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Abstract. The naming of natural features, such as hills, lakes, springs,
meadows etc., provides a wealth of linguistic information; the study of
the names and naming systems is called onomastics. We consider a data
set containing all names and locations of about 58,000 lakes in Fin-
land. Using computational techniques, we address two major onomastic
themes. First, we address the existence of local dependencies or repul-
sion between occurrences of names. For this, we derive a simple form
of spatial association rules. The results partially validate and partially
contradict results obtained by traditional onomastic techniques. Second,
we consider the existence of relatively homogeneous spatial regions with
respect to the distributions of place names. Using mixture modeling, we
conduct a global analysis of the data set. The clusterings of regions are
spatially connected, and correspond quite well with the results obtained
by other techniques; there are, however, interesting differences with pre-
vious hypotheses.

1 Introduction

In spatial statistics, a point process is a random process that produces points in
the Euclidean plane. A realization of such a process, i.e., a set of points, is called
a point pattern, or spatial point data [1,2]. A marked point process consists of
several point processes producing different types of points. The points are often
also called events.

Marked point processes arise in many applications, such as linguistics (in the
study of dialects or place names, each word, grammatical construct, name, etc.
corresponds to a different type of event), biodiversity studies (different types of
events correspond to, e.g., different types of plants, and the locations are the
places in which the plant has been observed), business applications (locations
of customers etc.). There are some fundamental differences in the point data
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in these applications. The most relevant here is that in some of these cases the
point data represents an underlying phenomenon that is contionuous (e.g. the
occurrence area of a species, or the area in which a particular word is used), while
in others the underlying phenomenon is itself discrete. In the current study we
discuss the latter type of point processes.

The analysis of high-dimensional point processes can be quite demanding.
The data is often sparse, i.e., we have only fragmentary information of the un-
derlying phenomenon. When there are several different types of events, mod-
eling their interaction can be complex. In many cases the observed quantities
are results of several unobserved processes. The granularity and accuracy of the
locations of the points can vary: sometimes the event can be localized perfectly,
sometimes not.

Spatial statistics (see, e.g., the books [1,2]) has developed several strong
methods for analyzing a single point process. However, marked point processes
with a high number of different types of events have received less attention.

This paper is a case study in the use of pattern discovery and mixture mod-
eling for the analysis of a high-dimensional marked point processes.

Our application is in the area of linguistics, especially onomastics (the study
of names), particularly place names. The naming of natural features, such as hills,
lakes, springs, meadows etc., provides a wealth of information. Our example data
consists of full information about place names in Finland. The names tend to
be fairly old, and they provide information about the population history and
linguistic conditions at the time when the names where given.

Research in onomastics has traditionally been conducted by selecting a single
name, or a group or related names, drawing maps of their occurrences, and doing
qualitative analysis of the patterns of occurrences. Global analyses of the spatial
distributions of different names are non-existent.

Our case study concerns two major themes in onomastics. The first is depen-
dence between occurrences of names. It has long been assumed that the name of
a nearby location has an influence on the naming of a location. For example, if
a lake is called “Black Lake” (usually because the water is sufficiently clear that
one can see the dark bottom of the lake), then a nearby lake might be named
“White Lake”. No quantitative evidence for this phenomenon is known, however.
A special case of the local influence of names is repulsion: if a location is called
B, then it makes sense to assume that other similar locations near this will not
be called B: after all, the purpose of naming is to assign identifiers to locations.
Our first goal is to study the local interactions between names.

The second theme we want to verify is the existence of relatively homo-
geneous spatial regions with respect to the distribution of place names. It is
typically assumed that the naming conventions in nearby areas should be more
or less similar, i.e., that there are clear regional trends in the style of names.
The occurrence maps of individual names support this hypothesis, but virtually
no global analyses exist.

In this paper we address both these themes. We first show how one can
modify the basic ideas of association rule techniques to obtain local descriptions
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of the dependencies between the occurrences of names. The results show that
indeed there are statistically significant associations between the occurrences of
names. As for repulsion effects, we show that they are far less noticeable than
expected.

For the second theme, we demonstrate the use of mixture modeling for the
data at the granularity of municipalities, and show that the resulting clusters of
municipalities are spatially extremely coherent. Thus the results verify the basic
hypothesis that spatial homogeneity exists and provide new data for further
onomastic research into the naming processes that cause the phenomenon.

The rest of this paper is organized as follows. The data set is described in
Section 2. In Section 3 we show how the basic ideas of association rules can be
generalized to the case of spatial point patterns, and give a sample of the results.
Section 4 describes how mixture modeling applies to this data set, and discusses
the results briefly. Section 5 is a brief conclusion.

2 The Data Set

Our example data set is a subset of the Finnish names occurring in the National
Place Name Register, a part of the Geographic Names Register kept by the
National Land Survey of Finland. The register contains all place names that
appear on the 1:20 000 Basic Map and is maintained for the purposes of creating
these maps. The size of the register, as well as that of our subsets, can be found
in table 1, which shows the total number of Finnish names (or name instances),
the number of different names, and the number of different municipalities in
which these names are found.

Table 1. National Place Name Register data

Name Different Municipalities
instances names

Entire Register 717 747 303 626 447
Lakes 58 267 25 178 408
Common lake names 9 008 54 315
Name endings 55 538 45 407

The full data model of the register is explained in [3], but for the present
study it is sufficient to note that the register includes a language field, a fea-
ture type field and the spatial information in different formats, including two
co-ordinate systems and several administrative divisions. The feature type cate-
gorizes geographical features into such classes as lake or pond, or river, or stretch
of river, or forest. For lakes, the location is fixed to be a selected point inside of
the lake.

For our study we selected first all lake names in Finnish. This selection we
pruned further along two different lines. For our primary data set we chose the
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names that have at least 90 instances. While our aim was to concentrate on
the most common names, the limit of 90 instances is somewhat arbitrary. To
supplement the primary data set we selected for clustering purposes a second
data set, consisting not of complete place names but of derivational suffixes and
final parts of compound names.

The two different subsets were selected mainly for onomastic reasons. Our
working hypothesis was that spatial associations are in a large part related to the
phenomenon of contrastive names — that is, pairs of names that refer to similar
geographical features and differ only by the first part of the name in some sort
of contrastive manner. To study this we needed to search for spatial associations
for full names. Similarly, both intuition and onomastic consensus would say that
there is a repulsion effect between two instances of the same name which is
closely related to the use of place names to identify a place: a name cannot
normally be used by the same group of people to denote two different places of
the same type1. Again, this means we have to study the full names. In either
case it seems appropriate to restrict ourselves to relatively common names, to
make sure there are enough instances of each of them to get valid results.

With clustering the situation is somewhat different. The obvious way to start
is to use full names, like we do with the association rules, and there is no reason to
doubt that this approach works. However, it is also reasonable to postulate that
by studying word endings — both derivative suffixes and end-parts of compound
names — we can get insight into differences in naming practices. Using name
endings is thus an attempt to do cluster analysis based on the distribution of
various name types, not just names as such.

3 Spatial Association Rules

In this section we consider the first theme: finding local effects between the
occurrences of different names. As an example, consider Figures 1—3 showing
the occurrences of certain pairs of names. How do the occurrences of one name
affect the probability of occurrence of another name? It is fairly clear that the
maps alone cannot answer the question.

In spatial statistics questions such as this have been addressed by using, e.g.,
nearest neighbor distances or the K function and its derivatives [4,2]. Here we
describe a similar approach, but using the terminology of association rules.

Given a set of observations over 0-1 attributes A1, . . . , An, an association
rule is an expression X ⇒ Y , where X, Y ⊆ {A1, . . . , An}. Given a set X of
attributes, the frequency f(X) of X is the fraction of observations that have a 1
in all attributes of X. The frequency of the rule is defined to be f(X ∪ Y ), and
the accuracy (confidence) of the rule is f(X ∪ Y )/f(X).

We consider spatial association rules of the form A ⇒r B. The interpretation
of such a rule is that given a location (x, y) in which event of type A occurs, one
is likely to see at least one event of type B within distance r from (x, y). This
definition is close to the ones used by [5,6,7,8,9]. From an onomastic point of
1 It is, however, relatively common to name e.g. a farm after a nearby lake.
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view it seems prudent to start with restricting ourselves to associations between
two names.

To test the significance of a rule A ⇒r B we start with a set of places
named A and another set of places named B. We want to evaluate whether the
occurrence of a B is more likely in the context of a nearby A than in general.
Note, however, that a B can only occur if there is a suitable natural feature
present: we cannot observe a “Pike Lake” at position (x, y) unless there is a lake
at (x, y). To take this into account we consider as a set of reference points all
points belonging to the the same type of feature as B; call this set CB . In our
case we used all Finnish lakes as CB .

The probability that a given place that belongs to CB is named B is P (B) =
N(B)

N(CB) , where N(B) is the total number of places named B and N(CB) is the
total number of all the places of the same type. We now select the places be-
longing to set CB which are within the given radius r of a place named A. We
denote the size of this selection by n(CB) and the number of B places in it by
n(B). As null hypothesis we can now assume that the occurrences of A and B
are independent. Under this hypothesis our selection can be viewed as a random
sample, which can be approximated by the Poisson distribution, X ∼ Poisson(λ),
where λ = n(CB) N(B)

N(CB) . To correct for multiple testing, we use the Bonferroni
correction.

Repulsion. Repulsion is essentially a special case of a spatial association rule
A ⇒r B, where A = B. However, in this situation we select points based on
the spatial distribution of A; it is not immediately obvious that this can be
considered a random sample with regard to A. We have therefore used another
method to confirm the results on repulsion.

In the general case we again start with two kinds of points, A and B, the
latter of which belong to set CB . The overall number of points B and CB is
N(B) and N(CB), respectively; the probability of a given CB point being a B

point is p = N(B)
N(CB) .

Within a given radius of the ith point with name A there are n(CBi) points
of set CB . We use random variable Xi to denote the number of points named
B in this set. If the B points are distributed independently of each other, Xi ∼
Bin(n(CBi), p), so E(Xi) = n(CBi

) and D2(Xi) = n(CBi
)p(1−p). Summing, we

obtain a variable Sm =
∑m

i=1 Xi, and by assuming independence of the variables
Xi, we have E(Sm) =

∑m
i=1 E(Xi) and D2(Sm) =

∑m
i=1 D2(Xi). Applying the

central limit theorem we can obtain confidence estimates.

Results. Applying the method presented above to the common names data set
gave both expected and unexpected results. As expected, most of the pairs of
names had no significant associations either way. Also to be expected was that
there were pairs that had significant repulsion between the names: the spatial
distributions of these names just don’t overlap, for various reasons related to
such things as geography or variation in dialects.



296 Antti Leino, Heikki Mannila, and Ritva Liisa Pitkänen

One interesting sub-category of the association rules was what can be called
contrasting names. These have traditionally considered only for such pairs as
Mustalampi “Black Lake” — Valkealampi “White Lake” where the contrasting
element in at least one of the names refers to a notable property of the lake and
there is a clear antonymic relation between the two names. Our study indicates
that this kind of variation is used in the naming process more widely and with
far less strict semantic constraints for the elements than onomasticians have
thought. For instance, there was a group of three names, Ahvenlampi “Perch
Lake”, Haukilampi “Pike Lake” and Särkilampi “Roach Lake”, all of which had
significant associations with each other even over small distances. Figure 1 shows
the spatial distribution for Ahvenlampi and Haukilampi on a map with main
dialectal regions, along with Poisson-approximated probabilities before and after
the Bonferroni correction.

Ahvenlampi => Haukilampi:
+ At 1 km found 20; p(n<20) = 1.0000 (corrected 1.00)
+ At 2 km found 40; p(n<40) = 1.0000 (corrected 1.00)
+ At 3 km found 51; p(n<51) = 1.0000 (corrected 0.99)
+ At 4 km found 75; p(n<75) = 1.0000 (corrected 1.00)
+ At 5 km found 92; p(n<92) = 1.0000 (corrected 0.97)
+ At 6 km found 116; p(n<116) = 1.0000 (corrected 0.98)
+ At 7 km found 137; p(n<137) = 1.0000 (corrected 0.95)
+ At 8 km found 170; p(n<170) = 1.0000 (corrected 1.00)
+ At 9 km found 181; p(n<181) = 1.0000 (corrected 0.96)
+ At 10 km found 204; p(n<204) = 1.0000 (corrected 0.98)

Haukilampi => Ahvenlampi:
+ At 1 km found 20; p(n<20) = 1.0000 (corrected 1.00)
+ At 2 km found 40; p(n<40) = 1.0000 (corrected 1.00)

At 3 km found 50; p(n<50) = 1.0000 (corrected 0.91)
+ At 4 km found 75; p(n<75) = 1.0000 (corrected 0.99)

At 5 km found 92; p(n<92) = 1.0000 (corrected 0.88)
At 6 km found 113; p(n<113) = 0.9999 (corrected 0.73)
At 7 km found 131; p(n<131) = 0.9996 (corrected 0.00)
At 8 km found 154; p(n<154) = 0.9998 (corrected 0.53)
At 9 km found 175; p(n<175) = 0.9999 (corrected 0.64)
At 10 km found 195; p(n<195) = 0.9999 (corrected 0.80)

Fig. 1. Spatial distribution of Haukilampi (x) and Ahvenlampi (+)

There were, however, other pairs that would at first glance appear to be
similarly contrasting, but whose associations are somewhat weaker and start
to show at significantly longer distances. In fact, the question arises whether
there is a connection in the naming process or whether the names just have a
similar distribution. One such case is the pair of Joutenlampi “Swan Lake” and
Hanhilampi “Goose Lake”, as shown in Figure 2. The reasons for the difference
between this pair and that of Ahvenlampi — Haukilampi are not very obvious,
and further onomastic study of these phenomena is needed.

Then there are pairs of names that have a significant association but are not
contrasting, like Lehmilampi “Cow Lake” and Likolampi “Retting Lake”2, as
shown in Figure 3. In some cases another reason for the association can be seen;
here, for instance, both names have similar agricultural origins. Although one
can make such guesses about the reasons for the association, the phenomenon
itself is a new discovery, and again further study would be strongly indicated.
2 The name refers to a step in the processing of flax into linen.
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Hanhilampi => Joutenlampi:
At 1 km found 0; p(n<0) = 0.0000 (corrected 0.00)
At 2 km found 3; p(n<3) = 0.9259 (corrected 0.00)
At 3 km found 3; p(n<3) = 0.6418 (corrected 0.00)
At 4 km found 5; p(n<5) = 0.6983 (corrected 0.00)
At 5 km found 9; p(n<9) = 0.8927 (corrected 0.00)
At 6 km found 18; p(n<18) = 0.9990 (corrected 0.00)
At 7 km found 21; p(n<21) = 0.9985 (corrected 0.00)

+ At 8 km found 31; p(n<31) = 1.0000 (corrected 0.98)
At 9 km found 33; p(n<33) = 1.0000 (corrected 0.91)
At 10 km found 37; p(n<37) = 1.0000 (corrected 0.91)

Joutenlampi => Hanhilampi:
At 1 km found 0; p(n<0) = 0.0000 (corrected 0.00)
At 2 km found 3; p(n<3) = 0.8542 (corrected 0.00)
At 3 km found 3; p(n<3) = 0.4347 (corrected 0.00)
At 4 km found 5; p(n<5) = 0.4496 (corrected 0.00)
At 5 km found 9; p(n<9) = 0.6805 (corrected 0.00)
At 6 km found 20; p(n<20) = 0.9968 (corrected 0.00)
At 7 km found 25; p(n<25) = 0.9981 (corrected 0.00)
At 8 km found 33; p(n<33) = 0.9998 (corrected 0.49)
At 9 km found 35; p(n<35) = 0.9990 (corrected 0.00)
At 10 km found 40; p(n<40) = 0.9992 (corrected 0.00)

Fig. 2. Spatial distribution of Hanhilampi (x) and Joutenlampi (+)

Lehmilampi => Likolampi:
At 1 km found 8; p(n<8) = 0.9998 (corrected 0.48)

+ At 2 km found 21; p(n<21) = 1.0000 (corrected 1.00)
+ At 3 km found 34; p(n<34) = 1.0000 (corrected 1.00)
+ At 4 km found 45; p(n<45) = 1.0000 (corrected 1.00)
+ At 5 km found 56; p(n<56) = 1.0000 (corrected 0.99)
+ At 6 km found 69; p(n<69) = 1.0000 (corrected 0.99)
+ At 7 km found 87; p(n<87) = 1.0000 (corrected 1.00)
+ At 8 km found 104; p(n<104) = 1.0000 (corrected 1.00)
+ At 9 km found 125; p(n<125) = 1.0000 (corrected 1.00)
+ At 10 km found 143; p(n<143) = 1.0000 (corrected 1.00)

Likolampi => Lehmilampi:
At 1 km found 8; p(n<8) = 0.9999 (corrected 0.72)

+ At 2 km found 19; p(n<19) = 1.0000 (corrected 1.00)
+ At 3 km found 30; p(n<30) = 1.0000 (corrected 1.00)
+ At 4 km found 37; p(n<37) = 1.0000 (corrected 0.98)

At 5 km found 44; p(n<44) = 1.0000 (corrected 0.88)
At 6 km found 48; p(n<48) = 0.9991 (corrected 0.00)
At 7 km found 61; p(n<61) = 0.9999 (corrected 0.71)
At 8 km found 72; p(n<72) = 1.0000 (corrected 0.93)

+ At 9 km found 85; p(n<85) = 1.0000 (corrected 1.00)
+ At 10 km found 93; p(n<93) = 1.0000 (corrected 1.00)

Fig. 3. Spatial distribution of Lehmilampi (x) and Likolampi (+)

The repulsion between different instances of the same name does not seem
to be a very common phenomenon. Onomastically, this is rather surprising. It is
true that our data set contains such names as Pahalampi “Evil Lake”3 (shown
in Figure 4) or Palolampi “Burnt Lake”4, where there are no instances within
2 km of each other. However, the area covered by such selections is rather small,
and most of these findings cannot be considered significant. The repulsion effects
are for the most part insignificant even without the Bonferroni correction. One
possible explanation for the scarcity of significant repulsion is that the body of
Finnish lake names is relatively large and the distance a name needs to retain

3 Some of these — possibly even a large amount — are euphemisms for a vulgar name
that the locals considered too offensive to tell outsiders they perceived as being of a
higher social standing, such as visiting onomasticians or geographers.

4 These names are related to the agricultural method of burn-beating, practiced in
some places in Finland until the early 20th century.
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Pahalampi => Pahalampi:
At 1 km found 0; p(n>0) = 0.7161 (corrected 0.00)
At 2 km found 0; p(n>0) = 0.9899 (corrected 0.00)
At 3 km found 8; p(n>8) = 0.6203 (corrected 0.00)
At 4 km found 16; p(n<16) = 0.5101 (corrected 0.00)
At 5 km found 41; p(n<41) = 0.9997 (corrected 0.17)

+ At 6 km found 63; p(n<63) = 1.0000 (corrected 1.00)
+ At 7 km found 76; p(n<76) = 1.0000 (corrected 1.00)
+ At 8 km found 87; p(n<87) = 1.0000 (corrected 1.00)
+ At 9 km found 103; p(n<103) = 1.0000 (corrected 1.00)
+ At 10 km found 119; p(n<119) = 1.0000 (corrected 1.00)

Fig. 4. Spatial distribution of Pahalampi

Umpilampi => Umpilampi:
At 1 km found 9; p(n<9) = 0.9999 (corrected 0.66)

+ At 2 km found 32; p(n<32) = 1.0000 (corrected 1.00)
+ At 3 km found 66; p(n<66) = 1.0000 (corrected 1.00)
+ At 4 km found 82; p(n<82) = 1.0000 (corrected 1.00)
+ At 5 km found 103; p(n<103) = 1.0000 (corrected 1.00)
+ At 6 km found 126; p(n<126) = 1.0000 (corrected 1.00)
+ At 7 km found 136; p(n<136) = 1.0000 (corrected 1.00)
+ At 8 km found 154; p(n<154) = 1.0000 (corrected 1.00)
+ At 9 km found 164; p(n<164) = 1.0000 (corrected 1.00)
+ At 10 km found 171; p(n<171) = 1.0000 (corrected 1.00)

Fig. 5. Spatial distribution of Umpilampi

its usefulness as an identifier quite small: the name of a typical small lake is only
used within a single village. The latter of these two factors may be sufficient to
keep the repulsion small enough to disappear into the random variation caused
by the former.

With all this in mind, it is still somewhat surprising to find that there are
cases like Umpilampi “Closed Lake”5 (shown in Figure 5) where there is a visible
association even at distances of 1 km or less. Again, one can guess for the reasons
why this is possible — these are mostly small ponds, and in many cases the need
to refer to one of them exists only within one farmer family — but nevertheless
this would appear to contradict the onomastic consensus that the basic unit for
name use in rural areas is one village.

5 That is, a small lake overgrown with weeds.
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4 Probabilistic Modeling

We now turn to the second onomastic theme, the existence or nonexistence of
homogeneous regions with respect to place names. We tested this hypothesis by
considering the municipalities as observations, and using mixture modeling and
the EM algorithm to obtain a clustering of the municipalities.

In more detail, we took the 315 municipalities, and created 54 variables,
one for each of the names in the common names data set. This gives us 54-
dimensional data set, where each column indicates the number of occurrences of
the name in the municipality. We then took the 407 municipalities and 45 name
endings, and conducted a similar test on that set.

We use mixture modeling to this data set [10,11]. A (finite) mixture model
assigns a probability P (x|Θ) to an observation x as weighted sum

∑
j P (x|θj) of

component distributions P (x|θj) for j = 1, . . . , K, where the weights (or mixing
proportions) πj satisfy πj ≥ 0 and

∑
πj = 1.

For each single component of the model for an observation x = (x1, . . . , xd)
we assume independence between variables and use the multinomial Bernoulli
distribution

P (x|θ) =
d∏

i=1

θxi
i

with the constraint
∑d

i=1 θi = 1. A finite mixture of multivariate Bernoulli
probability distributions is thus specified by the equation

P (x|Θ) =
K∑

j=1

πjP (x|θj) =
K∑

j=1

πj

d∏

i=1

θxi
ji

with the parameterization θ = {π1, . . . , πK , (θji)} containing K(d + 1) parame-
ters for data with d dimensions.

Given a data set R with d binary variables and the number K of mixture
components, the parameter values of the mixture model can be estimated using
the Expectation Maximization (EM) algorithm [12,13,14]. The EM algorithm
has two steps which are applied alternately in an iterative fashion. Each step is
guaranteed to increase the likelihood of the observed data, and the algorithm
converges to a local maximum of the likelihood function [12,15]. The method
gives for each component and each observation a probability of the observation
stemming from that component.

We applied mixture modeling to the data described above; for each munici-
pality x and component j we can compute the probability of the observation x
stemming from component j by

P (x|j) =
P (x|θj)∑
i P (x|θi)

.

For most municipalities there is clearly one component j which gives the munic-
ipality the highest probability. Example results are shown in Figures 6 and 7.
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2 clusters 3 clusters 4 clusters

Fig. 6. Clustering based on the most common lake names

The different clusters are shown in shades of grey; white municipalities have no
lakes in the data set6.

Several features are of interest. First of all, the clusters of municipalities
obtained in this way are spatially very well connected. Note that the method
in itself has no information about the locations of the municipalities, and hence
the spatial connectedness of the clusters is interesting. Second, as the number of
clusters increases, the existing cluster boundaries tend not to change very much,
but rather existing clusters split. Third, the clusters obtained correspond fairly
well with the previous onomastic information about the distribution of names.

Specifically, in roughly the southernmost third of the map the boundary seen
in the two-cluster maps corresponds rather well with the division between the
eastern and western dialectal groups of Finnish. There is a small but noticeable
deviation in Tavastland, and this is in line with our knowledge of the history of
the settlement of Finland. Likewise, the western cluster continues north along
the coast, and this too is in line with what we know from history. However,
the middle third looks rather interesting: large regions that were designated and
used as hunting grounds for the dialectally western Tavastland communities as
late as the 16th century are not associated with the parent province but instead
with the eastern regions, from where they were to a large extent populated in
the 17th century. This would appear to imply that there is far less old influence
in the names of that region than has been commonly believed, and this in turn
opens up a variety of interesting onomastic questions.

6 This is mostly because the common names data set contains only 15% of the lakes,
but also because Finland is a bilingual country, and there are some municipalities
that are uniformly Swedish.
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2 clusters 3 clusters 4 clusters

Fig. 7. Clustering based on the name ends

5 Conclusions

We have described a case study in the area of high-dimensional spatial point
processes. We showed how one can use the basic principles of rule discovery and
mixture modeling to analyze an onomastic data set about place names. The
discovered rules of association and repulsion between names show fascinating
local effects between the occurrences. The global analysis of name distribution
by using mixture modeling demonstrated that homogeneous onomastic regions
do exist. The methods lead to novel onomastic results. While the computational
techniques we used are fairly standard, their application was not trivial. The
global and local analysis of names has been shown to be very useful, and the
study is continuing in several directions.

The existing techniques can be used to answer many onomastic questions.
While computational methods of this type have not been applied to onomas-
tic data, the reactions of various researchers in that field have been promising.
However, there are also computational open problems. Finding more complex
local interactions between names is a particularly interesting one. If A and B
occur close to each other, then C is likely to occur close, too. While straight-
forward generalizations of association rules of the type AB ⇒r C are possible,
it might be more useful to investigate rules of the form Γ ⇒r C, where Γ is a
derived predicate of position, e.g., of the type “there are names of type α in the
neighborhood”.

A deeper issue is separating the different layers in the process leading to a
particular name occurring in a particular location. In order for a lake at location
(x, y) to be called “Black Pond”, there has to be a lake at that location, the
people who named it must use words “black” and “pond” in their dialect, their
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naming conventions must allow for the combined name to occur, etc. Thus the
data actually is a produced by several interacting phenomena, and finding the
influence of each is not easy.
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