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Abstract. We present an inductive logic programming bottom-up learning al-
gorithm (BFOIL) for synthesizing logic programs for multi-slot information ex-
traction from hypertext documents. BFOIL learns from positive examples only
and uses a logical representation for hypertext documents based on the document
object model (DOM). We briefly discuss several BFOIL refinements and show
very promising results of our IE system LIPX in comparison to state of the art IE
systems.

1 Introduction

In the last decade several techniques and systems based on relational learning in the
area of information extraction (IE) have been developed [10] . Though a handful ap-
proaches [1, 2, 5] exist which capture the idea of bottom-up and top-down rule learning
inspired by inductive logic programming (ILP) [12], it is surprising that almost no sys-
tem [8] tries to follow a pure logical ILP based approach. ILP in general offers broad
varieties to be adapted to different problem domains by simply changing the problem
representation and/or the hypothesis language. Our aim is to develop an algorithm for
learning multi-slot wrappers for hypertext documents, based on logic programming and
ILP concepts. This technology can easily be extended with additional information on
the representational level (document pre-processing and hypothesis language) and al-
gorithmic level (semantic least general generalization operators).

In Section 2 and 3 we introduce a DOM [4] based representation for hypertext doc-
uments and relational representation of text examples. Section 4 briefly explains the
hypothesis language and derived example descriptions used for latter bottom-up learn-
ing. The Bottom-up First Order Inductive Learning algorithm and results are presented
in Section 5 and 6.

2 Document Representation

Throughout this paper we will focus on HTML documents. It should be noted that the
approach presented in this paper is easily adaptable to XML or similar tag-based lan-
guages. In order to capture and model the syntactical and hierarchical aspects of HTML
and XML documents we define the concept of TDOM-trees, which is strongly related
to that of a document object model (DOM-tree). A node in a TDOM-tree consists of

N. Lavrač et al. (Eds.): PKDD 2003, LNAI 2838, pp. 435–446, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



436 Bernd Thomas

four features: a document reference (Did), a node identifier (nid), the corresponding to-
ken t describing the document text denoted by the node and an ordered list of child
node identifiers ([ch1, . . . ,chn]). Thus we represent a node in a TDOM-tree as a term
node(Did,nid ,t, [ch1,ch2, . . . ,chn]). The basic intention of tokens is, like in most other
approaches, to group symbols from the text separated by white spaces or other separa-
tors to typed words like integer, date, html-tags etc. Each token is represented as a term
with a list of feature-value pairs, which is given by: token([ f1,v1], . . . , [ fn,vn]), where fi

is an arbitrary feature name and vi is an arbitrary feature value with i = 1,n. For exam-
ple Tok(<img src = ”a. jpg”>) = {token([(ttype,html),(value,′<img src = ”a. jpg”>
′),(spos,0),(epos,16),(tag, img),(src,′ a. jpg′)])}.

Node identifiers are terms representing a path from the root node to a node in the
TDOM. To illustrate the idea of node identifiers assume every node in a tree is as-
signed a unique number. The function child : N0 ×N0 → N0 computes for a given
node number i and n ∈ N0 the n-th unique child node of i. For example the term
child(child(child(root,1),0),3) refers to the fourth child of the first child of the sec-
ond child of the root node in the TDOM. For better readability and later handling we
use a prolog list notation [1,0,3], leaving out the root node, to denote node identifiers.
Hence a node identifier is used to assign a unique term to each node in a TDOM. It also
provides information about the position in the TDOM-tree. In fact, the notation of node
identifiers is strongly related to the Dewey-Notation [18]. A leaf node in a DOM-tree
represents text appearing at the ”surface” of the hypertext document. For example a
whole paragraph may be associated with one leaf node in a DOM-tree. In many cases,
this representation is not accurate enough for IE tasks. We modify the concept of a
DOM-tree such that a leaf node in a DOM-tree becomes many leaf nodes in a TDOM-
tree. Each of these nodes represent one token from the text.

Given this notation, an arbitrary HTML document D can be represented as a set of
ground unit clauses describing a TDOM model of D. T (Di) denotes the TDOM of D
with Did = i. A T (D0) representation for an example HTML page is shown in Figure
1. To be able to compare node identifiers we define the following order relation. A node
identifier ni is smaller than a node identifier n j written ni < n j iff ∃x ∈ N0 : n j.x >
ni.x∧∀y ∈ N0 : y < x it holds that n j.y = ni.x where ni.n denotes the n-th child number
(starting from left) of a node identifier. Two node identifiers ni and n j are equal if they
have the same length and ni �< n j ∧n j �< ni. For example: [0,0,3] < [0,2].

Node identifiers have nice properties for wrapper-learning. Similar to expressions
in the XPATH language [19] node identifier expressions can be used to refer to more
than one node by the use of variables. The node identifier [0,1,1,X ] refers to every child
node of the <ul> environment of Figure 1. For example, the term [X ,3] refers to all child
nodes of the root nodes with at least 3 child nodes. It is important to point out that vari-
ables can only be substituted by one value and not by partial node identifier expression
like [0,1]. Furthermore additional constraints can be introduced by using one variable
more than once (e.g. [0,X ,2,X ,0]) or more than one variable (e.g. [Y,X ,2,X ,Y ] . Then
pattern variables with the same name are not treated disjunctively and thus have to be
instantiated with the same value. In fact, in the XPATH query language such expres-
sions can only be expressed by means of iterative programming language constructs
like for-loops and thus are not as elegant and compact and easy to handle.
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Fig. 1. HTML document, simplified TDOM-tree, TDOM node and span ([0,1,1,0],1,2)

This notation makes it easy to generalize on node identifiers by means of lgg opera-
tions [15]. Assume one text example is located in one document in node [0,1,1,0,0] and
in the other document in node [0,1,1,1,0]. A reasonable first step in learning an extrac-
tion rule is the assumption that all nodes described by the generalized node identifier
[0,1,1,X ,0] are good extractions.

3 Example Representation

One essential concept of our approach is that of span. Informally spoken a span deter-
mines a subtree in a TDOM-tree. We pick up the idea mentioned by [3] where a span
is defined as a triple consisting of a node identifier N and a left and right delimiter L,R.
Delimiters determine the left and right boundaries of an interval of child nodes con-
tained in a span. For example the span ([0,1,1,0],1,2) of the example TDOM (Figure
1) refers to the set of node identifiers {[0,1,1,0,1], [0,1,1,0,2], [0,1,1,0,2,0]}. More
precise: a span S = (N,R,L) is the set of all reachable descendant nodes starting at the
i-th child node of node N with i = R..L. In general we assume a depth first traversal to
enumerate all nodes of a span to ensure the left to right order of the text at the surface
of a document.

A minimal example span MS for a given text T is the span with the least cardinality
including the text T . For example let T be a text fragment from the document (Figure
1) like simple example and S1 be a span with ([0,1,1],0,1) and S2 be the span from
our previous example. Clearly both S1 and S2 contain T but card(S1) > card(S2) and
therefore S2 is the only existing minimal example span of T with respect to the example
TDOM because: ¬∃S′ : card(S′) < card(S2) where S′ is a span including T .
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For the rest of the paper we focus on multi-slot extraction tasks, where a text exam-
ple t with n slots consists of a tuple of texts <t1, . . . ,tn> taken from a document D. The
initial example set of text tuples is denoted by ED

T . Given D and t we define the example
representation of t with respect to D as eD

t :=<<s1, . . . ,sn>,<t1, . . . ,tn>> where si is
the minimal example span of ti with i = 1..n in T (D). For later purposes we define
the notion of a validation set given by VS(ED

T , p) = {p(Did, [s1, . . . ,sn], [t1, . . . ,tn]) | t ∈
ED

T ∧ eD
t =<<s1, . . . ,sn>,<t1, . . . ,tn>>}

Further we take some assumptions according to the presentation of examples: 1) t1
to tn do not define a particular order of occurrences of ti in D (i.e. we can not follow
that ti occurs before ti+1 in D). 2) Each ti is associated with an intended semantics
(e.g. ti describes the ZIP code) 3) Missing slot fillers in the text (e.g. no ZIP field or
placeholder stated in the text) or empty slot fillers (e.g. there is a ZIP placeholder but
no code is given) are represented by the empty string "".

4 Hypothesis Language

This section will cover three questions: given an example representation which impor-
tant relational properties can be observed (Section 4.1)? How can these observations
be represented? How are these representations used to define a hypothesis language for
inductive learning of extraction rules (Section 4.2)?

4.1 Observing Example Properties

We write s.n, s.l and s.r to refer to the components of a span s := (n, l,r). Given an
example representation eD

t we investigate each tuple argument ti and its span si accord-
ing to the following four levels. Note, the following predicates can be exchanged by
arbitrary other ones describing relational information regarding the training examples.

Structural Level: the position of a span si and its neighbor nodes are investigated:
xpath(Did,s, tl) holds if Did is a document id (Section 2), s is a span and tl is the list of
tokens associated with each node following the path from the root node to the node of
s.
xspan(Did,s, tl) holds if tl is the associated list of tokens of all nodes of span s.
xright brother(Did,n,tr) holds if n is a node identifier and tr is the associated token of
the right neighbor node of n. Analogously we define a left brother predicate.

Textual or Content Level: a relation between the example text, its tokens associated
with the leaf nodes and its span is defined:
span text and tokens(Did,s,t,tl) holds if tl is the list of tokens associated with all leaf
nodes of span s for text t.

Delimiter Level: predicates to incorporate a widespread idea of IE approaches to learn
right and left delimiters of relevant text parts are defined:
start end nodes(Did , t,nl,nr) holds if nl is the start node and nr the end node of text t
in T (D) referred to by Did .
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xpredecessor(Did ,n,ni,tl) holds if the token list tl contains the tokens associated with
the first n nodes we meet going backwards in a depth first search1 to ni. Analogously
we define xsuccessor to collect all n successor tokens we meet by a depth first traversal
after having met ni. We call n the context distance.

extract(D, [[0,1,0,9,X,5] : 0 : R], [[E|ER]]) :- 

     xpath(D, [0,1,0,9,X,5], 

       [token([(ttype,html), (value,'<html>'), (tag,html), (spos,'0'), (epos,'5')]), 

        token([(ttype,html), (value,'<center>'), (tag,center), (spos,'136'), (epos,'143')]), 

        token([(ttype,html), (value,'<nobr>'), (tag,nobr), (spos,'146'), (epos,'151')]), 

        token([(ttype,html), (value,'<table border cellpadding,2>'), (tag,table), (border,''), 

                              (cellpadding,'2'), (spos,'1090'), (epos,'1117')]), 

        token([(ttype,html), (value,'<tr>'), (tag,tr), (spos,V19), (epos,V20)]),

     unify(C1, 0), unify(C2, R), member(C1, [0]), member(C2, [0, 1, 2]),

     xspan(D, [0,1,0,9,X,5] : 0 : R, 

              [token([(ttype,html), (value,V1), (tag,td), (align,V2), (spos,V3),(epos,V4)]), T1|TR1]),

     xleft_brother(D, [0,1,0,9,X,5], 

              [token([(ttype,html), ((value,'<td align,right>')), (tag,td), (align,right), (spos,V5), (epos,V6)])]),

     xright_brother(D, [0,1,0,9,X,5], 

              [token([(ttype,html), (value,V7), (tag,td), (align,V8), (spos,V9), (epos,V10)])]),

     span_text_and_tokens(D, [0,1,0,9,X,5] : 0 : R, [E|ER], [T1|TR1]),

     start_end_nodes(D, [0,1,0,9,X,5] : 0 : R, [0,1,0,9,X,5,0], [0,1,0,9,X,5,R]),

     xpredecessor(D, 7, [0,1,0,9,X,5,0], 

              [token([(ttype,html), value,V1, tag,td, align,V2, spos,V3, epos,V4), 

        token([(ttype,html), (value,'<td align,right>'), (tag,td), (align,right), (spos,V5), (epos,V6)]),

        token([(ttype,html), (value,'<td align,right>'), (tag,td), (align,right), (spos,V11), (epos,V12)]), 

        token([(ttype,html), (value,'<td align,right>'), (tag,td), (align,right), (spos,V13), (epos,V14)]), 

        token([(ttype,html), (value,'<td align,left>'), (tag,td), (align,left), (spos,V15), (epos,V16)]),

        token([(ttype,html), (value,'<td>'), (tag,td), (spos,V17), (epos,V18)]), 

        token([(ttype,html), (value,'<tr>'), (tag,tr), (spos,V19), (epos,V20)])]),

     xsuccessor(D, 7, [0,1,0,9,X,5,R], 

              [T0, token([(ttype,V21), (value,V22), (spos,V23), (epos,V24)]), T2, T3, T4, T5, T6]),

     xsmallest_common_span(D, [[0,1,0,9,X,5] : 0 : R], [0,1,0,9,X,5] : 0 : R, 

              [token([(ttype,html), (value,V1), (tag,td), (align,V2), (spos,V3), (epos,V4)])]).

Fig. 2. Learned single-slot rule for QS-vol

Relational Span Level: to figure out relations between spans we define:
xsame span node(Did,si,s j) holds if ni and n j of spans si = (ni, li,ri) and s j =
(n j, l j,r j) are unifiable.
xnode less(Did ,ni,n j,dist) holds if ni < n j. Where dist is the list of differences be-
tween the components of n j and ni (e.g. xnode less(0, [1,4,0], [2,3,0,2], [1,−1,0])).
Analogously we define xnode greater.
overlapping span(Did,si,tli,s j,tl j) holds if (si.l < s j.l)∧ (si.r ≥ s j.l)∧ (si.r ≤ s j.r)
where tli and tl j are the corresponding token lists of si and s j .
span in span(Did ,si,s j) holds if span si is a subtree of span s j .

1 This captures the idea to interpret the document as a sequence of tokens rather than a tree, and
we investigate the n preceding tokens of the token associated with ni.
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xsub related span(Did ,si,s j) holds if s j.n is a prefix of si.n (e.g. [1,2] is a prefix of
[1,2,3]).
xsmallest common span(Did , [s1, . . . ,sn],sx,tkx) holds if sx is the smallest span (wrt. to
its number of nodes) in Did such that each span si with i = 1..n is a subtree of sx and tkx

is the associated token with sx.n.

4.2 Clause Descriptions of Examples

Now that we have defined predicates for the description of text example properties
based on the representation of a TDOM, we introduce the concept of a clause descrip-
tion CD(eD

t ) for an example representation eD
t . In terms of extensional and intentional

object languages a clause description of an example is an intentional object description.
Furthermore we use the same language for the description of objects and hypotheses.

Let LH be the set of predicates introduced in Section 4.1. We call this the hypothe-
sis language which is used later for construction of rules. This is in analogy to standard
ILP algorithms like FOIL [16]. It should be noted that the hypothesis language can be
freely chosen. Furthermore let us assume that a logic program PLH is given that imple-
ments the intended semantics of the predicates in LH . To denote the union of PLH and
T (Di) we write PD

LH
. Now we can define CD(eD

t ) = {l′σ | PD
LH
� l′σ with l ∈ LH and l′ is

l instantiated according to its given semantics with (si, ti) ∈ eD
t and σ calculated answer

substitution}. Here � denotes the logical derivation operator and we assume a standard
logical calculus (e.g. SLD-Resolution [11]).

Finally we define E+
u to be the set of clause descriptions for a given set of examples

as E+
u =

⋃
t∈ED

T
CD(eD

t ). Additionally we extend every CD(eD
t ) with a special predicate,

the rule head defined as extract(Did, [s1, . . . ,sn], [t1, . . . ,tn]), where every si and ti is in-
stantiated with the associated argument from eD

t . Then CD(eD
t ) forms a ground instanti-

ated rule of the form extract(Did, [s1, . . . ,sn], [t1, . . . ,tn])← l1, . . . , ln with li ∈ LH . Since
we focus only on learning non recursive horn clauses, we do not have to use negation
operators for the body literals and consider a marked predicate (e.g. extract) to build
the head and all other literals in CD(eD

t ) to form the body of a rule. Thus every CD(eD
t )

is one rule describing exactly one text example with respect to D and LH . Accordingly
computing all answers to the query PD

LH
∪E+

u � extract(Did , [s1, . . . ,sn], [t1, . . . ,tn]) pro-
vides the validation set VS(ED

T ,extract) (Section 3).

5 BFOIL Algorithm

The central idea of BFOIL is to learn in a bottom-up fashion from positive examples
only a set of rules by means of least general generalization techniques [15]. In contrast
to the standard Top-Down learning approaches starting with the most general hypothesis
BFOIL starts with a set of ground rules (clause descriptions) as initial hypothesis and
tries to generalize these clause sets by means of lgg operations. The term clause-lgg
denotes the lgg of two clauses C1 and C2 defined as clause−lgg(C1,C2) = {lgg(l,m) |
l ∈C1∧m∈C2∧ lgg(l,m) is defined}. In general the clause-lgg of two clauses has to be
reduced, in the sense that redundant literals under θ-subsumption have to be removed.
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Algorithm 5.1 Basic BFOIL algorithm

Require: P = logic program ; ED
T = positive examples

E+
learn ⊆ ED

T ; E+
u =

⋃
t∈E+

learn
CD(eD

t )
1: LearnedRules← /0
2: while E+

u �= /0 do
3: Rule ∈ E+

u
4: E+

u ← E+
u \{Rule}

5: ProblemSet← /0
6: while E+

u �= /0 do
7: X ∈ E+

u
8: R← clause lgg(Rule,X)
9: if apply(R,P,ED

T ). f p > 0 then
10: ProblemSet← ProblemSet ∪{X}
11: else
12: Rule← R
13: E+

u ← E+
u \{X}

14: LearnedRules← LearnedRules∪{Rule}

Since it is obvious that calculating the clause-lgg of E+
u results in one rule that over-

generalizes with high probability, BFOIL inductively tries to partition E+
u into sets of

clauses Ci ⊆ E+
u such that the clause-lgg of each Ci forms a new rule that does not

produce any false positive predictions (extractions). Since we only learn from positive

Function 5.2 apply(R,P,V) with false positive calculation
Require: R :=rule ; P = logic program ; V = examples
1: A← {Rheadσ | P∪R � Rheadσ with σ answer subst.}
2: f p← |A\ (V S(V,Rhead)∩A)|

examples, standard techniques to determine false predictions during the learning phase
(validation on negative example sets) are not applicable. To yield good rules anyhow,
it is essential to estimate the correctness of rules during learning. Thus we assume that
the set ED

T is exhaustively enumerated. This means every intended extraction from D
is contained in ED

T . Then we can conclude that if a rule extracts a tuple t from D with
t �∈ ED

T it is false positive. This introduces a closed world assumption [17] similar view
on extraction examples and the absence of negative training data.

This seems to be a very strong restriction which requires tedious labeling. But since
our approach does not need many examples (5-30 training examples Section 6 Figure
3) only a small number of documents have to be labeled.

In general an IE learning task has to deal with multiple documents D1 . . .Dn and
examples drawn from D1 . . .Dn then we define ED

T =
⋃n

i=1 EDi
T . Additionally we assume

that the logic program P is an implementation of LH ∪ (
⋃n

i=1 T (Di)). Algorithm 5.1
shows the basic BFOIL algorithm and Function 5.2 the function apply for calculating
false positives. In the best case basic BFOIL returns one rule, the clause-lgg of E+

u .
Experiments showed that this happens if examples are identical wrt. to their structural
properties in a TDOM. In the worst case basic BFOIL just memorizes each clause in
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E+
u . This might happen if examples are too different wrt. to the expressiveness of LH

and the clause-lgg leads to over-generalized rules.

5.1 BFOIL Refinements

The results of using basic BFOIL to multi-slot extraction are not satisfying. Imagine
a clause C1 = CD(eD

t )) with {xpath(0, [1,2], [. . .]), . . . ,xpath(0, [1,3,1], [. . .]), . . .}. The
intention of this clause is that the first literal describes path features of the first argument
and the second literal describes path features of the second argument of an example.

Algorithm 5.3 Consistent BFOIL algorithm

Require: P = logic program ; ED
T = positive examples

E+
learn ⊆ ED

T ; E+
u =

⋃
t∈E+

learn
CD(eD

t )
1: LearnedRules← /0
2: while E+

u �= /0 do
3: Rule ∈ E+

u
4: E+

u ← E+
u \{Rule}

5: ProblemSet← /0
6: C← /0
7: while E+

u �= /0 do
8: X ∈ E+

u
9: R← clause lgg(Rule,X)

10: if (apply(R,P,ED
T ,E+

learn,C). f p > 0)
or (not apply(R,P,ED

T ,E+
learn,C).consistent) then

11: ProblemSet← ProblemSet ∪{X}
12: else
13: Rule← R
14: C←C∪{X}
15: E+

u ← E+
u \{X}

16: LearnedRules← LearnedRules∪{Rule}

Calculating the clause-lgg of C1 and C2 generalizes each xpath literal in C1 with each
xpath literal in C2. This is not what we want. Only the lgg of xpath literals describing
the same argument i should be calculated from both clauses. With a simple syntactic
transformation before the calculation of an lgg and re-transformation before evaluation
of a generalized clause (rule) we can still use the standard lgg operation for learning.
Adding a prefix argi to every predicate symbol of each literal in E+

u prevents the lgg to
generalize from non-intended literals. This prefix protection is more an issue of repre-
sentation than a refinement of the BFOIL algorithm.

The basic BFOIL algorithm is not consistent (e.g. learned rules may not cover ex-
amples from E+

learn). Imagine two examples e1 and e2. The second argument of e1 is
empty. Due to P and LH the clause description for e1 would not contain literals for the
description of argument 2 to reduce the complexity associated with empty substitutions.
Because of the absence of these literals the clause-lgg eliminates the literals for argu-
ment 2 from clause two. It is possible that the new rule still covers e1 and does not
produce any false positives, but does not cover e2 anymore. For this reason, we keep
track of examples that had been used successfully for learning the current rule (line 14
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Algorithm 5.3). Every rule refinement (line 9) must cover all examples that have been
successfully used in previous learning steps (line 10). Function 5.4 implements this test.

Function 5.4 apply(R,P,V,L,C) with consistency check
Require: R :=rule ; P = logic program ;

L⊆V = examples ; C = example descriptions
1: A← {Rheadσ | P∪R � Rheadσ with σ answer subst.}
2: f p← |A\ (V S(V,Rhead)∩A)|
3: consistent ← true
4: while C �= /0∧ consistent do
5: ce ∈C
6: e ∈ L∧ e is described by ce

7: if e �∈ A then
8: consistent← f alse
9: else

10: C←C \{ce}

A third refinement of BFOIL is the modification of the clause-lgg operator. There-
fore we introduce the concept of a semantic lgg operator. Semantic lgg operators are
closely related to the chosen hypothesis language and example representation in gen-
eral. The key idea is to guide the lgg operation by additional knowledge to prevent
over-generalization. For example the lgg of spans and the generalization of xspan lit-
erals tend to blow up the search space. The lgg of xspan(0,([1,2,3],3,6), [...]) and
xspan(0,([1,2,3],1,10), [...]) is xspan(0,([1,2,3],X ,Y), [...]) which is obviously to
general from a practical point of view. For this reason we define additional semanti-
cal lgg operators. These operators provide semantical based generalization by adding
special literals to the lgg of two clauses. We denote a semantic lgg operator similar to
an inference rule:

C1\{xspan(D1,(N1,L1,R1),T L1)} C2\{xspan(D2,(N2,L2,R2),T L2)}
{member(L,[L1,...,L2]),member(R,[R1,...,R2])} ∪ CL

with CL = clause lgg(C1,C2) and xspan(D,(N,L,R),T L) ∈CL.

Extending the standard clause-lgg with semantic lgg operators can reduce the search
space significantly, resulting in faster learning and extraction times. Especially if spans
in a document are huge, the insertion of the member predicates are of practical rele-
vance. Instead of considering all possible instances for the left and right delimiter of
the span, they are constrained to take only values between the smallest and the greatest
value seen so far. All results presented in this paper have been generated by using only
one semantic lgg operator, that is for the xspan literal.

6 Results and Conclusion

We tested the BFOIL algorithm with our extraction system LIPX on the RISE repository
[13]. RISE contains document resources with an extraction task description taken from
various IE research papers and projects. Most publications refer to these problem cases
as kind of standard tests. Unfortunately not all approaches give a complete overview
of their results with respect to precision and recall values. We focused on extraction
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tasks from HTML documents only and learned multi-slot extraction rules for HTML
resources as described in the RISE repository.

All tests were ran using a fixed LIPX multi-slot single-slot
t e+ r slot t e+ r

CS name 1151 20 7.2
Bigbook 204 30 1.6

IAF 84 30 13.3 altname 11 6 4.7
org 53 20 8.7

LA 157 5 1.4 CC 144 10 2.4
Okra 3335 25 1

Quote 25 14 6.8 date 21 6 1
vol 25 10 1.6

Zagats 140 30 1.3 addr 140 30 1.3

Fig. 3. Test settings

number of randomly drawn examples
to perform 20 learning and test runs
for each problem class. The settings
are shown in the first table of Figure 3
where t = no. total tuples; e+ = no. ex-
amples and r = average no. of learned
rules. For each problem class the
learning examples were randomly
drawn from one half of the available
documents. The testing set consisted
of all documents, but only the data tu-
ples not used for learning were con-
sidered. An extraction was counted as
correct when all of its slots where correctly extracted. Values for precision, recall and
F1 are displayed in percentages, all other values in totals. For all tests we used the hy-
pothesis language described in Section 4.1 with context distance n = 7. Figure 4 shows
the best F1 (harmonic mean of precision and recall) values.

Comparing LIPX results with other LIPX
multi-slot

t e+ r Pre Rec F1

Bigbook 204 30 1 100 98.3 99.1
IAF 84 30 12 85 31.5 46
LA 157 5 2 100 25.1 40.2

Okra 3335 25 1 100 95.4 97.7
Quote 25 14 7 100 63.6 77.8
Zagats 140 15 1 98.2 97.3 97.7

Fig. 4. Best F1 multi-slot results

multi-slot IE-systems is not straightfor-
ward, because almost all systems set up
different evaluation scenarios with respect
to the number of examples, their selection
criteria and the number of test iterations.
The first table of Figure 5 shows the results
(median) for single and multi-slot learning
in comparison2. to the systems SoftMealy
[7], Stalker [14] and Wien [9]. Even though
LIPX is developed for multi-slot tasks we tested it on single slot extraction tasks to pro-
vide a comparison to one state of the art single slot extraction approach (BWI) of [6].
These results are listed in the second part of Figure 5. While learning single slot wrap-
pers supersedes the relational span level predicates the single slot learning results also
underline the high precision values observed with multi-slot learning. In 5 out of 7 cases
LIPX shows better or equal precision values than BWI and BWI HMM. This is not too
surprising, because in the worst case BFOIL only memorizes the examples. This does
not happened with these test cases, but in two cases the F1 rates due to the low recall rate
are not acceptable. There are mainly two interacting reasons for this behavior, which
build a general observation for multi and single-slot learning. First, BFOIL seems to
yield bad recall rates if only a few examples are present and those differ strongly re-
garding their relational description (Quote, IAF-altname). Secondly, some tests where
run with only a few training examples, because of the bad runtime behavior caused by

2 All values for SoftMealy, Stalker and Wien are taken from [7].
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BFOIL’s naive answer set computing for each generalized rule. Consequently the recall
rate was low (LA, LA-cc, CS-name).

The presented approach offers a
multi-slot
comparison

Pre Rec F1 Pre Rec F1

BigBook IAF
LIPX 100 89.3 94.4 84 19.4 32

SoftMealy 100 41 to 99
Stalker 97 85 to 100

Wien 100 100 100 too hard
Quote Okra

LIPX 100 24 38.8 100 88.1 93.7
SoftMealy 85 100

Stalker 79 97
Wien too hard 100

LA Zagats
LIPX 100 12.3 21.8 97.9 85.5 90.6

single-slot
comparison

Pre Rec F1 Pre Rec F1

CS name LA cc
LIPX 95.6 9.7 16.9 96.7 54.8 70.4
BWI 77,1 31.4 44.6 99.6 100 99.8

BWI HMM 41.3 65 50.5 98.5 100 99.2
IAF altname IAF org

LIPX 100 20 33.3 77.5 37.7 51.3
BWI 90.9 43.5 58.8 77.5 45.9 57.7

BWI HMM 1.7 90 3.3 16.8 89.7 28.3
QS date QS vol

LIPX 100 100 100 100 92.9 96.3
BWI 100 100 100 100 61.9 76.5

BWI HMM 36.3 100 53.3 18.4 96.2 30.9
Zagats addr

LIPX 98 93.6 95.4
BWI 100 93.7 96.7

BWI HMM 97.7 99.5 98.6

Fig. 5. Median results and comparison

wide variety for extensions by mod-
ifying the token representation of
text units for richer semantic text
pre-processing. This allows to incor-
porate linguistic or additional gen-
eral semantic information. By mod-
ification of the underlying hypoth-
esis language we can adapt the
presented approach to other mark
up languages or focus on differ-
ent relationships than those stated in
this paper. Using natural language
tools (e.g. part of speech tagger) for
the pre-processing of documents in
combination with an XML repre-
sentation of such pre-processed doc-
uments also allows us to apply our
methods to natural language texts.
By extending the BFOIL algorithm
with additional semantic lgg opera-
tors the hypothesis search space can
be constrained and runtime behav-
ior improved. An additional modifi-
cation to increase the recall rate is,
to accept rules that cover a small
number of false positives. This mod-
ification was not tested yet. But it
is easily accomplished by incorpo-
rating a threshold (e.g. if the per-
centage of false positive extractions
is below 0.03 % (algorithm 5.1 line
9)). These observations show that all
results presented in this paper de-
pend strongly on the chosen hypothesis language and the degree of additional informa-
tion chosen for the representation of TDOM nodes. So far we only made experiments
with the one mentioned in Section 4.1 without any fine tuning (e.g. context distance,
sem-lgg). LIPX shows partially bad learning time results, which clearly stems from the
combinatorial explosion while applying a rule that became too general during the learn-
ing process. In fact, evaluating each new rule by computing the answer set for it leads to
this problem. Thus we are doing research on using more efficient proof procedures than
SLD-Resolution, clustering of example description rules and extending BFOIL with
specification operators to minimize this problem. To summarize the capabilities: LIPX
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can learn single and multi slot wrappers for HTML or XML documents. It can handle
slot fillers occurring in varying orders in the texts and it can handle slots that may be
empty, missing or nested. Though the presented approach shows very promising results
its runtime behavior is a major subject for improvement. Nevertheless the pure logic
programming motivated and based technique to learn multi-slot wrappers, the general
method of lgg operations for learning and its independency of the application domain,
are auspicious properties.
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