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Abstract. This paper presents an extension of prior work by Michael
D. Lee on psychologically plausible text categorisation. Our approach
utilises Lee’s model as a pre-processing filter to generate a dense repre-
sentation for a given text document (a document profile) and passes that
on to an arbitrary standard propositional learning algorithm. Similarly
to standard feature selection for text classification, the dimensionality
of instances is drastically reduced this way, which in turn greatly lowers
the computational load for the subsequent learning algorithm. The filter
itself is very fast as well, as it basically is just an interesting variant of
Naive Bayes. We present different variations of the filter and conduct an
evaluation against the Reuters-21578 collection that shows performance
comparable to previously published results on that collection, but at a
lower computational cost.

1 Introduction

In the last decade the amount of textual information in digital form has grown
exponentially, mainly due to the forever-increasing accessibility of the Internet.
It is crucial to create tools to organise the amount of information available. Text
categorisation is one such tool. It aims at classifying textual documents into pre-
defined categories. Text categorisation applications are manifold and are ranging
from automated meta-data extraction for indexing to document organisation for
databases or web pages (see Yang et al., [1]). Other interesting uses of text
categorisation include text filtering, generally as part of a producer-consumer
relationship, or word sense disambiguation when dealing with natural languages
processing (see Roth, [2]).

1.1 Existing Text Categorisation Methods

It is difficult to be exhaustive when listing the existing text categorisation meth-
ods. Amongst the main approaches, decision tree methods (“divide-and-conquer”
approach) have the advantage of being “human readable” in the sense that they
deal with symbolic entities and not numeric values [3]. Investigations using prob-
abilistic models usually focus on Naive Bayes and its variants [4]. Joachims
[5] introduced the support vector machine method to text categorisation. Also
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worth mentioning is the Rocchio method [6]; this method creates a prototype
document for each class from the training set. A test document will be assigned
to the class of the closest prototype found. Yang [7] invented a mapping approach
using a multivariate regression model and investigated, together with Pedersen,
lazy learning for text categorisation [8]. Frank et al. [9] investigated text cate-
gorisation using compression models, and Wiener et al. [10] were using neural
networks. Yet other approaches have tried to improve predictive performance by
incorporating semantic information like WordNet hypernyms [11].

1.2 David Lee’s Method

Lee [12] came up with a psychologically plausible approach considering three
different insights. Firstly, Lee noted that people are able not only to state that
a given document is about a given topic but also that a document is not about
a topic. Take for example ”middle east conflict” as a topic; the occurrence of
the word ”rugby” in a document would give a strong hint about the document
not being about the topic. Secondly, humans are able to make non-compensatory
decisions: one can decide if a document is about a topic or not without necessarily
having to read the whole document. Using our previous middle-east conflict
example, if the document starts with something like ”The south African rugby
team just arrived in Auckland...” most people would not need to read any further
to reach a conclusive, in this case negative, decision. Thirdly, people have the
capacity to give answers with a level of confidence and so they are able to state
if a document is either definitely about a topic or alternatively just remotely
related to a topic.

Lee’s model’s formal definition is based on a Bayesian analysis, which states
that it is possible to compute the posterior odds of a document being about a
topic or not by multiplying the prior odds—chances of a document to be about a
topic before looking at it—and the evidence—probability that a document would
have been generated under the assumption that it is about a topic (or not). Lee
considers the document as a sequence of words. The evidence then becomes the
product of the probability of each word being in a document about the topic
(or not). Note that this approach follows the Naive Bayes assumption that all
words are independent of one another, also called the independence assumption.
The evidences’ probabilities are quantified using the number of occurrences of the
given word over the total number of words and are calculated for both categories,
for and against the topic. The independence assumption allows analysing words
sequentially, which permits monitoring the evolution of the posterior odds word
by word in the same order as they appear in the document. Considering the
logarithm of the posterior odds and using evidences for and against the topic
leads to the following equation:

ln
Pr (cj |di)

Pr (¬cj |di)
= ln

Pr (cj)
Pr (¬cj)

+
n∑

k=1

ln
Pr (wni|cj)

Pr (wni|¬cj)

Figure 1 shows the evolution of the posterior odds of two documents processed
by the text classifier. The graph on the left depicts the partial log-odds sums
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for a document about the topic, while the graph on the right depicts those
sums for a document that is not about the topic. Note that the partial log-odds
sums are computed over larger and larger initial subsequences of the document,
which causes the order of the words in the document to become significant.
This example also shows the possibility of non-compensatory decision making
by setting two thresholds, one for the document being about the topic and the
other for the document not being about the topic. The decision is taken when
one of the thresholds is reached. Let’s assume the thresholds in Figure 1 are
100 for a document about the category and −20 for a document not about the
category. In the left hand side case, the decision is taken after reading the 120th

word (when the curve meets with y = 100). On the right hand side example,
the decision can be taken after reading the 45th word (the curve meets with
y = −20).
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Fig. 1. Illustration of document profiles, the left hand side one is about the topic while
the right hand side one is not.

1.3 Our Approach

The investigation presented here is an extension of Lee’s work [12]. An interest-
ing aspect of Lee’s method is that the document is processed sequentially and
the odds of the document with respect to a given category can be tracked as
the words are fed to the system. We call this sequence of the partial sums of the
log-odds of the words of a document a document profile. Usually those profiles
are not as clear-cut and easy to classify as the ones shown in Figure 1. We have
therefore decided to investigate a two-step process, where a first step generates
document profiles according to Lee’s method, and a second step extracts propo-
sitional information from these profiles that then can be fed into any arbitrary
propositional learner. Thus, Lee’s system is used as a dimensionality-reducing
pre-processing step.

The next section will explain this process in more detail, discuss issues with
the dictionary, and basically describe two different ways of extracting attributes
from document profiles. Sections 3 and 4 explain the experimental setup and
give and discuss experimental results. In Section 5 we present conclusions and
discuss further work.



414 Maximilien Sauban and Bernhard Pfahringer

2 Generating and Manipulating Document Profiles

To construct a model, each word in the vocabulary is assigned two probabilities,
the probability of the word being about the topic Pr (wk|cj) and the probability
of the word not being about the topic Pr (wk|¬cj) where wk is the word, and cj

the topic. The word’s influence (Iwk
) is then calculated as follow:

Iwk
= ln

Pr (wk|cj)
Pr (wk|¬cj)

The probabilities are based on the rate at which the word has occurred in the
training documents about and not about the category. Figure 2 (on the left hand
side) portraits one such dictionary. The higher the magnitude of the influence,
the more weight the word will have in the final decision. Note that there are
much more words with a negative influence. The explanation for that lies in
the skewedness of the training data: the dictionary pictured in Figure 2 (on
the left hand side) was trained with 197 documents about a given category and
9,406 documents not about that category. The 9,406 negative examples used for
training were in fact the union of all 89 other categories. The skewedness also
explains why the maximum positive amplitude is greater than the maximum
negative one. Specialised words of the category in focus (word with a large
positive influence score) are more likely to have a denser concentration in the
positive documents than the specialised words of the other category (actually
categories).

Fig. 2. Dictionary for one category of the Reuters dataset and a shifted version of the
dictionary on the right.

The three following sub-sections will describe dictionary manipulations that
proved to be beneficial, and explain the two ways propositional attributes are
extracted from document profiles.

2.1 Shifting the Origin on the y-Axis

Figure 2 (right hand side) illustrates the result of shifting the origin on the y-
axis in an attempt to equalise the maximum amplitudes. To shift the dictionary,
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we subtracted half the sum of the top positive value and the top negative value
from all the words present in the dictionary or more formally:

∀k ∈ d : I ′
wk

= Iwk
− max(Iw) + min(Iw)

2

Where Iwk
and I ′

wk
are respectively the influence of the word before and

after shifting, max(Iw) the largest influence in the dictionary and min(Iw) the
smallest. Note that a lot more words now have a negative influence, and that
the magnitude of the positive influences has been reduced. This shift usually
improves performance. A more sophisticated threshold selection method might
fare even better.

Table 1. Dictionary sizes after cutting off at x% of the top influence value.

percent of the maximum # of
positive/negative words remaining

value cut off in the dictionary
0% (whole dictionary) 31651

10% 4046
15% 2860
30% 1288
60% 166

2.2 Reducing the Size of the Dictionary

As mentioned earlier, the specialised words carry a large influence score, but
their distribution is highly skewed: there are almost no specialised words for the
negative class. On the other hand, words with a low influence score, are more
evenly distributed between both the positive and negative class. Their low influ-
ence score causes them to play only a minor part in the final decision, but they
can potentially add noise. We have therefore introduced a mechanism to prune
words from the dictionary based on their influence score. The decision threshold
is based on the maximum positive value and the maximum negative value (of
the unshifted dictionary). The cut off value is determined as a percentage of the
maximum values. A cut at 30% means that all the words with influence score
between 0 and 30% of the maximum positive influence and between 0 and 30%
of the maximum negative influence score will not be taken into account. Table 1
shows the non linear relation between the cut off value and the number of words
left in the dictionary when applying this idea to the dictionary of Figure 2. This
pruning effect is also illustrated in Figure 3 where the pruned dictionaries for
the four different cut off values of 10%, 15%, 30% and 60% appear in clockwise
order starting from the upper left corner. An additional advantage of pruning
dictionaries is the potential speedup of the generation of document profiles.



416 Maximilien Sauban and Bernhard Pfahringer

Fig. 3. Different cut off values applied to the dictionary of Figure 2; clockwise from
the upper left corner the values are: 10%, 15%, 30% and 60%.
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Fig. 4. Reading off attributes from a document profile.

2.3 Turning Document Profiles into Attributes

We have used two different methods to turn document profiles into a constant
number of propositional attributes. We need to deal with the fact that the num-
ber of words in each document is different, therefore also the length of document
profiles differs. The first methods solves that problem by simply reading off the
value of the document profile after a certain percentage of the document has been
read. Looking at Figure 4, we see that ten values are extracted, with equal-sized
gaps in between. In a naive approach the maximum number of attributes that
can be extracted in this manner is limited by the size of the smallest document.
The second method for extracting attributes is even simpler, computing just
some very high-level summary information about a document profile. Specifi-
cally, such a description comprises a mere seven attributes: the maximum and
the minimum value encountered, the respective positions of these two extrema
relative to the document length, a boolean indicator whether the maximum is
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Table 2. The ten largest categories from the ModAPTE split.

# of # of
category training articles test articles

earnings (earn) 2877 1087
corporate acquisitions (acq) 1650 719
money market (money-fx) 538 179

grain (grain) 433 149
crude oil (crude) 389 189

trade issues (trade) 369 117
interest (interest) 347 131
wheat (wheat) 212 71
shipping (ship) 197 89

corn (corn) 181 56

reached before the minimum, and the total number of words for and against
the category (i.e. how many words carried a positive influence, how many car-
ried a negative influence). Obviously this is just one of a few possible high-level
summary descriptions, other potentially interesting attributes include document
length or final value in the profile.

3 Experimental Setup

To investigate the performance of the two-step process described above we have
conducted an empirical evaluation using the Reuters corpus1. We used the same
train-test split as proposed in [13] where a total of 12,902 documents is split into
a train-set of 9,603 documents and a test-set of 3,299 documents. We restricted
our evaluation to the 10 most common categories, as presented in Table 2. The
only pre-processing operation we did was to lower case the characters. We did
not use any stemming nor stop word removal techniques.

For our evaluation we used the standard information-retrieval performance
measures of precision and recall, as well as aggregate measures based on those
two. The aggregate measures were F-measure and the precision-recall mean.
The standard F-measure computes the harmonic mean of precision and recall
and the precision-recall mean is the arithmetic mean (average) of those two
measures. The four formulae are summarised in Table 3. Macroaveraging simply
computes averages of either the F-measures or precision-recall means over several
categories.

4 Experimental Results

We have conducted an extensive series of experiments to judge the performance
of various standard classifiers using document profiles, and also to investigate
1 The Reuters-21578 collection may be freely downloaded for experimentation pur-

poses from www.research.att.com/˜lewis/reuters21578.html
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Table 3. Four information-retrieval evaluation measures: precision, recall, F-measure
and precision-recall mean.

measure name formula
precision tp

tp+fp

recall tp
tp+fn

F-measure 2tp
2tp+fp+fn

precision-recall mean tp(2tp+fn+fp)
2(tp+fp)(tp+fn)

the effects of the dictionary tuning we have described above. For lack of space we
will only concentrate some of the findings here, a complete report can be found
in the forth-coming Master’s thesis of the first author. We used the following
classifiers from the Weka [14] package: J48 (C4.5, a decision tree algorithm [15]),
OneR (rule based algorithm [16]), IBk (k-Nearest Neighbour (k -NN) [17]), SMO
(Support Vector Machine [18]) and Naive Bayes (Naive Bayes algorithm [19]).
We have also added a very simple classifier called Polarity that simply predicts
the sign of the last value in the document profile. Polarity is closely related to
multinomial Naive Bayes ([20]).

4.1 Which Classifier to Use?

Figure 5 shows the performance of the six different classifiers on the category
trade per number of attributes taken from the profile. While J48, OneR, IBk
and SMO show equivalent results—SMO shows an interesting behaviour, with
recall rising at the expense of precision as the number of attributes increases
past 100—Naive Bayes and Polarity do not seem to be as influenced as the
afore-mentioned classifiers schemes by the number of attributes generated from
the profile. They show impressive recall, but unfortunately also poor precision.
Qualitatively speaking, graphs for other categories look similar.

Figure 6 depicts macroaveraged F-measures of the 6 classifiers on the 10
categories (described in Table 2) per number of samples. Two distinct clusters
are noticeable: above 0.65 points F-measure with J48, IBk and OneR, and below
with Naive Bayes, SMO and Polarity. Overall, J48 and IBk are clearly dominant,
followed closely by OneR. The poor performance of SMO, Naive Bayes as well
as Polarity is probably caused by the high correlation between the generated
attributes. Summing up, J48 should be preferred to IBk for the slightly bet-
ter results and the computationally expensive classification process of the lazy
learning approach.

4.2 Pruning the Dictionary Plus Reading only Parts of a Document

In this section we only employ J48, because it performed well in the experiments
reported in the last section, and it is fast. Figure 7 illustrates the effect of using
a pruned dictionary (on the left hand side) and of only reading initial portions
of documents (on the right hand side) using 150 attributes extracted from the
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Fig. 5. Performances of six different classifiers on the Reuters category Trade.
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Fig. 8. Comparing 7 classifiers’ precision-recall mean macroaverage over the 10 largest
Reuters categories.

profile. While the precision is generally not affected by reducing the number of
words in the dictionary, recall significantly decreases as the pruning percentage
increases. Also note that performance is much less affected by the percentage
of the document read than by the size of the pruned dictionary. Furthermore,
precision appears to react more robustly than recall to the effect of reducing the
size of the portion of the document that is being actually read.

4.3 Performance of the Summary Attributes

In this subsection we compare the performance achievable with the seven-
attribute summary information to various standard text classifiers. Figure 8
shows the macroaverage of the precision-recall means of 3 variations of this clas-
sifier against results obtained by [3] for Naive Bayes and [9] for PPM and against
SMO and J48 on the ten largest Reuters-21578 categories. The three variations
all used J48 on a shifted dictionary, using either 35% or 40% as a cutoff value,
and read either 90% or the whole document. Both SMO and J48 were run on top
of a standard bag-of-words-based feature selection using info-gain. 50 features
for J48 and 150 features for SMO yielded the best results. The results show that
J48 using this tiny set of features outperforms Naive Bayes and PPM, closely
approaches standard J48, but does not perform as well as SMO.
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4.4 Complexity of the Attribute Generation

The algorithm’s complexity is equivalent to the complexity of Naive Bayes in
the sense that it is linear in the number of words and in the number of categories.
The complexity of SMO, for comparison, is on average n.log(n). Accessing the
dictionary to retrieve influence values is generally log(n), but if necessary, perfect
hash functions could be used to reduce this dictionary access cost to a constant.
Computing such hash functions will be easier for smaller dictionaries.

5 Conclusion

This paper has presented a text classification approach based on document pro-
files. Its predictive performance is comparable to more standard approaches, but
the method is extremely simple, therefore fast and highly scalable. Our two-step
approach effectively transforms a sparse learning problem into a dense one with-
out having to explicitly select single features from the original representation.

The most promising direction for future work will be investigating combina-
tions of the different sets of attributes available. Two approaches are possible:
one can combine the high-level summary, the partial sums, as well as standard
feature subsets into one larger single set of features. Secondly, single classifiers
can be trained on these different feature sets in isolation and then be put to-
gether into ensembles. Another direction will be comparing our influence formula
with the usual TFIDF document representation. A good starting point will be
the thorough study carried out by Rennie et al. [21].
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