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Abstract. The problem of efficiently finding patterns in massive time series da-
tabases has attracted great interest, and, at least for the Euclidean distance 
measure, may now be regarded as a solved problem. However in recent years 
there has been an increasing awareness that Euclidean distance is inappropriate 
for many real world applications. The limitations of Euclidean distance stems 
from the fact that it is very sensitive to distortions in the time axis. A partial so-
lution to this problem, Dynamic Time Warping (DTW), aligns the time axis be-
fore calculating the Euclidean distance. However, DTW can only address the 
problem of local scaling. As we demonstrate in this work, uniform scaling may 
be just as important in many domains, including applications as diverse as bio-
informatics, space telemetry monitoring and motion editing for computer ani-
mation. In this work, we demonstrate a novel technique to speed up similarity 
search under uniform scaling. As we will demonstrate, our technique is simple 
and intuitive, and can achieve a speedup of 2 to 3 orders of magnitude under re-
alistic settings.   

1 Introduction 

The problem of efficiently finding patterns in massive time series databases has at-
tracted great interest in the database and data mining communities, and, at least for 
the Euclidean distance measure, may now be regarded as a solved problem [2, 5, 11, 
12]. However in recent years there has been an increasing awareness that Euclidean 
distance is inappropriate for many real world applications [1, 6]. The limitations of 
Euclidean distance stems from the fact that it is very sensitive to distortions in the 
time axis. A partial solution to this problem, Dynamic Time Warping (DTW), essen-
tially aligns the time axis before calculating the Euclidean distance. Because of its 
well-documented lethargy, DTW was deemed impractical for large databases until a 
recent breakthrough demonstrated that DTW can be indexed [10]. DTW can only 
address the problem of local scaling, however uniform scaling may be just as impor-
tant in many domains, including applications as diverse as bioinformatics, space te-
lemetry monitoring and motion editing for computer animation.  



254      Eamonn Keogh 

There exists a handful of techniques that can support similarity search under uni-
form scaling if the scaling factor is known in advance [3, 9]; however, in most do-
mains it is unlikely that we know the scaling factor. In such instances we must resort 
to multiple queries, one for each possible scaling factor. Clearly, this is untenable for 
even moderately large databases. What we really need is a technique that can perform 
a single efficient query to retrieve all qualifying time series with any scaling. This is 
exactly the contribution of this paper.  

The rest of this paper is organized as follows. Section 2 carefully motivates the 
need for similarity search under uniform scaling, and reviews related work. In Section 
3 we introduce our approach to the problem. Section 4 contains an extensive empiri-
cal evaluation on 5 real world datasets. Finally, Section 5 contains conclusions and 
directions for future work. 

2 Motivating the Need for Uniform Scaling  

In addition to the classic Euclidean and Dynamic Time Warping distance measures, 
the last decade has seen the introduction of dozens of new similarity measures for 
time series. Recent empirical studies, however, suggest that the majority of these 
measures are of dubious utility for real world problems [13]. We will therefore take 
the time to motivate the absolute need for uniform scaling in several real world appli-
cations. 

2.1 Space Shuttle Telemetry Monitoring   

The Space Shuttle transmits thousands of sensor readings to Earth at 1mhz or greater 
during flight. With over 100 missions, averaging 8.6 days in orbit, this massive re-
pository of data constitutes a potential goldmine for engineers wishing understand 
and predict in-flight anomalies [4]. Consider an engineer wishing to discover all oc-
currences of a “dipping” event. This event consists of a sudden positive change in 
yaw, followed by an auto correction by the Shuttle’s onboard flight guidance system. 
Such events can easily be visually located in a small time series, as they form a ‘V’ 
pattern. However, in a massive dataset we must resort to a computerized similarity 
search.  

If we create a ‘V’ shaped query that is 4 minutes long, and search using the Euclid-
ean distance, we correctly find one true event as shown in Fig. 1 A. However, the 
second and third best matches fail to find the other two “dips”.  In contrast, if we 
issue a query for all ‘V’ shaped patterns in the range of 4 minutes to 6 minutes, we 
can correctly discover all three such events as shown in Fig. 1 B. 

2.2 Gene Expression Data 

Recent advances in bioinformatics technology have resulted in an explosion of gene 
expression data to be analyzed [1]. Several of the most important tasks, such as clus-
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tering, classification and missing value reconstruction, require similarity matching as 
a first step. Both Euclidean distance and DTW are used; however, we argue that uni-
form scaling may be more useful for some tasks and datasets. Consider the two se-
quences shown in Fig. 2.  

 
 

 

Fig. 1. Eight hours of STS-57 Space Shuttle Inertial Sensor Data: A) A ‘V’ shaped query cor-
rectly matches one steep valley in the data, but the second and third best matches fail to find the 
two other valleys because they happen more slowly. B) A ‘V’ shaped query that is allowed to 
rescale itself by up to 50% correctly finds the three valleys. The second and third best matches 
have a scaling factor (sf) of 1.12 and 1.14 respectively 

 

Fig. 2. Two yeast cell-cycle gene expression time series, from genes known to be functionally 
related. (Left) Using the original scale, the genes appear to be a poor match. (Right) If the 
shorter time series is rescaled by a scaling factor of 1.41, it becomes a high quality match to the 
“prefix” of the longer time series 

Although the two genes are known to be functionally related [1], the raw time series 
subjectively appear to be a poor match. Simply rescaling the shorter time series by a 
factor of 1.41 allows the underlying similarity to be more readily discovered. 

We considered other approaches for this problem. Euclidean distance is a very 
commonly used technique, but it is only defined for time series of the same length. 
One solution is to normalize the lengths with interpolation; another is to truncate the 
longer time series. Although DTW is defined for time series of different lengths, 
interpolation and truncation can also be useful here. In Fig. 3. we show all combina-
tions of possibilities, none of them succeeds in capturing the underlying similarity of 
the data. 

2.3 Motion Capture Editing 

Motion capture data is increasingly used in video games, movie special effects and 
gait analysis [6]. The following is a classic problem in this domain. Given two exam-
ples of a human performing a task, once slowly, and once quickly, interpolate the 
motion at any desired speed [20]. Figure 4 shows an example. The problem is non-
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trivial because of non-linear effects in human dynamics. Nevertheless correctly align-
ing the two time series from each instance is a critical first step in solving the prob-
lem. This can be achieved manually for a simple movie special effect, but for real 
time video games, or complex effect shots (i.e, the battle scenes in The Lord of the 
Rings), automation is required. 

 

 

Fig. 3. None of the published alternatives to uniform scaling produce intuitive alignments 
between the two gene expression time series introduced in this section. Clockwise from the top 
left, DTW after truncating the longer time series, classic DTW, DTW after length normaliza-
tion, Euclidean distance after length normalization 

 

Fig. 4. (left) A computer animation of a boxer, driven by a motion capture system (center). 
Given that we have captured an example of a fast moment and a slow movement (right), an 
important problem in motion capture editing is to interpolate the movement at any desired 
speed. Aligning the signals with uniform scaling is a important first step in this process 

Having motivated the need for uniform scaling in several domains, we will next 
consider related work. 

2.4 Related Work 

The past decade has seen literally hundreds of papers on similarity search using the 
Euclidean distance [2, 5, 11, 12]; useful surveys can be found in [8] and [17]. How-
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ever recent years have seen an increasing awareness that the Euclidean distance may 
be unsuitable for many applications [1, 10, 18, 19]. 

Many non Euclidean distance measures for time series have been introduced, how-
ever, a recent empirical study suggests that most of them are of questionable utility 
[10]. The only non-Euclidean distance measure that has been forcefully shown to be 
superior to Euclidean distance is DTW, it’s utility has been demonstrated in domains 
as diverse as bioinformatics [1], chemical engineering, gait analysis [6], speech rec-
ognition, meteorology, and robotics. However DTW only considers local stretching 
and shrinking of the time axis. As we demonstrated in the previous section, uniform 
scaling may be equally important in many domains. 

The utility of uniform scaling has been noted before [9, 14, 15]. However, all pre-
vious work has focused on speeding up similarity search, when the scaling factor is 
known. For example, there are systems that can index data of length 200, and support 
queries of any length from 150 to 200. However the user must specify what length 
query they wish to run, perhaps a query of length 175. If the user wishes to find the 
best matching time series, at any length from 150 to 200, they would have to run 
every possible query, of length 150, 151 ,…, 200 to find the answer. This is clearly 
untenable. As all these systems claim about one order of magnitude speed up, placing 
them in a loop and running them 50 times is clearly going to be self defeating. The 
feature that differentiates our work from all the rest is that we allow a user to issue a 
single query, and find the best match at any scaling. Our proposed technique is 
unique in this aspect.  

3 Uniform Scaling 

We begin by formally defining the uniform scaling problem.  
Suppose we have two time series, a query Q and a candidate match C, of length n 

and m respectively, where: 
Q = q1,q2,…,qi,…,qn (1) 
C = c1,c2,…,cj,…,cm (2) 

For clarity of presentation we will assume that n ≤ m, that is to say, C is always 
longer than or equal to Q, and thus we are only interested in stretching the query to 
match some prefix of C. This assumption is only to simplify notion and does not 
preclude matching a time series by shrinking, since we can always reverse the roles of 
the sequences.  

If we wish to compare the two time series, and it happens that n = m, we can use 
the ubiquitous Euclidean distance: 

( ) ( )∑ −≡
=

n

i
ii cqCQD

1

2,  
(3) 

Since the square root function is monotonic and concave, we can remove the 
square root step and get identical rankings, clustering and classifications. This meas-
ure is called the squared Euclidean distance:  
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In addition to the utility of slightly speeding up the calculations, working with this 
distance measure makes other optimizations possible [13]. 

If n is smaller than m, then the distance measures introduced above are not de-
fined. To compare the two time series in this case, we have several choices; we can 
truncate C, and compare Q to [c1,c2,…, cn], or we can somehow stretch Q to be of 
length m, or more generally we can stretch Q to be of length p, (n ≤  p ≤ m), truncate 
off the last m-p values of Q, then use squared Euclidean distance. The informal idea 
behind stretching can be captured in the more formal definition of scaling. To scale 
time series Q to produce a new time series QP of length p, the formula is: 

QPj = Q  j * n/p  , 1 ≤ j ≤ p (5) 

Note that we can quickly obtain any scaling in O(p) time. We call the ratio p/n the 
scaling factor or sf. Slightly different definitions of scaling do exist, but they do not 
affect the results that follow. Fig. 5. visually summarizes the above definitions. 

 

 

Fig. 5. A visual summary of the notation introduced in this section. From (left) to (right) A 
candidate time series C, and a shorter query Q. The squared Euclidean distance between Q and 
the first n datapoints in C can be visualized as the sum of the squared lengths of the gray hatch 
lines. The query Q can be stretched to length p, producing a new time series QP. In this case, 
QP is a good match to the first p datapoints in C 

3.1 Brute Force Search under Uniform Scaling    

If we wish to find the best scaled match between Q and C, we can simply test all 
possible scalings, as illustrated in Table 1.  

Table 1. An algorithm to find the best scaled match between two time series 

 Algorithm: Test_All_Scalings(Q,C) 
best_match_val    = inf; 
best_scaling_factor = null; 
for p = n to m 
 QP = rescale(Q,p); 
 distance = squared_Euclidean_distance(QP, C[1..p]); 
 if distance <  best_match_val 
  best_match_val = distance; 

best_scaling_factor = p/n; 
end; 

end; 
return(best_match_val, best_scaling_factor) 
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The algorithm takes only O(p*(m-n)) time and seems unworthy of any optimization 
effort. However, when mining real world datasets, rather than having a single candi-
date time series C, we are typically confronted with massive collection of possible 
candidate time series, which will denote as C. As a motivating example, the MACHO 
dataset, a collection of star light curve microlensing events, has over 40 million time 
series [7]. To find the best scaled match to a query Q, in data collection C, we can use 
a brute force algorithm as shown in Table 2.  

Note that the time complexity for this algorithm is O(|C|  * (m-n)), this is simply 
untenable for large datasets. 

Table 2. An algorithm to find the best scaled match to query from a set of possible matches 

 Algorithm: Search_Database_for_Scaled_Match(Q,C) 
overall_best_time_series = null; 
overall_best_match_val   = inf; 
overall_best_scaling     = null; 
for i = 1 to number_of_time_series_in_(C)  
 [dist, scale] = Test_All_Scalings(Q,Ci)  
 if dist <  overall_best_match_val    
  overall_best_time_series = i; 

overall_best_match_val   = dist; 
overall_best_scaling     = scale; 

end; 
end; 

return(overall_best_time_series, overall_best_match_val, overall_best_scaling) 

3.2 Speeding up Search with Lower Bounding  

To speed up matching under uniform scaling we will rely on the classic idea of lower 
bounding. The intuition is this: given some technique for quickly calculating the 
minimum possible distance between the query and a candidate sequence at any possi-
ble scaling, we can prune off many calculations. In more detail, we maintain a vari-
able that contains the distance of the best-scaled match encountered thus far. Before 
calling the subroutine Test_All_Scalings on the next candidate time series, we 
first perform the quick lower bounding test. If the lower bound distance between the 
candidate and the query is greater than the distance of the best-scaled match already 
seen, we can simply discarded the candidate from consideration. For clarity, the idea 
is formalized in Table 3, although the algorithm differs from the algorithm in Table 2 
only in the addition of the lower bounding test as a precondition to the subroutine 
Test_All_Scalings. 

 
There are only two important properties of a lower bounding measure:  

• It must be fast to compute. A measure that takes as long to compute as 
Test_All_Scalings is of little use. We would like the time complexity to be at 
most linear in the length of the time series. 

• It must be a relatively tight lower bound. A function can achieve a trivial lower 
bound by always returning zero as the lower bound estimate. However, in order 
for the algorithm in Table 3 to be effective, we require a method that tightly 
bounds the value of the best match. 
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Table 3. A modified algorithm for searching for the best match under uniform scaling 

Algorithm: Faster_Search_Database_for_Scaled_Match(Q,C) 
overall_best_time_series = null; 
overall_best_match_val   = inf; 
overall_best_scaling     = null; 
for i = 1 to number_of_time_series_in_(C)  
 if lower_bound_distance(Q,Ci) < overall_best_match_val    

[dist, scale] = Test_All_Scalings(Q,Ci)  
   if dist <  overall_best_match_val    
    overall_best_time_series = i; 

overall_best_match_val   = dist; 
overall_best_scaling     = scale; 

end; 
 end; 
end; 

return(overall_best_time_series, overall_best_match_val, overall_best_scaling) 
 
The idea of speeding up search using lower bounding is not new; in fact, it is the 
cornerstone of virtually every time series similarity search algorithm. However, while 
dozens of lower bounding measures are known for Euclidean distance [2, 5, 9, 11, 
12], and 3 lower bounding measures known for DTW [10], there are no lower bound-
ing measures in the literature for uniform scaling. In the next section we introduce the 
first such measure.  

3.3 Lower Bounding Uniform Scalings 

To create a lower bounding distance measure for uniform scaling we will generate a 
bounding envelope. Bounding envelopes were introduced in [10] to lower bound 
DTW, and since then they have sparked a flurry of research activity [16, 18, 19]. 
While the principle is the same here, the definitions of the envelope are very differ-
ent. In particular, we create two sequences U and L, such that: 

Ui = max( c (i-1)*m/n +1,…, c i*m/n  ) (6) 

Li = min( c (i-1)*m/n +1,…, c i*m/n  ) (7) 

These sequences can be visualized as bounding the first n points of the time series C. 
Fig. 6. shows some examples.  

 
 

 

Fig. 6. (Left) A time series C of length 100. (Center) The time series shrouded by upper and 
lower envelopes U and L with lengths 80. (Right) The same time series shrouded by upper and 
lower envelopes U and L with lengths 60 
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Having defined the U and L, we can now introduce the lower bounding function, it 
was originally introduced in [10] for the problem of DTW.  

 
∑
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This function can be visualized as the squared Euclidean distance between any part of 
the query time series not falling within the envelope and the nearest (orthogonal) 
corresponding section of the envelope. Fig. 7. illustrates the idea. 

 

 

Fig. 7. (Left) A time series C and a shorter query Q. (Right) A visualization of the lower-
bounding function LB_Keogh(Q,C). Note that any part of query time series Q that falls inside 
the bounding envelope is ignored. Otherwise the distance corresponds to the sum of the squared 
straight line distances from the query to the nearest point in the envelope (the gray hatch lines) 

We have claimed that LB_Keogh(Q,C) lower bounds the squared Euclidean distance 
between any scaling of Q, and the appropriate prefix of C. The proof is straightfor-
ward, we omit it brevity.  

3.4 Further Optimizations  

While LB_Keogh(Q,C) is the optimal lower bound for uniform scaling, given only U 
and L, several further optimizations are possible in the context of similarity search. 
We will give one such example here, using concrete numbers for clarity. Suppose we 
are using the algorithm in Table 3 for similarity search, with n = 100, and m = 200. 
Further suppose that the best matching time series encountered thus far is at a dis-
tance of 10. If we test the lower bound of the next candidate time series and we find it 
to be 11, we can prune it from the search space. However, if the lower bound is 9 we 
must call the Test_All_Scalings subroutine.  

We can observe, however, that although the lower bounding test did fail for the 
fairly drastic scaling factor of 2 (i.e. 200/100), it would be less likely to do so for 
smaller scaling factor, say 3/2. We could rescale the query to length 150, rebuild U 
and L and apply the lower bounding test again. If it happens that the lower bound is 
now 10 or greater, we could prune all possible scalings from length 150 to 200 from 
consideration, and only examine the scalings from 100 to 149. Of course, we could 
apply the above logic recursively to the scalings from 100 to 149, and more generally 
this suggests doing a binary search over all the scalings. We call this algorithm Bi-
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nary_Test_All_Scalings, but omit a detailed description since it is rather obvi-
ous. Note that we cannot use binary search to speed up the brute force algorithm, 
since the squared Euclidean distance does not vary monotonically with the scaling 
factor (in general). We use this optimization in all our experiments below.  

4 Experimental Results  

In this section we test our proposed approach with a comprehensive set of experi-
ments. We compare only to the brute force search algorithm defined in Table 2, be-
cause there are no other techniques in existence that support uniform scaling queries, 
with a single query. To eliminate the possibility of implementation bias [13], we will 
report the Pruning Power, the fraction of times that our approach must call the 
squared Euclidean distance function. 

searchforcebrutebyfunctionncestaditocallsofNumber

approachproposedbyfunctionncestaditocallsofNumberPowerruningP =  (13) 

This measure depends only on the tightness of the lower bounds, and is independent 
of language, platform, caching or any other implementation details. As an additional 
sanity check we also measured the CPU time, however since it is almost perfectly 
correlated with the Pruning Power, we will omit it for brevity.  

It has been forcefully demonstrated that the quality of lower bounding measures, 
and therefore the speed of search, can vary greatly depending on the data [13]. We 
therefore tested our approach on a variety of datasets. Fig 8. shows a sample of each. 

 

 

Fig. 8. Randomly extracted samples of the time series datasets 

Since the speed-up obtained for our approach clearly depends on range of scaling 
factors and the length of the time series, we will test our approach for the cross prod-
uct of scaling factors = {1.05, 1.10, 1.15, 1.20, 1.25} and time series candidate 
lengths of {16, 32, 64, 128, 256}. 

We conducted our experiments as follows. We randomly removed a subsequence 
of the appropriate length from the data to use as a query, then we randomly choose 
5,000 other subsequences to act as the database. We then searched for the best scaled 
match, noting the pruning power. We repeated this 100 times for every combination 
of scaling factors and candidate lengths. Fig 9. shows the results. 

The results are quite impressive, the worst case is a single order of magnitude 
speed-up, more generally two to three orders of magnitude speedup are observed. 
Note that, the pruning power seems independent of the candidate time series lengths, 
but does get worse as the scaling factor increases. This is to be expected, since for 
large scaling factors the LB_Keogh function has relatively little information with 
which to calculate the lower bound. 
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Fig. 9. The pruning power of LB_Keogh of 5 different datasets, over a range of scaling factors 
and candidate lengths 

 

Fig. 10. The pruning power of LB_Keogh on the burst dataset, over a range of scaling factors 
and database sizes. Note the scale of the Z-axis is different from that of Fig. 9 

As with many indexing techniques, the pruning power of our approach improves 
with the size of the dataset. The intuition behind this effect is that the larger the data-
set, the more likely we are to find a very close match early on in the search, and thus 
derive the maximum benefit from the lower bound pruning test (the outermost if 
statement in Table 3). To demonstrate this, we repeated the previous experiment for 
different size datasets. The results for just the burst dataset are shown in Fig. 10. 

The results clearly show that as the database size increases, the pruning power im-
proves. This is a very desirable property when mining larger datasets.  

5 Discussion and Conclusions  

We have shown how to dramatically speed up similarity search under uniform warp-
ing, however, we have not considered indexing under uniform warping. Fortunately 
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the ability to index the data comes for free! A technique for indexing envelopes under 
LB_Keogh was introduced in [10]. Since then, many other researchers have used this 
technique and suggested extensions [16, 18, 19] (Note that paper [19] claims to intro-
duce the “concept of envelopes”, introduce must be a typo for review, since enve-
lopes were introduced in [10]). This explosion of interest has ensured that indexing of 
time series envelopes has become a mature technology in only one year. We omitted 
empirical testing of indexing for brevity and clarity; we simply note that it works 
exceptionally well. We leave a full discussion for future work. 
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