
N. Lavra� et al. (Eds.): PKDD 2003, LNAI 2838, pp. 387–398, 2003. 
© Springer-Verlag Berlin Heidelberg 2003 

Statistical �-Partition Clustering over Data Streams 

Nam Hun Park and Won Suk Lee 

Department of Computer Science, Yonsei University 
134 Shinchon-dong Seodaemun-gu Seoul, 120-749, Korea 

{zyonix,leewo}@amadeus.yonsei.ac.kr 

Abstract. This paper proposes a grid-based clustering method that dynamically 
partitions the range of a grid-cell based on its distribution statistics of data ele-
ments in a data stream. Initially the multi-dimensional space of a data domain is 
partitioned into a set of mutually exclusive equal-size initial cells. As a new 
data element is generated continuously, each cell monitors the distribution sta-
tistics of data elements within its range. When the support of data elements in a 
cell becomes high enough, the cell is dynamically divided into two mutually 
exclusive smaller cells called intermediate cells by assuming the distribution of 
data elements is a normal distribution. Eventually, the dense sub-range of an 
initial cell is recursively partitioned until it becomes the smallest cell called a 
unit cell. In order to minimize the number of cells, a sparse intermediate or unit 
cell can be pruned if its support becomes much less than a minimum support. 
The performance of the proposed method is comparatively analyzed through a 
series of experiments. 

1 Introduction 

Recently, several data mining methods[1,2,3] for a data stream are actively proposed. 
A data stream is a massive unbounded sequence of data elements continuously gener-
ated at a rapid rate. Due to this reason, it is impossible to maintain all elements of a 
data stream. Consequently, data stream processing should satisfy the following re-
quirements[4]. First, each data element should be examined at most once to analyze a 
data stream. Second, memory usage for data stream analysis should be restricted 
finitely although new data elements are continuously generated in a data stream. 
Third, newly generated data elements should be processed as fast as possible to pro-
duce the up-to-date analysis result of a data stream, so that it can be instantly utilized 
upon request. To satisfy these requirements, data stream processing sacrifices the 
correctness of its analysis result by allowing some errors.  

This paper proposes a grid-based clustering method that dynamically partitions the 
range of a grid-cell based on its distribution statistics of data elements in a data 
stream. Initially the multi-dimensional space of a data domain is partitioned into a set 
of mutually exclusive equal-size initial cells. As a new data element is generated 
continuously, each cell monitors the distribution statistics of data elements within its 
range. When the support of a cell becomes high enough, the cell is dynamically di-
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vided into two mutually exclusive smaller cells, called intermediate cells, based on its 
distribution statistics. Similarly, a dense intermediate cell itself can be partitioned but 
it is replaced by its two-divided cells. Eventually, the dense sub-range of an initial 
cell is recursively partitioned until it becomes the smallest cell called a unit cell. A 
cluster of a data stream is a group of adjacent dense unit cells. As the size of a unit 
cell is set to be smaller, the resulting set of clusters is more accurately identified. In 
order to minimize the number of cells, a sparse intermediate or unit cell is pruned if 
its support becomes much less than a minimum support. 

The rest of this paper is organized as follows. Section 2 presents related works. 
Section 3 presents the proposed statistical σ-partition clustering algorithm in detail. In 
Section 4, several experimental results are comparatively analyzed to illustrate the 
various characteristics of the proposed method. Finally, Section 5 presents conclu-
sions. 

2 Related Works 

Clustering is a process of finding groups of similar data elements which are defined 
by a given similarity measure. Clustering techniques are categorized into several 
methods: partitioning, hierarchical, density-based and grid-based. The partitioning 
method such as k-means[5] and k-medoid[6] divides the data space of a data set into 
k mutually disjoint regions called clusters. The number of clusters should be prede-
fined in advance. The k-medoid algorithm selects k data elements as the centers of k 
clusters initially, and repeatedly replaces one of the selected centers until it finds the 
best set of k centers. In this method, noise data elements can substantially influence 
the generation of a cluster, so that it may be difficult to produce a correct result in 
some cases. The hierarchical method such as BIRCH[7] and CURE[8] decomposes a 
data set into a tree-like structure. In BIRCH, a CF(Clustering Feature) tree which is 
used to summarize cluster representations is generated dynamically. After the CF tree 
is built, any clustering algorithm such as a typical partitioning algorithm is then used. 
In CURE, instead of using a single centroid to represent a cluster, a fixed number of 
well-scattered data objects is selected to represent a cluster. The selected representa-
tive data objects are shrunk towards the centroid of their cluster by a specified shrink-
ing factor in the process of clustering. Among the clusters, two adjacent clusters 
whose representative data objects are the closest can be merged into one cluster until 
a predefined number of clusters is left. A typical density-based clustering algo-
rithm[9] which regards a cluster as a region in a data space with a high density of data 
elements. Its strong points are that it can discover an arbitrarily shaped cluster, and 
control noise data easily. In the grid-based clustering method, the data space of a 
problem is divided statistically into a set of equal-size cells. A cluster is generated by 
merging adjacent cells that have more than a predefined number of data elements. Its 
time complexity is very efficient but the accuracy of a cluster is affected by the size 
of a cell. STING[10] uses a grid-based multi-resolution data structure in which a data 
space is divided into rectangular cells. There are several levels of such rectangular 
cells corresponding to the different levels of resolution. 
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Most conventional clustering algorithms assume a data set is fixed and focuses on 
how to minimize processing time or memory usage algorithmically. When a data set 
is enlarged incrementally, it is more efficient to use incremental clustering algo-
rithms[7,11] which mainly focus on how to utilize the previous clustering result of an 
original data set in clustering its enlarged data set efficiently. In other words, the set 
of old data elements is scanned only when a new possible cluster may be found by the 
set of newly added data elements. Therefore, all the old data elements should be 
maintained physically. 

In [13], a k-median algorithm is proposed to find the clusters of data elements gen-
erated in a data stream. It regards a data stream as a sequence of stream chunks. A 
stream chunk is a set of consecutive data elements generated in a data stream. When-
ever a new stream chunk containing a set of newly generated data elements is formed, 
the LSEARCH routine which is an O(1)-approximate k-medoid algorithm is per-
formed to select k data elements from the data elements of the stream chunk as the 
local centers of the chunk. The algorithm confines its memory space to holding a 
fixed number of local centers for previous stream chunks. Therefore, if retaining ik 
centers is impossible at the ith stream chunk, the LSEARCH routine is performed 
again to cluster the weighted ik points to retain k centers. 

3 �-Partition Clustering 

Given a data stream D of d-dimensional data space N=N1 × N2 × …× Nd, a data ele-
ment generated at the jth

 turn is denoted by ej=<e1

j,e2

j,…,ed

j>, ei

j�Ni, 1�i�d. When a 
new data element et is generated at the tth turn in a data stream D, the current data 
stream Dt is composed of all the data elements that have ever been generated so far 
i.e. Dt={e1,e2,…,et}. The total number of data elements generated in the current data 
stream Dt is denoted by |D t |. 

Finding a cluster of similar data elements in the current data stream Dt is identify-
ing a region whose current density of data elements is dense enough. A unit cell 
whose length in each dimension is less than �����sed to define the similarity between 
data elements. The current support of a cell is the ratio of the number of those data 
elements in Dt that are inside the cell over the total number of data elements in Dt. 
Therefore, a cluster at Dt is a group of adjacent dense unit cells whose current sup-
ports are greater than or equal to a predefined minimum support Smin. 

The range of each dimension Ni is initially partitioned by p number of mutually 
exclusive equal-size intervals Ii

 j = [si

j, fi

j) 1�j�p where si

j and fi

j denote the start and end 
values in the jth interval of the ith dimension. Consequently, pd number of initial cells 
are formed in N and each initial cell g is defined by a set of d intervals {I1,I2,…,Id} 
Ii ⊆ Ni 1�i�d. The range R(g) of an initial cell g is a rectangular space rs=I1 × …× Id. 
However, the initial rectangular space of an initial cell becomes a set of rectangular 
spaces RS={rs1,rs2,…,rsq} as a series of cell partitioning and pruning operations are 
performed subsequently. When these rectangular spaces are projected to the ith dimen-
sion, the intervals of the ith dimension of a cell g can be found and they are denoted by 
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ISi(g)={Ii

1,Ii

2,…,Ii

q}. The sum of these intervals is defined as the interval size of the ith 
dimension of the cell g. The range of the cell g is the united spaces of all the 

rectangular spaces rs1,…,rsq, R(g)= �
q

i
irs

1=
. Each cell keeps the current distribution 

statistics of those data elements in the current data stream Dt that are within its range 
as defined in Definition 1. 
 
[Definition 1] Distribution Statistics of a grid-cell g(RS,c,�,�) 
For the current data stream Dt, a term g(RS, ct, �t, �t) is used to denote the distribution 
statistics of a cell g which is defined by a set of its rectangular spaces RS. Let Dg

t 
denote those elements in Dt that are in the range of the cell g, i.e.,Dg

t={ e| e�Dt and e 
�R(g) }. The distribution statistics of the cell g are defined as follows: 
     i)   ct : the number of data elements in Dg

t 

     ii) �t=<µ1

t,…,µd

t > : µi

t denotes the average of the ith dimensional values of the data 
elements in Dg

t. 

                                 µi

t= ∑
=

tc

j

tj
i ce

1
/ , 1�i�d 

     iii) �t=<σ1

t,…,σd

t > : σi

t denotes the standard deviation of the ith dimensional values 
of the data elements in Dg

t. 

                                 σi

t= tc

ij

t
i

j
i /c)(e

t

∑ −
=

2 , 1�i�d  

 
When a new data element et is generated in the current data stream Dt, its corre-

sponding initial cell among the pd initial cells is identified based on the initial parti-
tions of the data space N. If the data element is in the range of the initial cell g and the 
distribution statistics of the cell g was updated most recently at the insert of the vth 
data element (v�t), its statistics remain the same as g(RS, cv,�v,�v) and they are up-
dated to g(RS, ct,�t,�t) as follow: for ∀i, 1�i�d 

ct=cv+1, µi

t= 
t

t
i

vv
i

c

ec +×
,  σi

t= 2
22

2 )(
c

)(e)(
)(

c

c t
it

t
i

v
iv

it

v

−
+

+×   

For the current data stream Dt, the current support of an initial cell g(RS, ct, �t, �t) 
is defined by the ratio of its count over the total number of data elements generated so 
far ,i.e. ct/|Dt|. When the current support of the cell becomes the same as a predefined 
split support Ssplt(Ssplt<Smin), two intermediate cells g1 and g2 are created as the children 
of the initial cell. To split the range of the cell g, a dividing dimension is selected 
based on the distribution deviation of data elements in the cell g. Among the dimen-
sions whose interval sizes for the cell g are larger than � the one with the smallest 
standard deviation, say σk

t, is chosen as a dividing dimension. Based on the standard 
deviation σk

t in the dividing dimension, the set of intervals in the dividing dimension 
k is partitioned into two sets of intervals. One contains those intervals that are within 
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the interval [µk-σk, µk+σk) in which the 68 percentage of data elements in the cell g is 
assumed to be distributed according to a normal distribution. The other includes the 
remaining intervals. The rectangular spaces of the cell g are divided into two mutu-
ally exclusive sets by a statistical σ-partition method with respect to the two sets of 
intervals in the dividing dimension. These two sets of the rectangular spaces are as-
signed to the ranges of the two divided cells g1 and g2 respectively. If a rectangular 
space of the cell g includes µk

t, the corresponding interval of the dividing dimension is 
actually divided. Figure 1 illustrates how to divide the rectangular spaces of a cell g 
(RS,c,�,�) in a two-dimensional data space. 

 

 

Fig. 1. σ-partition on a cell g 

When a cell g(RS, ct, �t, �t) is partitioned by the above σ-partition method into 
cells g1( RS1, c1t, �1t, �1t) and g2( RS2 , c2t, �2t, �2t), the distribution statistics of g1 

and g2 are initialized as follows. Let 
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where sk(gi) and fk(gi) denote the smallest start and largest end value of the intervals of 
the kth dividing dimension for the divided cell gi, i =1,2. At the same times, the distri-
bution statistics of the original cell g(RS, ct,�t,�t) are reset as ct=0 and µi

t=σi

t=0 for ∀i, 
1� i� d since they are carried to those of g1 and g2. 

When a newly generated data element is not in the range of its corresponding ini-
tial cell, the children of the initial cell are searched to find the one whose range in-
cludes the element. After the target intermediate cell g is found, its distribution statis-
tics are updated by the same way as in an initial cell. When the updated support of the 
intermediate cell itself becomes the same as Ssplt and the range of the cell is larger than 
that of a unit cell, the intermediate cell g is divided into two smaller intermediate cells 
by the same way of dividing an initial cell. As in an initial cell, among the dimensions 
whose interval sizes are larger than , the one with the smallest standard deviation is 
chosen as a dividing dimension. However, unlike an initial cell, the original interme-
diate cell is replaced by the two divided cells. Consequently, the parent initial cell of 
the original cell becomes the parent of each divided cell.  

On the other hand, when the current support of an intermediate cell g becomes less 
than a predefined pruning support Sprn ,i.e., ct/|D|t <Sprn, the probability of finding a 
cluster in the range of the cell in the near future is very low. Consequently, the cell is 
removed and its distribution statistics g(RS, c

t,�t,�t) are returned back to its parent 
initial cell gp. Suppose the distribution statistics of the parent cell gp were updated 
lastly at the vth element(v�t) and they are denoted by gp(RSp, cpv,�pv,�pv) where �pv 
=<µp1

v, µp2

v ,…, µpd

v > and �pv =<σp1

v, σp2

v ,…, σpd

v >.  Its new statistics gp(RSp, 
cpt,�pt,�pt) at Dt is updated as follows: 
For all dimensions i(1�i�d), cpt = cpv+ct and 
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When a cell is divided, the 68% of its count is assigned to one divided cell and the 
rest, i.e., 32% is assigned to the other in Equation (1). Therefore, the value of a prun-
ing support Sprn should be less than the 32% of Ssplt in order to avoid pruning a newly 
divided cell too soon.  
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As mentioned, a sparse intermediate or unit cell can be pruned when a data ele-
ment in the range of the cell is generated. However, a considerable number of such 
sparse cells may not be pruned since the possibility of encountering a data element in 
the range of a sparse cell is very low. All sparse intermediate or unit cells can be 
forced to be pruned together by examining their current supports. This mechanism is 
called as a force-pruning operation. Since the distribution statistics of all intermediate 
or unit cells should be examined, the processing time of a force-pruning operation 
takes relatively long. Due to this reason, it can be performed periodically or when the 
current number of cells reaches a predefined threshold value. 

 
divide N

1
,…,N

d
 into p intervals and create pd initial cells; 

 /*  S(g) : the support of cell g , S(g)=ct / |Dt|  */ 
 
for a data stream Dt={ e1, e2, …, et } do /* t is enlarging */ 
    read current data element et; 
    search the cell g which includes et; 
    update �t, �t, ct  of the cell g; 
    if g is a unit cell or an intermediate cell{ 
          if S(g) >= S

splt
 { 

                  if |f
i
(g) – s

i
(g)| >  in any i dimension {  

                        /* dividing an intermediate cell g*/ 
                        find the largest σ

k

t

 
among �t where |f

k
(g) – s

k
(g)| > ; 

                        generate g
1 
and g

2
; 

                        set the statistics of g
1
 and g

2
; eliminate cell g; 

                  } 
           } 
            else if S(g) <= S

prn
 {  

                   /* pruning a cell g */ 
                   find the parent initial cell g

p
 where g is included to g

p
; 

                   update g
p
 with statistics of g; 

                   eliminate cell g; 
            } 
    } 
    else if g is an initial cell { 
             if S(g) >= S

splt
 {  

                   /* dividing an initial cell g */ 
                   find the largest σ

k

t

 
among �t where |f

k
(g) – s

k
(g)| > ; 

                   generate g
1 
and g

2
; 

                   set the statistics of g
1
 and g

2
; 

                   set ct=0 and µi

t=σ
i

t=0 for ∀i dimension; 
             } 
    } 
end 

Fig. 2. The statistic σ-partition clustering 

Figure 2 shows the detailed steps of the proposed algorithm. When a cell is split, 
the counts of two divided cells are initialized by assuming the actual distribution of 
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data elements in the dividing dimension of the cell is a normal distribution. However, 
if the actual distribution of data elements in the original cell is not the normal distri-
bution, there is a certain estimation error. In other words, the count of each divided 
cell may be incorrectly initialized. This estimation error of a certain range in a data 
space is accumulated until the range is represented by a unit cell through a series of 
cell partitioning. Once the range becomes a unit cell, there is no additional estimation 
error since the number of data elements in its range is actually counted. Therefore, 
this accumulated error count of a unit cell is constant. However the support error of 
the accumulated error count in a dense unit cell is continuously decreased due to 
Property 1. For a new unit cell g(RS, ct,�t,�t) created in the current data stream Dt, let 
|Dg

t| denote the actual count of data elements in its range R(g) up to Dt. The estimation 
error E(g) in the count ct of the cell g is constant and is defined by the difference 
between |Dg

t| and its estimated count ct, i.e., E(g)= | |Dg

t| - ct|. 
 
Property 1. (Support error decreasing property) When a unit cell g is newly cre-
ated in the current data stream Dt, its support error is E(g)/|D|t and the estimation error 
E(g) is constant. After m new additional data elements are processed subsequently, 
the total number of data elements is increased to |D t+m| in Dt+m and |D t+m| > |D t| is satis-

fied. Consequently, the support error of the cell g in |D t+m| becomes 
||

)E(
t m

g
+D

, and 

||

)E(
t m

g
+D

<
||

)E(
tD

g
 is satisfied. As m is increased infinitely, 

||

)E(
t m

g
+D

 converges to 0, 

i.e. 0
E

t
≈

+∞→ ||

)(
lim

mm

g

D
. Therefore, it can be ignorable. 

 
A unit cell in the current data stream Dt is dense if its current support is greater 

than or equal to a predefined minimum support Smin. A cluster in the current data 
stream is a set of adjacent dense unit cells. As the size of a unit cell  is defined to be 
smaller, the range of a cluster is more precisely identified. On the other hand, a possi-
ble dense cell is split earlier as the value of a split support Ssplt is lower. Due to this 
reason, a dense unit cell is found earlier, which enables a unit cell to monitor its ac-
tual count more accurately. Furthermore, as the gap between Sprn and Ssplt is increased, 
more number of intermediate cells are maintained while the support of identified 
clusters are more precisely found. 

4 Experimental Results 

In order to analyze the performance of the proposed method, a data set containing one 
million 4-dimensional data elements is generated by the data generator used in 
ENCLUS [14]. Most of data elements are concentrated on randomly chosen 10 dis-
tinct data regions whose sizes in each dimension are also randomly varied from 10 to 
20 respectively. The result of the proposed method is compared with that of the grid-
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based clustering algorithm STING. The values of a pruning support Sprn and a split 
support Ssplt are assigned relatively to a predefined minimum support Smin. The entire 
data space of the data set is divided into 4 initial cells. In all experiments, data ele-
ments are looked up one by one in sequence to simulate the environment of a data 
stream. 

 

 

Fig. 4. Accuracy variations to S
min

 and  

 

Fig. 5. Accuracy variations to S
prn                           

  Fig. 6. Accuracy variations to S
splt

 

Figure 4 shows the accuracy of the proposed method by varying the values of  
and Smin. The accuracy of the proposed method is measured relatively to that of 
STING. In other words, it is the ratio of the number of correctly clustered elements 
by the proposed method over the total number of data elements clustered by STING. 

Figure 5 shows the accuracy of the proposed method by varying the value of Sprn. 
The sequence of generated data elements is divided into 5 intervals each of which 
consists of 200 thousand elements. The average accuracy in each interval is shown. 
As noticed in this figure, the accuracy of the first interval is relatively lower than 
those of the other intervals. This is because the support of an intermediate cell is too 
sensitively varied in the first interval. As a result, a lot of cell partitioning operations 
are performed in the first interval to produce a set of meaningful unit cells. However, 
it becomes stabilized as the total number of data elements is increased. As the value 
of Sprn is increased, the accuracy becomes lower since a considerable number of pos-
sible dense intermediate cells are pruned before they become unit cells. Figure 6 
shows the effect of Ssplt on the accuracy in the first interval. As the value of Ssplt is set 
to be lower, unit cells are generated more quickly, so that the accuracy is improved in 
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the early stage of clustering. However, regardless of the values of Ssplt, the stabilized 
accuracy is the same. 

 

 

Fig. 7. Memory usage variations to S
splt

            Fig. 8. Memory usage variations to S
prn 

 

Fig. 9. Memory usage with force-pruning 

Figure 7 shows the maximum number of cells in the first interval when no cell is 
pruned. The maximum number of cells is stabilized after the first interval. As the 
value of Ssplt is set to be low, the maximum number of cells is increased since cell 
partitioning operations are performed frequently to generate meaningful unit cells. As 
the number of dense unit cells is increased, the maximum number of cells is stabi-
lized. In Figure 8, the variation of the maximum number of cells is shown when 
sparse cells are pruned. After most of dense unit cells are generated, the maximum 
number of cells can be decreased by setting the value of Sprn adequately. When Sprn is 
set to the 30% of Ssplt, the memory usage is not decreased. The reason is that most of 
divided intermediate cells are pruned too quickly and their initial cells are repeatedly 
partitioned again. On the contrary, when the value of Sprn is set to 10%, the memory 
usage is minimized since dense intermediate cells are successfully divided into its 
dense unit cells while sparse ones are pruned properly. 

A force-pruning operation is usually performed periodically or when it is needed. 
Figure 9 shows the memory usage of the proposed method by varying the period of a 
force-pruning operation. In this experiment, two force-pruning periods f=1,000 and 
f=10,000 are compared. A force-pruning period f=1,000 means that a force-pruning 
operation is performed whenever 1,000 new data elements are processed. The mem-
ory usage of each interval is represented by the maximum number of cells. The num-
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ber of cells is decreased as the period is shortened. As noticed by this experiment, a 
force pruning operation does not have to be performed frequently. Instead, it only 
needs to be performed when lots of intermediate cells are partitioned. 

5 Conclusion 

In this paper, a grid-based statistical σ-partition clustering method for a data stream is 
proposed. The multi-dimensional data space is dynamically divided into a set of cells 
with different sizes. By maintaining only the distribution statistics of data elements in 
each cell, its current support is precisely monitored. A dense sub-range of a data 
space is partitioned repeatedly until it becomes a set of dense unit cells. Two thresh-
olds Ssplt and Sprn are proposed to control the performance of the proposed method in a 
data stream. A split support Ssplt is used to determine how fast dense unit cells are 
identified. A pruning support Sprn is used to remove meaningless sparse intermediate 
or unit cells. Therefore, it can be used to minimize the usage of main memory. How-
ever, if it is too high, a less accurate clustering result can be obtained. By controlling 
these two thresholds properly, the performance of the proposed algorithm can be 
flexibly controlled. 
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