof. Let ¢, ({) = arg max.cc p (cN Sp(€) x T) be the most probable class for
Sh(¢) according to Naive Bayes criterion in this situation. In other words,

ﬁqmm&mxﬂzﬁ%ﬂawM»ﬂTm.
C
Similarly, let ¢g(¢) denote the most probable class in Sp11(¢).
The minimum-error partition is the one that has the smallest combined error
in the subsets Sp,(¢) and Sp41(¢). Thus, we want to optimize

min (P (S (0) x T) = P (c () N SK(£) x T)
£€[0,q]
+ P (Spi1(0) x T) = P(cr(€) N Spir(£) x T)),
which is equal to

Zg%n](ﬁ (S X T) = (P (cp(£) N Sp(0) x T) + P (cr(£) N Sy (£) x T))),

q

where S = PUQU R. By Lemmal[Il this is a concave function of £ € [0, ¢]. Hence,
it minimizes at one of the extreme values of ¢, which are the locations of the
segment borders. Thus, we have proved the claim.

In principle it might be possible to reduce the number of examined points by
leaving some segment borders without attention. Can we identify such a subset
efficiently?
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In univariate setting the answer is affirmative: Only the set of alternation
points need to be considered. These points are those in between adjacent bins
V' and V" with a conflict in the frequency ordering of the classes: P (¢ | V') <
P(¢|V')and P(¢' | V") < P(c|V"). This is a direct consequence of the fact
that training error minimizes on such points. The set of alternation points can
be found in linear time, so it can speed up the discretization process [10].

In multivariate setting, the other attributes need to be taken into account.
Let V! x T and V" x T be two adjacent hyperrectangles. One can show that
there is no decision boundary in between them if for all class pairs ¢’ and ¢’ we
have either

1. P(d|V'xT)<P(c|V' xT)and P(¢' | V" xT) < P(c| V" xT), or
2. P(d|V'xT)>P(c|V' xT)and P(¢ | V" xT) > P(c| V" xT).

The problem with using this criterion to prune the set of candidate cut points
is that the definition depends on the context 7', and there is an exponential
number of such contexts. So, even if all segment borders are not useful, deciding
which of them can be discarded seems difficult.

Thus, in practice, finding a linear-time preprocessing scheme to reduce the
set of potential cut points to a proper subset of segment borders is difficult.

4.3 Decision Boundaries of Naive Bayes in Multiple Dimensions

It is well known that in the discrete (two-class) case the decision boundary is a
(single) hyperplane in the input space [7121]. In case of continuous attributes the
situation is much more difficult: The decision regions and their boundaries may
have arbitrary shape [7]. However, from preceding results we know that decision
boundaries in reality can only occur at segment borders of each continuous at-
tribute. Therefore, we actually can consider discretized ranges instead of truly
continuous attributes.

In Fig. @ the example set of Fig. [ has been augmented with another (arbi-
trary) dimension. The segments of these two dimensions divide the input space
(a plane) into a 6 x 5 grid, where each grid cell gets assigned a class label. Class
uniform rows and columns get a uniform labeling but otherwise one cannot de-
termine the labeling of grid cells based only on one dimension. Values of both
attributes are needed to determine the class label. For example, when the at-
tribute depicted on the y-axis of Fig.[4 has a value in its last segment, depending
on the value of the attribute along the x-axis, there are two segments where the
most probable prediction would be d and two segment where it would be e.

In general the discretized input space is divided into hyperrectangular cells,
each assigned the class label according to the relevant segment statistics.

4.4 On Finding Optimal Discretizations for Naive Bayes

Theorem [J tells us that the decision boundaries of Naive Bayes are always lo-
cated on segment borders, which makes it possible to preprocess the data into
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Fig. 4. The segments of two continuous attributes divide the input space into a rect-
angular grid. All grid cells are assigned the class label determined by the residual sums
of the corresponding segments

segments prior to discretization. By this result, one can use the same linear-time
optimization algorithm to find the univariate Naive Bayes optimal multisplits as
in the case of decision trees [9TT]. This so-called Auer-Birkendorf algorithm is
based on dynamic programming. During a left-to-right scan over the segments,
one can maintain the information required to decide into how many intervals
should the data be split and where to locate the interval borders to obtain as
good value as possible for the partition.

However, the situation in the multivariate setting is much more difficult. Even
with the data preprocessed into segments we may still have a daunting amount
of possible discretizations: O(2T) to be exact, where T = Y"""_| T; and T is the
number of cut points candidates along the i-th dimension. Could there, never-
theless, exist an efficient algorithm for optimal discretization? Unfortunately, we
have to answer in the negative, as shown by the next theorem [23].

Theorem 3. Finding the Naive Bayes optimal discretization of the real plane
R? is NP-complete.

This can be proved by a reduction from Minimum Set Cover using a similar
construction as Chlebus and Nguyen [3] to show that already optimal consistent
splitting of the real plane R? is NP-complete. We construct a configuration of
points in the 2D plane corresponding to the set covering instance and show two
properties [23]:

1. The plane can be consistently discretized with k cut lines if and only if there
is a set cover of size k for the given set cover instance.

2. The optimal Naive Bayes discretization coincides with the consistent dis-
cretization.
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Since the hypothesis class of Naive Bayes is the set of product distributions
of marginal likelihoods, the above theorem strengthens the negative result of
Chlebus and Nguyen [3], which holds for general axis-parallel partitions of R2.
Observe that the result easily generalizes to cases with more than two dimensions
by embedding the 2D plane corresponding to the set covering instance into the
higher dimensional space. The problem remains equally hard when there are
more than two classes.

From the point of view of finding the optimal multivariate splits, exhaustive
search over the segment borders of all dimensions is the remaining possibility for
optimization, which becomes prohibitively time-consuming on larger datasets.

5 Conclusion

Examining segment borders is necessary and sufficient in searching for the opti-
mal partition of a value range with respect to a strictly convex evaluation func-
tion [LI]. The same set of cut point candidates is relevant for Naive Bayes: Their
decision boundaries (in disjoint partitioning) fall exactly on segment borders.

On the other hand, it seems that for an algorithm to rule out some segment
borders from among the decision boundary candidates, it would have to examine
too many contexts to be efficient. Therefore, preprocessing the value ranges of
continuous attributes into segments appears necessary if one wants to detect all
class prediction changes. Such preprocessing, naturally, is sufficient.

As future work we leave the empirical evaluation of the usefulness of seg-
ment borders and their accuracy in probability estimation as well as studying
possibilities to approximate optimal multivariate discretization and the utility
of segment borders therein.
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