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Abstract. Inducing classifiers that make accurate predictions on future
data is a driving force for research in inductive learning. However, also
of importance to the users is how to gain information from the models
produced. Unfortunately, some of the most powerful inductive learning
algorithms generate “black boxes”—that is, the representation of the
model makes it virtually impossible to gain any insight into what has
been learned. This paper presents a technique that can help the user
understand why a classifier makes the predictions that it does by provid-
ing a two-dimensional visualization of its class probability estimates. It
requires the classifier to generate class probabilities but most practical
algorithms are able to do so (or can be modified to this end).

1 Introduction

Visualization techniques are frequently used to analyze the input to a machine
learning algorithm. This paper presents a generic method for visualizing the
output of classification models that produce class probability estimates. The
method has previously been investigated in conjunction with Bayesian network
classifiers [5]. Here we provide details on how it can be applied to other types of
classification models.

There are two potential applications for this technique. First, it can help the
user understand what kind of information an algorithm extracts from the input
data. Methods that learn decision trees and sets of rules are popular because
they represent the extracted information in intelligible form. This is not the case
for many of the more powerful classification algorithms. Second, it can help ma-
chine learning researchers understand the behavior of an algorithm by analyzing
the output that it generates. Standard methods of assessing model quality—for
example, receiver operating characteristic (ROC) curves [4]—provide informa-
tion about a model’s predictive performance, but fail to provide any insight into
why a classifier makes a particular prediction.

Most existing methods for visualizing classification models are restricted to
particular concept classes. Decision trees can be easily visualized, as can decision
tables and naive Bayes classifiers [§]. In this paper we discuss a general visualiza-
tion technique that can be applied in conjunction with any learning algorithm for
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classification models as long as these models estimate class probabilities. Most
learning algorithms fall into this categoryEl.

The underlying idea is very simple. Ideally we would like to know the class
probability estimate for each class for every point in instance space. This would
give us a complete picture of the information contained in a classification model.
When there are two attributes it is possible to plot this information with arbi-
trary precision for each class in a two-dimensional plot, where the color of the
point encodes the class probability (e.g. black corresponds to probability zero
and white corresponds to probability one). This can easily be extended to three
dimensions. However, it is not possible to use this simple visualization technique
if there are more than three attributes.

This paper presents a data-driven approach for visualizing a classifier regard-
less of the dimension of the instance space. This is accomplished by projecting
its class probability estimates into two dimensions. It is inevitable that some
information will be lost in this transformation but we believe that the resulting
plotting technique is a useful tool for data analysts as well as machine learning
researchers. The method is soundly based in probability theory and aside from
the classifier itself only requires an estimate of the attributes’ joint density (e.g.
provided by a kernel density estimator).

The structure of the paper is as follows. Section Pl describes the visualization
technique in more detail. Section B contains some experimental results. Section Bl
discusses related work, and Section Bl summarizes the paper.

2 Visualizing Expected Class Probabilities

The basic idea is to visualize the information contained in a classification model
by plotting its class probability estimates as a function of two of the attributes in
the data. The two attributes are user specified and make up the z and y axes of
the visualization. In this paper we only consider domains where all the attributes
are numeric. We discretize the two attributes so that the instance space is split
into disjoint rectangular regions and each region corresponds to one pixel on the
screen. The resulting rectangles are open-sided along all other attributes. Then
we estimate the expected class probabilities in each region by sampling points
from the region, obtaining class probability estimates for each point from the
classification model, and averaging the results. The details of this method are
explained below.

The probability estimates for each region are color coded. We first assign a
color to each class. Each of these colors corresponds to a particular combination
of RGB values. Let (7, gk, br) be the RGB values for class k, i.e. if class k gets
probability one in a given region, this region is colored using those RGB values.
If no class receives probability one, the resulting color is computed as a linear
combination of all the classes” RGB values. Let é; be the estimated expected

! Note that the technique can also be used in conjunction with clustering algorithms
that produce cluster membership probabilities.
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probability for class k in a particular region. Then the resulting RGB values are
computed as follows:

r=Y éexre  g=y évxge  b=) éuxby (1)
k k k

This method smoothly interpolates between pure regions—regions where one
class obtains all the probability mass.

The class colors can be chosen by the user based on a standard color chooser
dialog. For example, when there are only two classes, the user might choose
black for one class, and white for the other, resulting in a grey-scale image. Note
that the colors will not necessarily uniquely identify a probability vector. In a
four-class problem setting the corresponding colors to (1,0,0),(0,1,0),(0,0,1),
and (0,0,0) will result in a one-to-one mapping. However, with other color set-
tings and/or more classes there may be clashes. To alleviate this problem our
implementation shows the user the probability vector corresponding to a certain
pixel on mouse over. It also allows the user to change the colors at any time, so
that the situation in ambiguous regions can be clarified.

We now discuss how we estimate the expected class probabilities for each
pixel (i.e. each rectangular region in instance space). If the region is small enough
we can assume that the density is approximately uniform within the region. In
this case we can simply sample points uniformly from the region, obtain class
probability estimates for each point from the model, and average the results.
However, if the uniformity assumption does not hold we need an estimate f of the
density function—for example, provided by a kernel density estimator [2]—and
sample or weight points according to this estimate. Using the density is crucial
when the method is applied to instance spaces with more than two dimensions
(i.e. two predictor attributes) because then the uniformity assumption is usually
severely violated.

Given a kernel density estimator f we can estimate the expected class prob-
abilities by sampling instances from a region using a uniform distribution and
weighting their predicted class probabilities p; according to f . Let S=(x1,...,X)
be our set of [ uniformly distributed samples from a region. Then we can estimate
the expected class probability é; of class k for that region as follows:

6 — ZXES fA(X)ﬁk(X) 9
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If there are only two dimensions this method is quite efficient. The number
of samples required for an accurate estimate could be determined automatically
by computing a confidence interval for it, but the particular choice of [ is not
critical if the screen resolution is high enough (considering the limited resolution
of the color space and the sensitivity of the human eye to local changes in color).

Unfortunately this estimation procedure becomes very inefficient in higher-
dimensional instance spaces because most of the instances in S will receive a very
low value from the density function: most of the density will be concentrated
in specific regions of the space. Obtaining an accurate estimate would require a
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very large number of samples. However, it turns out that there is a more efficient
sampling strategy for estimating é;. This strategy is based on the kernel density
estimator that we use to represent f .

A kernel density estimator combines local estimates of the density based on
each instance in a dataset. Assuming that there are n instances x; it consists of
n kernel functions:

S|

F) = > i) 3

where k; is the kernel function based on instance x;:

m

ki(x) = H kij(x;). (4)

Jj=1

This is a product of m component functions, one for each dimension. We use a
Gaussian kernel, for which the component functions are defined as:

kij(z;) = ﬁexp (‘W) . (5)

Each k;; is the density of a normal distribution centered on attribute value
j of instance x;. The parameter o;; determines the width of the kernel along
dimension j. In our implementation we use o;; = (max; — min;) x d;, where
max; and min; are the maximum and minimum value of attribute j, and d; is
the Euclidean distance to the k-th neighbor of x; after all the attributes’ values
have been normalized to lie between zero and one. The value of the parameter k
is user specified. Alternatively it could be determined by maximizing the cross-
validated likelihood of the data [7].

Based on the kernel density estimator we can devise a sampling strategy
that produces a set of instances @@ by sampling a fixed number of instances from
each kernel function. This can be done by sampling from the kernel’s normal
distributions to obtain the attribute values for each instance. The result is that
the instances in @) are likely to be in the populated areas of the instance space.
Given @ we can estimate the expected class probability for a region R as follows:

- — > be(x). (6)
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Unfortunately this is not the ideal solution: for our visualization we want
accurate estimates for every pixel, not only the ones corresponding to populated
parts of the instance space. Most regions R will not receive any samples. The
solution is to split the set of attributes into two subsets: the first set containing
the two attributes our visualization is based on, and the second set containing
the remainder. Then we can fix the values of the attributes in the first set so
that we are guaranteed to get an instance in the area that we are interested in
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(corresponding to the current pixel), sample values for the other attributes from
a kernel, and use the fixed attributes to weight the resulting instance according
to the density function.

Let us make this more precise by assuming that our visualization is based
on the first two attributes in the dataset. For these two attributes we fix values
21 and x5 in the region corresponding to the pixel that we want to plot. Then
we obtain an instance x; from kernel k; by sampling from the kernel’s normal
distributions to obtain attribute values x;s, ..., x;, and setting x;; = x; and
X2 = 3. We can then estimate the class probability pg(z1,22) for location
x1, 2o as follows:

Sy Pr(Xi)kin (1) ko (22)
D ir kit (z1)kiz(22)

This is essentially the likelihood weighting method used to perform probabilistic
inference in Bayesian networks [6]. The py(x;) are weighted by the k;1 (z1)ki2(z2)
to take the effect of the kernel on the two fixed dimensions into account. The
result of this process is that we have marginalized out all dimensions apart from
the two that we are interested in.

One sample per kernel is usually not sufficient to obtain an accurate repre-
sentation of the density and thus an accurate estimate of py (1, 22), especially in
higher-dimensional spaces. In our implementation we repeat the sampling pro-
cess ™2 times, where r is a user-specified parameter, evaluate Equation [ for
each resulting set of instances, and take the overall average as an estimate of
pr(z1,22). A more sophisticated approach would be to compute a confidence
interval for the estimated probability and to stop the sampling process when a
certain precision has been attained.

Note that the running time can be decreased by first sorting the x; according
to their weights k;1 (zi1)ki2(2;2) and then sampling from the corresponding ker-
nels in decreasing order until the cumulative weight exceeds a certain percentage
of the total weight (e.g. 99%). Usually only a small fraction of the kernels need
to be sampled from as a result of this filtering process.

To obtain the expected class probability é; for a region corresponding to
a particular pixel we need to repeat this estimation process for different loca-
tions x;1, x;2 within the pixel and compute a weighted average of the resulting
probability estimates based on the density function:

(7)

pr(@1,22) =

6 = D f(ﬂﬁu,flz)ﬁk(iru,xlz), ®)
Zz f(fﬂlh 9312)

where

flon,ae) = %Zkﬂ(le)kiz(zlz) (9)

i=1

This weighted average is then plugged into Equation [I] to compute the RGB
values for the pixel.
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3 Some Example Visualizations

In the following we visualize class probability estimators on three example do-
mains. We restrict ourselves to two-class domains so that all probability vectors
can be represented by shades of grey. Some color visualizations are available
online at http://www.cs.waikato.ac.nz/ml/weka/bvis. Note that our imple-
mentation is included in the Java package weka.gui.boundaryvisualizer as
part of the Weka machine learning workbench [9] Version 3.3.6 and later.

For each result we used two locations per pixel to compute the expected
probability, set the parameter r to two (i.e. generating four samples per kernel
for a problem with four attributes), and used the third neighbor (k = 3) for
computing the kernel width.

The first domain is an artificial domain with four numeric attributes. Two
of the attributes are relevant (1 and x2) and the remaining ones (x3 and z4)
are irrelevant. The attribute values were generated by sampling from normal
distributions with unit variance. For the irrelevant attributes the distributions
were centered at zero for both classes. For the relevant ones they were centered
at —1 for class one and 41 for class two. We generated a dataset containing 100
instances from each class.

We first built a logistic regression model from this data. The resulting model
is shown in Figure[Il Note that the two irrelevant attributes have fairly small co-
efficients, as expected. Figure 2] shows the results of the visualization procedure
for three different pairs of attributes based on this model. The points super-
imposed on the plot correspond to the actual attribute values of the training
instances in the two dimensions visualized. The color (black or white) of each
point indicates the class value of the corresponding instance.

Figure Bh is based on the two relevant attributes (z; on the z axis and
x9 on the y axis). The linear class boundary is clearly defined because the two
visualization attributes are the only relevant attributes in the dataset. The lower
triangle represents class one and the upper triangle class two. Figure b shows
the result for z; on the z axis, and x3 on the y axis. It demonstrates visually
that x; is relevant while z3 is not. Figure e displays a visualization based on
the two irrelevant attributes. It shows no apparent structure—as expected for
two completely irrelevant attributes.

Figure Bl shows visualizations based on the same pairs of attributes for the
decision tree from Figure [3. The tree is based exclusively on the two relevant
attributes, and this fact is reflected in Figure @h: the area is divided into rect-
angular regions that are uniformly colored (because the probability vectors are
constant within each region). Note that the black region corresponds to three
separate leafs and that one of them is not pure. The difference in “blackness” is
not discernible.

Figure @b shows the situation for attributes x; (relevant) and z3 (irrelevant).
Attribute 1 is used twice in the tree, resulting in three distinct bands. Note that

2 Available from http://www.cs.waikato.ac.nz/ml/weka.
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Fig. 1. The logistic regression model for the artificial dataset.

Fig. 2. Visualizing logistic regression for the artificial data using (a) the two relevant
attributes, (b) one relevant and one irrelevant attribute, and (c) the two irrelevant
attributes.

the three bands are (almost) uniformly colored, indicating that the attribute on
the y axis (x3) is irrelevant.

Figure [k is based on the two irrelevant attributes. The visualization shows
no structure and is nearly identical to the corresponding result for the logistic
regression model shown in Figure Zkc. Minor differences in shading compared to
Figure 2k are due to differences in the class probability estimates that are caused
by the two relevant attributes (i.e a result of the differences between Figures fh
and Zh).

For illustrative purposes Figure [ shows a visualization for a two-class version
of the iris data (using the 100 instances pertaining to classes iris-virginica
and iris-versicolor) based on the decision tree in Figure Bl The iris data
can be obtained from the UCI repository [I]. In Figure [6h the petallength
attribute is shown on the z axis and the petalwidth attribute on the y axis.
There are four uniformly colored regions corresponding to the four leaves of the
tree. In Figure [fb petallength is on the z axis and sepallength on the y
axis. The influence of sepallength is clearly visible in the white area despite
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<=0.164 \ >0.164

<=0.359 | >0.358 <=-0.76 >-0.76
one (84.0/2.0) one (10.0/2.0)  two (83.0/1.0)
<=-0.51 \ >-0.51
one (6.0/1.0)

two (9.0)
>0.587
two (3.0)  one (5.0/1.0)

Fig. 3. The decision tree for the artificial dataset.

Fig. 4. Visualizing the decision tree for the artificial data using (a) the two relevant
attributes, (b) one relevant and one irrelevant attribute, and (c) the two irrelevant
attributes.

this attribute not being used in the tree. Figure [6k is based on sepallength
(z) and sepalwidth (y). Although these attributes are not used in the tree
the visualization shows a clear trend going from the lower left to the upper
right, and a good correlation of the probability estimates with the actual class
values of the training instances. This is a result of correlations that exist between
sepallength and sepalwidth and the two attributes used in the tree.
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Iris-virginica (46.0/1.0)
>49
Iris-versicolor (48.0/1.0) | Cpetalwidth>
<=1.5 >1.5
Iris-virginica (3.0)  Iris-versicolor (3.0/1.0)

Fig. 5. The decision tree for the two-class iris dataset.

Fig. 6. Visualizing the decision tree for the two-class iris data using (a) petallength
and petalwidth, (b) petallength and sepallength, and (c) sepallength and
sepalwidth (with the first attribute on the x axis and the second one on the y axis).

This particular example shows that the pixel-based visualization technique
can provide additional information about the structure in the data even when
used in conjunction with an interpretable model like a decision tree. In this
case it shows that the decision tree implicitly contains much of the information
provided by the sepallength and sepalwidth attributes (although they are not
explicitly represented in the classifier).

To provide a more realistic example Figure [§] shows four visualizations for
pairs of attributes from the pima-indians diabetes dataset [I]. This dataset
has eight attributes and 768 instances (500 belonging to class tested_negative
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tested_negative (132.0/3.0)
<=28|>28

<=99\ >99

>0.561 >30
tested_negative (84.0/34.0) tested_negative (4.0)  tested_negative (40.0/13.0) tested_positive (60.0/17.0)

<=6|>6
tested_positive (13.0) | tested_positive (12.0/1.0) Cpres )
>30
tested_positive (4.0)

>34
tested_negative (7.0/1.0)  Cmass) tested_positive (8.0/1.0)  tested_negative (3.0)
>33.1

tested_positive (6.0)  tested_negative (4.0/1.0)

Fig. 7. The decision tree for the diabetes dataset.

Fig. 8. Visualizing the decision tree for the diabetes data using (a) plas and mass, (b)
preg and pedi, (c¢) pres and age, and (d) skin and insu (with the first attribute on
the 2 axis and the second one on the y axis).
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and 268 to class tested_positive). The decision tree for this problem is shown
in Figure [7l

Figure[Ba is based on the plas (z axis) and mass (y axis) attributes, which
are tested at the root and the first level of the decision tree respectively (as
well as elsewhere in the tree). This makes them likely to be the most predictive
attributes in the data. There are eight nodes in the tree where either one of
these attributes is tested. This results in nine distinct rectangular regions, of
which eight are visible in the visualization. The missing region is a result of the
last split on the mass attribute at the bottom of the left subtree and hidden by
the points in the middle of the plot. There are two regions where the classifier
is certain about the class membership: a white region in the lower left corner,
and a black region in the upper right one. These correspond to the left-most
and right-most paths in the tree respectively, where only the two visualization
attributes are tested. All other regions involve tests on other attributes and are
therefore associated with greater uncertainty in the class membership.

Figure Bp is based on preg (x) and pedi (y). They are tested at three nodes
in the tree—all below level four—resulting in four rectangular regions. Only
three of these are discernible in the plot; the fourth one corresponds to the split
on pedi at the bottom of the right subtree (and is very faintly visible on screen
but not in the printed version).

In Figure[Bc the visualization is based on pres (z) and age (y), tested eight
times in total. Note that some of the rectangular regions are the consequence
of overlapping regions originating from splits in different subtrees because the
subtrees arise by partitioning on non-visualized attributes.

Figure [Bd visualizes the model using the only two attributes that do not
occur in the decision tree: skin (z) and insu (y). Again, like in the iris data
(Figure [Bb), there is some correlation between the actual class labels and the
attributes not explicitly taken into account by the classifier. However, in this
case the correlation is very weak.

4 Related Work

There appears to have been relatively little attention devoted to general tech-
niques for the visualization of machine learning models. Methods for particular
types of classifiers have been developed, for example, for decision trees, decision
tables, and naive Bayesian classifiers [§], but in these cases the visualization
procedure follows naturally from the model structure.

The structure of Bayesian networks can be visualized as a directed graph.
However, the graph-based visualization is limited because it does not provide any
visualization of the probability estimates generated by a network. Rheingans and
desJardins apply the basic pixel-based visualization technique discussed in
this paper to visualize these estimates. They indicate that the technique can be
used in conjunction with other types of class probability estimators but do not
provide details on how this can be done. Inference methods for Bayesian networks
directly provide estimates of conditional probabilities based on evidence variables
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(in this case the two attributes used in the visualization), and this means a
separate density estimator and sampling strategy is not required. Rheingans
and desJardins also investigate a visualization technique that maps the instance
space into two dimensions using a self-organizing map (SOM) [3]. However, this
makes it difficult to relate a pixel in the visualization to a point in the original
instance space.

5 Conclusions

This paper has presented a generic visualization technique for class probability
estimators. The basic method is not new and has been investigated in the context
of Bayesian network classifiers before. Our contribution is that we have provided
details on how to generalize it to arbitrary classification models that produce
class probability estimates. We have provided some example visualizations based
on logistic regression and decision trees that demonstrate the usefulness of this
method as a general tool for analyzing the output of learning algorithms. Poten-
tial applications are two fold: practitioners can use this tool to gain insight into
the data even if a learning scheme does not provide an interpretable model, and
machine learning researchers can use it to explore the behavior of a particular
learning technique.
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