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Abstract. In this paper, we present an indiscernibility-based clustering
method that can handle relative proximity. The main benefit of this
method is that it can be applied to proximity measures that do not satisfy
the triangular inequality. Additionally, it may be used with a proximity
matrix – thus it does not require direct access to the original data values.
In the experiments we demonstrate, with the use of partially mutated
proximity matrices, that this method produces good clusters even when
the employed proximity does not satisfy the triangular inequality.

1 Introduction

Clustering is a powerful tool for revealing underlying structure of the data. A
number of methods, for example, hierarchical, partial, and model-based methods,
have been proposed and have produced good results on both artificial and real-
life data [1].

In order to assess the quality of clusters being produced, most of the con-
ventional clustering methods employ quality measures that are associated with
centroids of clusters. For example, the internal homogeneity of a cluster can be
measured as the sum of differences from objects in the cluster to their centroid,
and it can be further used as a component of the total quality measure for as-
sessing a clustering result. Such centroid-based methods work well on datasets in
which the proximity of objects satisfies the natures of distance that are, positiv-
ity (d(x, y) ≥ 0), identity (d(x, y) = 0 iff x = y), symmetry (d(x, y) = d(y, x)),
and triangular inequality (d(x, z) ≤ d(x, y)+ d(y, z)), for any objects x, y and z.
However, they have a potential weakness in handling relative proximity. Relative
proximity is a class of proximity measures that is suitable for representing sub-
jective similarity or dissimilarity such as the degree of likeness between people. It
may not satisfy the triangular inequality because the proximity d(x, z) of x and
z is allowed to be independent of y. Usually, the centroid c of objects x, y and z
is expected to be in their convex hull. However, if we use relative proximity, the
centroid can be out of x, y, and z’s convex hull because proximity between c and
other objects can be far greater (if we use dissimilarity as proximity) or smaller
(if we use similarity) than d(x, y), d(y, z) and d(x, z). Namely, a centroid does
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not hold its geometric properties under these conditions. Thus another criterion
should be used for evaluating the quality of the clusters.

In this paper, we present a new clustering method based on the indiscernibil-
ity degree of objects. The main benefit of this method is that it can be applied
to proximity measures that do not satisfy the triangular inequality. Additionally,
it may be used with a proximity matrix – thus it does not require direct access
to the original data values.

2 The Method

2.1 Overview

Our method is based on iterative refinement of N binary classifications, where N
denotes the number of objects. First, an equivalence relation, that classifies all
the other objects into two classes, is assigned to each of N objects by referring
to the relative proximity. Next, for each pair of objects, the number of binary
classifications in which the pair is included in the same class is counted. This
number is termed the indiscernibility degree. If the indiscernibility degree of a
pair is larger than a user-defined threshold value, the equivalence relations may
be modified so that all of the equivalence relations commonly classify the pair
into the same class. This process is repeated until class assignment becomes
stable. Consequently, we may obtain the clustering result that follows a given
level of granularity, without using geometric measures.

2.2 Assignment of Initial Equivalence Relations

When dissimilarity is defined relatively, the only information available for object
xi is the dissimilarity of xi to other objects, for example to xj , d(xi, xj) . This is
because the dissimilarities for other pairs of objects, namely d(xj , xk), xj , xk �=
xi, are determined independently of xi. Therefore, we independently assign an
initial equivalence relation to each object and evaluate the relative dissimilarity
observed from the corresponding object.

Let U = {x1, x2, ..., xN} be the set of objects we are interested in. An equiv-
alence relation Ri for object xi is defined by

U/Ri = {Pi, U − Pi}, (1)

where
Pi = {xj | d(xi, xj) ≤ Thdi}, ∀xj ∈ U. (2)

d(xi, xj) denotes dissimilarity between objects xi and xj , and Thdi denotes an
upper threshold value of dissimilarity for object xi. The equivalence relation,
Ri classifies U into two categories: Pi, which contains objects similar to xi and
U − Pi, which contains objects dissimilar to xi. When d(xi, xj) is smaller than
Thdi, object xj is considered to be indiscernible to xi. U/Ri can be alternatively
written as U/Ri = {{[xi]Ri}, {[xi]Ri}}, where [xi]Ri ∩ [xi]Ri = φ and [xi]Ri ∪
[xi]Ri

= U hold.
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Fig. 2. Relations between f(d) and
its smoothed first- and second-order
derivatives F ′(d) and F ′′(d).

Definition of the dissimilarity measure d(xi, xj) is arbitrary. If all the at-
tribute values are numerical, ordered, and independent of each other, conven-
tional Minkowski distance

d(xi, xj) =

(
Na∑
a=1

|xia − xja|p
) 1

p

, (3)

where Na denotes the number of attributes, xia denotes the a-th attribute of
object xi, and p denotes a positive integer, is a reasonable choice since it has
been successfully applied to many areas and its mathematical properties have
been well investigated. More generally, any type of dissimilarity measure can be
used regardless of whether or not the triangular inequality is satisfied among
objects.

Threshold of dissimilarity Thdi for object xi is automatically determined
based on the spatial density of objects. The procedure is summarized as follows.

1. Sort d(xi, xj) in ascending order. For simplicity, we denote the sorted dis-
similarity using the same representation d(xi, xs), 1 ≤ s ≤ N .

2. Generate a function f(d) that represents the cumulative distribution of d.
For a given dissimilarity d, function f returns the number of objects whose
dissimilarity to xi is smaller than d. Figure 1 shows an example. Function
f(d) can be generated by linearly interpolating f(d(xi, xs)) = n, where n
corresponds to the index of xs in the sorted dissimilarity list.

3. Obtain the smoothed second-order derivative of f(d) as a convolution of f(d)
and the second-order derivative of Gaussian function as follows.

F ′′(d) =
∫ ∞

−∞
f(u)

−(d − u)
σ3

√
2π

e−(d−u)2/2σ2
du, (4)

where f(d) = 1 and f(d) = N are used for d < 0 and d > 1 respectively.
The smoothed first-order derivative F ′(d) of f(d) represents spatial density
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of objects because it represents increase or decrease velocity of the objects
induced by the change of dissimilarity. Therefore, by calculating its further
derivative as F ′′(d), we find a sparse region between two dense regions. Figure
2 illustrates relationship between f(d) and its smoothed derivatives. The
most sparse point d∗ should take a local minimum of the density where the
following conditions are satisfied.

F ′′(d∗ − ∆d) < 0 and F ′′(d∗ + ∆d) > 0. (5)

Usually, there are some d∗s in f(d) because f(d) has multiple local minima.
The value of σ in the above Gaussian function can be adjusted to eliminate
meaningless small minima.

4. Choose the smallest d∗ and object xj∗ whose dissimilarity is the closest to
but not larger than d∗. Finally, the dissimilarity threshold Thdi is obtained
as Thdi = d(xi, xj∗).

2.3 Refinement of Initial Equivalence Relations

Suppose we are interested in two objects, xi and xj . In indiscernibility-based
classification, they are classified into different categories regardless of other re-
lations, if there is at least one equivalence relation that has an ability to discern
them. In other words, the two objects are classified into the same category only
when all of the equivalence relations commonly regard them as indiscernible ob-
jects. This strict property is not acceptable in clustering because it will generate
many meaningless small categories, especially when global associations between
the equivalence relations are not taken into account. We consider that objects
should be classified into the same category when most of, but not necessarily
all of, the equivalence relations commonly regard the objects as indiscernible.
In the second stage, we perform global optimization of initial equivalence rela-
tions so that they produce adequately coarse classification to the objects. The
global similarity of objects is represented by a newly introduced measure, the
indiscernibility degree. Our method takes a threshold value of the indiscernibil-
ity degree as an input and associates it with the user-defined granularity of the
categories. Given the threshold value, we iteratively refine the initial equivalence
relations in order to produce categories that meet the given level of granularity.

Now let us assume U = {x1, x2, x3, x4, x5} and classifications of U by R =
{R1, R2, R3, R4, R5} is given as follows.

U/R1 = {{x1, x2, x3}, {x4, x5}},

U/R2 = {{x1, x2, x3}, {x4, x5}},

U/R3 = {{x2, x3, x4}, {x1, x5}},

U/R4 = {{x1, x2, x3, x4}, {x5}},

U/R5 = {{x4, x5}, {x1, x2, x3}}. (6)

This example contains three types of equivalence relations: R1 (= R2 = R5), R3
and R4. Since each of them classifies U slightly differently, classification of U
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by the family of equivalence relations R, U/R, contains four very small, almost
independent categories.

U/R = {{x1}, {x2, x3}, {x4}, {x5}}. (7)

In the following we present a method to reduce the variety of equivalence rela-
tions and to obtain coarser categories.

First, we define an indiscernibility degree, γ(xi, xj), for two objects xi and
xj as follows.

γ(xi, xj) =
∑|U |

k=1 δindis
k (xi, xj)∑|U |

k=1 δindis
k (xi, xj) +

∑|U |
k=1 δdis

k (xi, xj)
, (8)

where

δindis
k (xi, xj) =

{
1, if (xi ∈ [xk]Rk

∧ xj ∈ [xk]Rk
)

0, otherwise. (9)

and

δdis
k (xi, xj) =




1, if (xi ∈ [xk]Rk
∧ xj �∈ [xk]Rk

) or
if (xi �∈ [xk]Rk

∧ xj ∈ [xk]Rk
)

0, otherwise.
(10)

Equation (9) shows that δindis
k (xi, xj) takes 1 only when the equivalence relation

Rk regards both xi and xj as indiscernible objects, under the condition that
both of them are in the same equivalence class as xk. Equation (10) shows
that δdis

k (xi, xj) takes 1 only when Rk regards xi and xj as discernible objects,
under the condition that either of them is in the same class as xk. By summing
δindis
k (xi, xj) and δdis

k (xi, xj) for all k(1 ≤ k ≤ |U |) as in Equation (8), we obtain
the percentage of equivalence relations that regard xi and xj as indiscernible
objects. Note that in Equation (9), we excluded the case when xi and xj are
indiscernible but not in the same class as xk. This is to exclude the case where
Rk does not significantly put weight on discerning xi and xj . As mentioned
in Section 2.2, Pk for Rk is determined by focusing on similar objects rather
than dissimilar objects. This means that when both of xi and xj are highly
dissimilar to xk, their dissimilarity is not significant for xk, when determining
the dissimilarity threshold Thdk. Thus we only count the number of equivalence
relations that certainly evaluate the dissimilarity of xi and xj .

For example, the indiscernibility degree γ(x1, x2) of objects x1 and x2 in the
above case is calculated as follows.

γ(x1, x2) =
∑5

k=1 δindis
k (x1, x2)∑5

k=1 δindis
k (x1, x2) +

∑5
k=1 δdis

k (x1, x2)

=
1 + 1 + 0 + 1 + 0

(1 + 1 + 0 + 1 + 0) + (0 + 0 + 1 + 0 + 0)
=

3
4
. (11)

Let us explain this example with the calculation of the numerator (1+1+0+1+0).
The first value 1 is for δindis

1 (x1, x2)asshown. Since x1 and x2 are in the same
class of R1 and obviously, they are in the same class to x1, δindis

1 (x1, x2) = 1
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Table 1. Degree γ for ob-
jects in Eq. (6).

x1 x2 x3 x4 x5

x1 3/3 3/4 3/4 1/5 0/4
x2 4/4 4/4 2/5 0/5
x3 4/4 2/5 0/5
x4 3/3 1/3
x5 1/1

Table 2. Degree γ after
the first refinement.

x1 x2 x3 x4 x5

x1 3/3 3/4 3/4 2/4 1/5
x2 4/4 4/4 3/4 0/5
x3 4/4 3/4 0/5
x4 3/3 1/5
x5 1/1

Table 3. Degree γ after
the second refinement.

x1 x2 x3 x4 x5

x1 4/4 4/4 4/4 4/4 0/5
x2 4/4 4/4 4/4 0/5
x3 4/4 4/4 0/5
x4 4/4 0/5
x5 1/1

holds. The second value is for δindis
2 (x1, x2), and analogously, it becomes 1. The

third value is for δindis
3 (x1, x2). Since x1 and x2 are in the different classes of R3,

it becomes 0. The fourth value is for δindis
4 (x1, x2) and it obviously, becomes 1.

The last value is for δindis
5 (x1, x2). Although x1 and x2 are in the same class of

R5, their class is different to that of x5. Thus δindis
5 (x1, x2) returns 0.

Indiscernibility degrees for all of the other pairs in U are tabulated in Table
1. Note that the indiscernibility degree of object xi to itself, γ(xi, xi), will always
be 1.

From its definition, a larger γ(xi, xj) represents that xi and xj are commonly
regarded as indiscernible objects by the large number of the equivalence relations.
Therefore, if an equivalence relation Rl discerns the objects that have high γ
value, we consider that it represents excessively fine classification knowledge
and refine it according to the following procedure (note that Rl is rewritten as
Ri below for the purpose of generalization).

Let Ri ∈ R be an initial equivalence relation on U . A refined equivalence
relation R′

i ∈ R′ of Ri is defined as

U/R′
i = {P ′

i , U − P ′
i}, (12)

where P ′
i denotes a set of objects represented by

P ′
i = {xj |γ(xi, xj) ≥ Th}, ∀xj ∈ U. (13)

and Th denotes the lower threshold value of the indiscernibility degree above, in
which xi and xj are regarded as indiscernible objects. It represents that when
γ(xi, xj) is larger than Th, Ri is modified to include xj into the class of xi.

Suppose we are given Th = 3/5 for the case in Equation (6). For R1 we
obtain the refined relation R′

1 as

U/R′
1 = {{x1, x2, x3}, {x4, x5}}, (14)

because, according to Table 1, γ(x1, x1) = 1 ≥ Th = 3/5, γ(x1, x2) = 3/4 ≥ 3/5,
γ(x1, x3) = 3/4 ≥ 3/5, γ(x1, x4) = 1/5 ≤ 3/5 , γ(x1, x5) = 0/5 ≤ 3/5 hold.
In the same way, the rest of the refined equivalence relations are obtained as
follows.

U/R′
2 = {{x1, x2, x3}, {x4, x5}},
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U/R′
3 = {{x1, x2, x3}, {x4, x5}},

U/R′
4 = {{x4}, {x1, x2, x3, x5}},

U/R′
5 = {{x5}, {x1, x2, x3, x4}}. (15)

Then we obtain classification of U by the refined family of equivalence relations
R′ as follows.

U/R′ = {{x1, x2, x3}, {x4}, {x5}}. (16)

In the above example, R3, R4 and R5 are modified so that they include similar
objects into the equivalence class of x3, x4 and x5, respectively. Three types of
the equivalence relations remain, however, the categories become coarser than
those in Equation (7) by the refinement.

2.4 Iterative Refinement of Equivalence Relations

It should be noted that the state of the indiscernibility degrees could also be
changed after refinement of the equivalence relations, since the degrees are re-
calculated using the refined family of equivalence relations R′.

Suppose we are given another threshold value Th = 2/5 for the case in Equa-
tion (6). According to Table 1, we obtain R′ after the first refinement, as follows.

U/R′
1 = {{x1, x2, x3}, {x4, x5}},

U/R′
2 = {{x1, x2, x3, x4}, {x5}},

U/R′
3 = {{x1, x2, x3, x4}, {x5}},

U/R′
4 = {{x2, x3, x4}, {x1, x5}},

U/R′
5 = {{x5}, {x1, x2, x3, x4}}. (17)

Hence
U/R′ = {{x1}, {x2, x3}, {x4}, {x5}}. (18)

The categories in U/R′ are exactly the same as those in Equation (7). However,
the state of the indiscernibility degrees are not the same because the equivalence
relations in R′ are different from those in R. Table 2 summarizes the indiscerni-
bility degrees, recalculated using R′. In Table 2, it can be observed that the
indiscernibility degrees of some pairs of objects, for example γ(x1, x4), increased
after the refinement, and now they exceed the threshold th = 2/5. Thus we
perform refinement of equivalence relations again using the same Th and the
recalculated γ. Then we obtain

U/R′
1 = {{x1, x2, x3, x4}, {x5}},

U/R′
2 = {{x1, x2, x3, x4}, {x5}},

U/R′
3 = {{x1, x2, x3, x4}, {x5}},

U/R′
4 = {{x1, x2, x3, x4}, {x5}},

U/R′
5 = {{x5}, {x1, x2, x3, x4}}. (19)
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Hence
U/R′ = {{x1, x2, x3, x4}, {x5}}. (20)

After the second refinement, the number of the equivalence relations in R′ are
reduced from 3 to 2, and the number of categories are also reduced from 4 to
2. We further update the state of the indiscernibility degrees according to the
equivalence relations after the second refinement. The results are shown in Table
3. Since no new pairs, whose indiscernibility degree exceeds the given threshold
appear, refinement process may be halted and the stable categories may be
obtained, as in Equation (20).

As shown in this example, refinement of the equivalence relations may change
the indiscernibility degree of objects. Thus we iterate the refinement process
using the same Th until the categories become stable. Note that each refinement
process is performed using the previously ‘refined’ set of equivalence relations.

3 Experimental Results

We applied the proposed method to some artificial numerical datasets and evalu-
ated its clustering ability. Note that we used numerical data, but clustered them
without using any type of geometric measures.

3.1 Effects of Iterative Refinement

We first examined the effects of refinement of the initial equivalence relations. A
two-dimensional numerical dataset was artificially created using Neyman-Scott
method [2]. The number of seed points was set to 5. Each of the five clusters
contained approximately 100 objects, and a total of 491 objects were included
in the data. We evaluated validity of the clustering result based on the following
measure:

Validity vR(C) = min
( |XR ∩ C|

|XR| ,
|XR ∩ C|

|C|
)

,

where XR and C denote the clusters obtained by the proposed method and the
expected clusters, respectively. The threshold value for refinement Th was set
to 0.2, meaning that if two objects were commonly regarded as indiscernible by
20% of objects in the data, all the equivalence relations were modified to regard
them as indiscernible objects.

Without refinement, the method produced 461 small clusters. Validity of the
result was 0.011, which was the smallest value assigned to this dataset. This
was because the small size of the clusters produced very low coverage, namely,
amount of overlap between the generated clusters and their corresponding ex-
pected clusters was very small compared with the size of the expected clusters.

By performing refinement one time, the number of clusters was reduced to
429, improving validity to 0.013. As the refinement proceeds, the small clusters
merged as shown in Figures 3 and 4. Validity of the results continued to increase.
Finally, clusters became stable at the 6th refinement, where 10 clusters were
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Fig. 3. Clusters after 4th refinement.

Fig. 4. Clusters after 6th refinement.

formed as shown in Figure 4. Validity of the clusters was 0.927. One can observe
that a few small clusters, for example, clusters 5 and 6, were formed between the
large clusters. These objects were classified into independent clusters because of
the competition of the large clusters containing almost the same populations.
Aside from this, the results revealed that the proposed method automatically
produced good clusters that have high correspondence to the original ones.

3.2 Capability of Handling Relative Proximity

In order to validate the method’s capability of handling relative proximity, we
performed clustering experiments with another dataset. The data was originally
generated on the two-dimensional Euclidean space likewise the previous dataset;
however, in this case we randomly modified distances between data points in
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Table 4. Comparison of the clustering results

Mutation
Ratio[%] 0 10 20 30 40 50
AL-AHC 0.990 0.688 ± 0.011 0.670 ± 0.011 0.660 ± 0.011 0.633 ± 0.013 0.633 ± 0.018
CL-AHC 0.990 0.874 ± 0.076 0.792 ± 0.093 0.760 ± 0.095 0.707 ± 0.098 0.729 ± 0.082

Our method 0.981 0.980 ± 0.002 0.979 ± 0.003 0.980 ± 0.003 0.977 ± 0.003 0.966 ± 0.040

order to make the induced proximity matrix not fully satisfy the triangular
inequality.

The dataset was prepared as follows. First, we created a two-dimensional
data set by using the Neyman-Scott method [2]. The number of seed points
was set to three, and a total of 310 points were included in the dataset. Next,
we calculated the Euclidean distances between the data points and constructed
a 310 × 310 proximity matrix. Then we randomly selected some elements of
the proximity matrix and mutated them to zero. The ratio of elements to be
mutated was set to 10%, 20%, 30%, 40%, and 50%. For each of these mutation
ratio, we created 10 proximity matrices in order to include enough randomness.
Consequently, we obtained a total of 50 proximity matrices.

We took each of the proximity matrices as an input and performed clustering
of the dataset. Parameters used in the proposed method were manually deter-
mined to σ = 15.0 and Th = 0.3. Additionally, we employed average-linkage and
complete-linkage agglomerative hierarchical clustering methods (for short, AL-
AHC and CL-AHC respectively) [3] for the purpose of comparison. Note that we
partly disregarded the original data values and took the mutated proximity ma-
trix as input of the clustering methods. Therefore, we did not employ clustering
methods that require direct access to the data value.

We evaluated validity of the clustering results using the same measures as
in the previous case. Table 4 shows the comparison results. The first row of the
table represents the ratio of mutation. For example, 30 represents 30% of the
elements in the proximity matrix were mutated to zero. The next three rows
contain the validity obtained by AL-AHC, CL-AHC and the proposed method,
respectively. Except for the cases in zero mutation ratio, validity is represented
in the form of ’mean ± standard deviation’, summarized from the 10 randomly
mutated proximity matrices.

Without any mutation, the proximity matrix exactly corresponded to the
one obtained by using the Euclidean distance. Therefore, both of AL-AHC and
CL-AHC could produce high validity over 0.99. The proposed method also pro-
duced the high validity over 0.98. However, when mutation had occurred, the
validity of clusters obtained by AL-AHC and CL-AHC largely reduced to 0.688
and 0.874, respectively. They kept decreasing moderately following the increase
of mutation. The primary reason for inducing decrease of the validity was consid-
ered as follows. When the distance between two objects was forced to be mutated
into zero, it brought a kind of local warp to the proximity of the objects. Thus
the two objects could become candidates of the first linkage. If the two objects
were originally belonged to the different clusters, these clusters were merged at
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Fig. 5. Clustering results by AL-AHC. Ratio of mutation was 40%. Linkage was ter-
minated when three clusters were formed.

Fig. 6. Clustering results by CL-AHC. Ratio of mutation was 40%. Linkage was ter-
minated when three clusters were formed.

an early stage of the merging process. Since both of AL-AHC and CL-AHC do
not allow inverse of the cluster hierarchy, these clusters would never be sepa-
rated. Consequently, inappropriately bridged clusters were obtained as shown in
Figures 5 and 6.

On the contrary, the proposed method produced high validity even when the
mutation ratio approached to 50%. In this method, effects of a mutation was very
limited. The two concerning objects would consider themselves as indiscernible
objects, however, the majority of other objects never change their classification.
Although the categories obtained by the initial equivalence relations could be
distorted, they could be globally adjusted through iterative refinement of the
equivalence relations. Consequently, good clusters were obtained as shown in
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Fig. 7. Clustering results by the proposed method. Ratio of mutation was 40%. Itera-
tion terminated at the fourth cycle.

Figure 7. This demonstrates the capability of the method for handling locally
distorted proximity matrix that do not satisfy the triangular inequality.

4 Conclusions

In this paper, we have presented an indiscernibility-based clustering method,
which clusters objects according to their relative proximity. Experimental results
from the artificially created numerical datasets demonstrated that this method
could produce good clusters even when the proximity of the objects did satisfy
the triangular inequality. Future work include reduction of the computational
complexity of the method and empirical evaluation of its clustering ability on
large and complex real-life databases.
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