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Abstract. Epidemics of infectious diseases are usually recognized by an
observation of an abnormal cluster of cases. Usually, the recognition is
not automated, and relies on the alertness of human health care workers.
This can lead to significant delays in detection. Since real-time data from
the physicians’ offices is not available. However, in Finland a Web-based
collection of guidelines for primary care exists, and increases in queries
concerning certain disease have been shown to correlate to epidemics.
We introduce a simple method for automated online mining of probable
epidemics from the log of this database. The method is based on deriving
a smoothed time series from the data, on using a flexible selection of data
for comparison, and on applying randomization statistics to estimate
the significance of findings. Experimental results on simulated and real
data show that the method can provide accurate and early detection of
epidemics.

1 Introduction

The usual way of recognizing an infectious disease epidemic is through an obser-
vation of clustering (temporal, geographical, or both) of new cases by someone
involved either with the diagnosis of patients or a disease registry. When the
epidemic is widely spread – either spatially, temporally, or both – it might be
very difficult or outright impossible for a single individual on the field to no-
tice the change, and registries only receive notification after the patient has met
a physician, laboratory samples have been analyzed, and reports filed, which
causes delay.

In certain diseases, however, early detection would be very desirable. This
is the case in, for instance, rare diseases whose etiology is not clear, in order
to begin epidemiological studies as early as possible. Another example of the
benefits of early detection comes from the detection of food-borne epidemics,
where control measures are often much easier to conduct in the early phases of
the epidemic.

If the registries could utilize diagnostic hypotheses made by physicians as
soon as the patient has met the doctor, the delay would be eliminated. Unfor-
tunately, such data is not available. However, in Finland a database exists that
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might be a way around this problem. The Physician’s Reference Database [1] is a
collection of medical guidelines for the primary care, from which physicians often
seek information about infectious diseases [2]. According to a preliminary study,
an increase in the rate of database searches about a certain disease sometimes
correlates to the onset of an epidemic [3].

In this work we develop a simple method for automatic detection and evalu-
ation of such increases.

What Is an Epidemic? Incidence, in epidemiology, is defined as the number of
new cases per unit of time. Prevalence refers to the number of the people with
the certain characteristic (e.g. a certain disease) in the population at any given
moment; disease prevalence is thus dependent on the incidence of the disease
and the duration of the disease.

Incidence and prevalence are well-defined concepts. An epidemic, on the other
hand, is more difficult to define precisely. In mathematical modeling of infectious
diseases (e.g. [4]) an epidemic is said to occur if the introduction of an infectious
agent to a population causes people (other than the first introducer) to get sick
through people transmitting the disease to each other.

This definition is, however, useful only in theoretical modeling, or when the
actual incidence in the absence of an epidemic is zero. Many diseases have a
certain baseline incidence: when a steady incidence and prevalence are considered
the normal situation, even if the transfer happens person-to-person. Often, we
also call a cluster of cases an ”epidemic” even though no actual person-to-person
transmission happens. What ”an epidemic” is thus depends on the observer’s
subjective goals and estimates of local conditions.

Many infectious diseases have a seasonal cycle cycle: the incidence of the
disease increases and decreases with a certain, steady interval. Some diseases,
like influenza, have yearly peaking epidemics. Some have simply a slightly higher
incidence during a certain time of year: for instance, food- and water-borne
diseases are more common in warm weather. Some diseases have a longer cycle:
for example, a major Pogosta disease epidemic occurs about every seven years
in Finland.

A generic goal of automated detection of epidemics is to discover the begin-
ning of any epidemic, whether cyclic or not. For cyclic diseases, an alternative
goal is to consider the cyclic variation normal and to detect incidences that are
exceptionally high given the normal cycle.

Requirements for Online Surveillance of Epidemics. It is of course important
that a detection system achieves high sensitivity (proportion of epidemics de-
tected), so that epidemics are not overlooked. It is also important that epidemics
are detected as soon as possible after their onset. However, false alarms sev-
erly undermine the credibility of the warning system, which might result in the
users no longer taking the warnings seriously. Thus, high specificity (proportion
of non-epidemic periods classified as non-epidemic), leading to a higher posi-
tive prediction value (probability of epidemic given that the system outputs an
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alarm), should be a priority even at the cost of some reduction in the detection
speed.

With a good system, the user can specify the period to which the present
moment is compared: for instance, it should be possible to ask ”is this week
different from the previous n months”, ”is this month different from the same
month during previous years”, and several other questions like that, with the
same method.

The method we introduce allows such flexibility and different treatments of
cyclic diseases. We will analyze the sensitivity, specificity and positive prediction
value of the method on both synthetic and real data.

2 Physician’s Reference Database
and Data Preprocessing

The Physician’s Reference Database is a web-based collection of medical guide-
lines used by physicians. The database consists of thousands of articles, each
described by a number of keywords (typically names of diseases, symptoms and
findings). Reading events are recorded in a usage log, allowing one to mine for
physicians’ active interests in different diseases.

Let A be the set of all articles in the database, and i = 1, 2, ..., n the sequence
of days under surveillance. The raw data consists of the number of reading events
in a day, D(a)i, for each article a ∈ A. Each of the articles has associated key-
words. Let A(k) be the set of articles that contain disease k among its keywords.
For each day i and each keyword k, the daily total count of events of all relevant
articles is

D(k)i =
∑

a∈A(k)

D(a)i.

Usage data from the reference database is available from October 1st 2000 on-
ward; in the analysis in this work we use data until September 30th 2002. On
average, there were 1465 reading events (a user viewing an article) per day, by
all users total. The event counts show a notable upward trend: during the first
100 days the average was 633.9 events and during the 100 last days 2696.1.

As trends related to the changing usage of the database are not relevant, it
is necessary is to ”normalize” daily counts in relation to the overall database
usage. We divide the daily event count per keyword by the total event count,
giving the basic unit of our data, the proportional daily event count :

d(k)i =
D(k)i∑

a∈A D(a)i
.

There are some potential problems with this normalization approach: something
that is likely to affect the keyword-specific event counts is also likely to affect the
total count. This might cause artefacts, ie. trends or peaks that are not present
in the original data, or ”dilution” of a smaller epidemic by a bigger one. At the
moment we do not try to counteract such possible side effects.
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3 The Method

The goal is to detect possible epidemics, observable as exceptionally high pro-
portional daily event counts, and to output an alarm as soon as possible after the
beginning of an epidemic. We develop a simple randomization-based framework
to recognize significant increases in event counts.

The series is first smoothed to remove some of the daily variations while
retaining most of the trends. Two smoothing methods, namely sliding average
and sliding linear regression, are used (see below).

A null hypothesis period, a sequence of days from the past to which the
present moment is compared, is chosen. The way the null hypothesis period is
designated determines the exact question we are trying to answer. When the
present moment is compared to all past non-epidemic times, the question is
”is there an epidemic now”. Other examples include the last n days (”has the
situation changed for the worse recently”), the same months during previous
years (”is this June different from what is typical for previous Junes”), and all
previous epidemic times (”is there an epidemic now that is worse than typical
epidemics of this disease”).

We assume that in the absence of an epidemic the proportional daily event
counts for a given disease are independent and identically distributed, but note
that the independence assumption is most likely not completely true. A person
that has read a lot about some disease recently is less likely to review that
information than he would be if he knew nothing about the subject. Modeling
such dependencies would be tedious, though, and we hope that this dependency
averages out among all users.

As we do not know the true distribution behind the data, we cannot obtain
a p-value or other comparison based on that. Instead, we use randomization
statistics. The null hypothesis period is sampled with replacement for samples the
size of the smoothing function’s window3, and the smoothed value is calculated
for each of these samples. The resulting empirical distribution is used as the
distribution of the smoothed values under the null hypothesis of no epidemic,
and the p-value of the day in question is taken to be the proportion of the sampled
sequences having the same or a higher smoothed value. (For more information
on randomization statistics, see for instance [6].)

Testing every day like this could cause a bad positive prediction value for
two reasons. First, if the proportion of negatives to positives in the set of objects
tested rises, even a good specificity causes bad prediction values eventually. Sec-
ond, the detection method itself includes randomization, and thus will eventually
err if run repeatedly.

To avoid this problem, we require that the smoothed value of a day is both
high (when compared with other observed values) and statistically significant
(tested with randomization). The first requirement is fulfilled by checking if
the smoothed value of that day is higher than a certain percentile of smoothed

3 Note that here we sample new sequences, that is, individual points until we have w
points, not windows of size w from the original series.
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values of the original series in the null hypothesis period. Thus, the tested set of
days is limited to a subset of all days having a high value of the statistic under
surveillance. The use of a cut-off value can also be seen as a crude and quick
estimate of our statistical test.

To put this together, given a time series, a window length w > 1, a cutoff
value c ∈ [50, 100[, a smoothing function f from a window in the series (a run
of consecutive points) to a real number, a null hypothesis period, and a p-value,
the method works as follows:

(1) for the null hypothesis period, calculate the w-day smoothed values ac-
cording to f , store these in S1

(2) check if today’s smoothed value exceeds the c’th percentile of all smoothed
values in S1, and if it does:

(3) resample samples of size w from the null hypothesis period of the
original non-smoothed series, and calculate the smoothed value for each
of these windows, store these in S2

(4) determine the proportion of values in S2 that are the same or higher
than the value for today, and if that proportion is lower than p:

(5) output an alarm, together with the proportion.

The (non-weighted) w-day sliding average is calculated simply by replacing
each data point with an average of w days. This can be done either using time
points on both sides of the day, or using the previous w − 1 days. As in this
problem future data is not available, we use the latter method:

SAi =
w∑

j=1

di−j+1

Sliding linear regression, on the other hand, works by fitting a line with the least
squares over the w days [i−w+1, i], and then taking the smoothed value at i to
be the value of this linear function at that point. The benefit of this smoothing
method is that it reacts faster to abrupt changes in the series; in a way the
sliding linear function exaggerates the linear tendencies in the series, while the
sliding average tries to smooth them out.

Naturally, the longer the window, the less short-term changes affect the
smoothed series. However, as the window stretches only backward in time, as
opposed to backward and forward, this causes a lag in the smoothed curves’
reaction to changes. See Figure 1 for an example series and smoothings on it.

4 Test Results

4.1 Results on Artificial Test Data

Forty artificial test series were constructed to test the performance of the al-
gorithm with different parameters. Each series is 700 time points long. 20 are
constructed from an exponential distribution, another 20 from a normal distri-
bution with values below zero replaced by zero. 10 of each type of series had
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no epidemics; in the other 20 datasets timepoints [351, 450] were replaced by
samples drawn from a similar distribution as the main series, but with a higher
mean. Parameters for the distributions were chosen based on the means and
variations in the real life test data. See Figure 1 for an example series.

In all the tests on artificial data, the null hypothesis period for timepoint i
is [1, i − w] for the non-epidemic series and [1, i − w] \ [351, 450] for the epidemic
ones. As we know for certain which days are epidemic and which are not, we can
calculate sensitivity, specificity and delays exactly. No epidemic was completely
missed, giving an epidemics-wise sensitivity of exactly 1 for all settings. Below,
we have explored the sensitivity and specificity day-wise, that is, the algorithm
is expected to mark each day either belonging to an epidemic or not. We also
examine the detection delay, defined as the number of false negatives from the
first day of an epidemic (time point 351) until the first true positive during the
epidemic.

In practice, 20,000 samples were enough to produce steady results on the
randomization tests; 80,000 were used for the sliding average and 20,000 for the
sliding linear, due to the first one’s Matlab implementation being so much faster
that the extra certainty was worthwhile. Unless mentioned otherwise, the p-value
is 0.01. When calculating the performance statistics, the first one hundred days
are ignored.

Figure 2.a shows the day-wise specificity of the algorithm for all the test
series with different parameter values. Note how specificity drops in the sliding
average tests. This is mostly due to the fact that the longer the window, the
longer it takes after the epidemic period before the smoothed values return to
the baseline. As a faster-reacting function, sliding linear regression does not suffer
from similar problems, but the distribution of the specificities widens when the
window grows: more series are detected with 100 % specificity, but some epidemic
periods are also less well detected than they would have a shorter window.

Fig. 1. A portion of an artificial time series (gray bars) with an “epidemic” in the
middle of it (bordered by the vertical black lines). On the left; a 14-day sliding average
(thin line) and a 30-day sliding average (thick line). On the right, a 30-day sliding
average (again the thick line) and a 30-day sliding linear regression (thin line).
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Fig. 2. Performance of the algorithm
for cutoff = 99, p = 0.01. In each
subfigure, from the left, sliding average
with windows 14 and 30, and sliding
linear regression with 14, 30 and 40.
Circles and squares represent individ-
ual test series. Stars connected by a line
show the average performance figure.
Shown are a) specificity, b) sensitivity,
c) delay.

As one would expect, specificity is dependent on the parameters cutoff and
p. If window length is kept constant and cutoff and p varied, keeping cutoff =
100(1 − p), the specificity is linear on this double parameter (not shown in the
figure).

Figure 2.b shows the respective day-wise sensitivity for all the series. Here we
see the phenomenon that lowering the window length below a certain limit causes
a notable decline in sensitivity. This happens because when the window grows,
the distributions of the smoothed values during epidemic and non-epidemic be-
come narrower and overlap less, making them easier to distinguish. Figure 2.c
gives the delay in detecting the epidemic, again for the same parameters. As
expected, the average delay rises with the window length. Apart from the one
outlier, all delays are below 20 days and the vast majority of them below 10
days.

One could argue that shortening the window length to shorten the delay is
worthwhile, since as the epidemic still is detected the lower sensitivity does not
matter. To some extent this is true. However, one important way to tell a real
epidemic from a false positive is whether the situation persists. False positives
appear singly or in short clusters, real epidemics last for several days or weeks.
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While we can afford to lose some sensitivity in order to gain a shorter delay, we
cannot let it go altogether.

Experimenting on the effect of window length, keeping other parameters con-
stant, revealed that when the window length shortens, sensitivity stays reason-
ably good (that is, around 80-90 %) up to a point, and then drops steeply. This
drop happens around window length 15 for the sliding average and around win-
dow length 40 for the sliding linear regression (at least on the data used in this
work). Comparing the specificity and sensitivity of the smoothing methods on
these lengths, it can be seen see that while there are some differences on certain
series between the methods, their overall performance is close to equal, and that
there are no systematic differences depending on the type of the series. (Test
results not shown.)

4.2 Results on Real Life Data

Ten diseases were selected as test targets, namely hepatitis A, influenza, diph-
theria, legionellosis, Pogosta disease, polio, parotitis, tularemia, varicella and
measles. The keyword for each is the (Finnish) name of the disease, and each
test series is 729 days long. Parameters used are cutoff = 99,p = 0.01, and
window lengths 14 (sliding average) and 40 (sliding linear regression).

Unlike with artificial data, we do not now have conclusive knowledge of which
days are epidemic and which are not; the only definite example of an epidemic
interesting from the public health point of view is the Pogosta epidemic of 2002,
which began in August (Figure 3.a). So we count negatives after August 1st
2002 (day 668) in that series as false negatives, and exclude timepoints from day
680 onward from the null hypothesis period. In other series the null hypothesis
period is [1, i − w].

Delay of Detection. The Pogosta epidemic was detected on day 665 by the sliding
average, and on day 666 by the sliding linear regression method (see Figure 3.a).
Compared to the shape of the actual epidemic (the thick line at the bottom), we
can see that this is remarkably early. The epidemic curve is drawn based on the
day the diagnostic blood sample was taken, which is likely to be the same day as
the day after the patient’s physician first suspected the disease. Even if we had
data straight from the physician’s office, we could not have seen the epidemic
much earlier. (Data for the epidemic curve is based on cases later notified to the
Infectious Diseases Registry of the National Public Health Institute.)

On the sliding average there was a short alarm peak also at time-points 636-
639. It is unclear whether this is a true first alarm of the epidemic, or a sequence
of false positives; in the following it is counted as the latter. No days were falsely
classified as negative during the epidemic.

Sensitivity, Specificity and Positive Prediction Value. Over all the series, in the
sliding average, if we consider only the Pogosta epidemic of 2002 as true positives,
specificity was 99.02 %, and the positive prediction value 51.2 %. The sliding
linear regression had specificity 99.00 % and positive prediction value of 50.5 %.
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a. b.

Fig. 3. The output of the algorithm in some situations. a. The Pogosta series with
the output of both smoothing methods. Thin line, sliding average; thick line in the
middle, sliding linear regression. The null hypothesis period is the whole preceding
period minus timepoints 680 and onward. The bottom-most thick line shows the shape
of the actual epidemic: weekly incidence according to the day the first diagnostic blood
sample was taken, which probably is the same day or close to the day that the patient’s
physician first suspected the disease. b. The tularemia series with the output of the
sliding average smoothing method. Thin line, the null hypothesis period is the whole
preceding series; thick line, it is the preceding 180 days.

With the two methods, continuous runs of ”false positives” happened in
four series (legionella, mumps series, Pogosta, and tularemia) in about the same
places. Looking at the series, and bearing in mind that the detection is based
only on time previous to those time-points, these four periods of alarms seem
reasonable and even desirable. See Figure 3 for two of the cases.

If we count the positives during these periods as true positives, we get a
positive predictive value of 85.3 % for the sliding average and 90.1 % for the
sliding linear regression. (Stating specificity would require arbitrarily determin-
ing which days, if any, around these positives are also positives.) In the real
situation, where the series under surveillance and the null hypothesis periods
are chosen by an epidemiologist, the positive prediction value (defined through
the usefulness of the alarm) will probably be somewhere between these estimates
of 50 and 90 %.

4.3 Changing the Null Hypothesis Period

Figure 3.b demonstrates the effect of the null hypothesis period. The thin line
shows the output when the null hypothesis period is the whole preceding series;
the thick line when it is last 180 days. The yearly tularemia epidemic during
the second year does not cause an alarm when the epidemic during the previous
year is included in the null hypothesis, and does cause an alarm when it is not.
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Another interesting feature is also visible in the lower output. Looking at
the second predicted epidemic (from timepoint 600 onward), we can see that
there first is an alarm period, but when the alarm has been on for some time,
it ceases. When the epidemic rises again, new alarms are put out. This happens
because the epidemic time is now not excluded from the null hypothesis. Thus
”epidemics inside epidemics” can be detected.

5 Technical Comments

The time requirement of the method for the check on one day is linear to the
number of iterations i performed in the randomization and the window length
w, as taking a random sample and calculating a mean or fitting a line are all
linear. Thus, running the check for m diseases (which is what would normally be
done daily) with i iterations is O(wmi), and calculating the results for n days is
O(nwmi). Since typically w << i, these are close to O(mi) and O(nmi).

Currently, data arrives from the system administrator of the actual database
daily, as a text file. The data is read into an (Oracle RDB) database, and the
reading events per keyword are calculated and stored. The raw article counts
are also stored, to make it simpler to add a new disease keyword to the base
(without the need to reread the data files). When the amount of data grows
too large, article counts might be preserved for perhaps two years, and only
keyword-specific values stored for a longer period, enabling the beginning of a
new surveillance with some data, but not requiring too much space.

The test versions of the algorithms as explained in this work were imple-
mented on Matlab. Conversion to a Java program for end users is planned.

6 Related Work

Basically, most methods of online detection of changes in a time series fall into
two categories. In the first, we compare each value, at the time of its arrivel,
to some baseline value calculated from previous data, and decide if the new
value is ”different enough” to be considered abnormal [7,8]. In the second, we fit
some model, often a curve – constant [9], linear [10,11], or more complex [12] –
piecewise to the data, searching for the change-points.

Other than these two approaches, data mining of time series data has been
studied mainly from the point of view of mining inter-series relations in either
patterns (slopes, peaks) or in concurrently occurring different events (see, for
example, [13,14]), which approaches are not directly related to the problem of
this study.

Piatetsky-Shapiro and Matheus were among the first data miners to investi-
gate deviations in time series data [7]. Their basic concept is a deviation, defined
as a difference between an observed value and a normative value. In addition,
they categorize the deviations based on their interestingness, defined as the util-
ity of the finding to a user.
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Stern and Lightfoot describe a system for detecting clusters of human infec-
tion with enteric pathogens [8]. In it, a smoothing technique is used to determine
normal baseline incidences for each pathogen, area and time-of-year, based on
data from several previous years. Then weekly counts of cases are compared to
a threshold calculated from the base incidence. The system achieves great sen-
sitivity, over 90 %, but the positive predictive value remains at about 60 % or
lower - meaning that almost every other alarm is false.

The problem with these approaches is that calculating the normative values
requires data from several years, and that they give accurate results only if
the difference between normal and abnormal values is rather sharp. Another
problem is that the calculation of normative values requires some knowledge or
assumption about the shape of the distribution of the values; in our case such
knowledge is not readily available.

Ogden and Sugiura [10] describe test statistics for determining whether a
time series has undergone a change. The change is defined as a linear change in
the parameters of the underlying distribution: the parameter vector is θ from
the beginning of the series to some timepoint ti, then changes in a linear way
until it reaches θ + δ at tj , j > i. The null hypothesis tested is δ = 0. However,
the tests cannot be applied online to decide if there has been a change recently,
and require information on the distribution of the data.

Keogh et al. [11] explore segmenting of a time series into piecewise linear
representation, relative to an error criterion stating whether a line fit is ”good
enough” (for example, the total error must not exceed a certain value). They
describe three basic greedy approaches, only one of them online, and a combina-
tion online algorithm that performed well. Guralnik and Srivastava [12] suggest
not restricting the function to be fitted to the segments to lines (for instance,
one could allow the algorithm to choose the best fit of 0-3 degree polynomials,
instead). In his thesis [9] Marko Salmenkivi introduced methods for intensity
modeling; that is, assuming a sequence of independent events in time, finding
a piece-wise constant function describing the intensity of the Poisson-process
producing that sequence.

Most of the above methods is directly suitable for online detection of change
points. We experimented with the online algorithm of Keogh et al., trying to use
them to detect epidemics. The idea was to segment the series, and then look at
the slope of the last segments. Unfortunately, we were unable to calibrate an error
criterion that would be both specific enough and produce a sort enough delay,
and unable to adapt the method to answer several surveillance questions (for
instance, comparing this month’s situation to the same months two previous
years proved impractical). Similar problems apply to the other change-point
detection/segmentation approaches.

7 Conclusions

A method was developed to automatically detect epidemics from an online time-
series. Despite its simplicity, the method works reliably. In all the test data, all
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epidemics were correctly detected. Even when calculated day-wise instead of
epidemics-wise, we achieved specificity over 99 % and sensitivity over 80 %. Also
the results on real-life data were very encouraging.

A nice feature of the method is the adaptability that is achieved by changing
the null hypothesis period. The same method can readily answer several kinds of
questions of interest such as detecting acute short-term changes and comparing
epidemics.

However, caution must be used before widely applying this – or any – method
of online surveillance. It must be kept in mind that all surveillance requires the
capacity to deal with both true and false alarms; surveillance is useless unless
personnel exist to work on the alarms. A separate prospective study will be
necessary to establish the actual benefits of surveillance.
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