Predicting Outliers

Luis Torgo! and Rita Ribeiro?

! LIACC-FEP, University of Porto, R. Campo Alegre, 823, 4150 Porto, Portugal
ltorgo@liacc.up.pt
http://wuw.liacc.up.pt/ ltorgo
2 LIACC, University of Porto, R. Campo Alegre, 823, 4150 Porto, Portugal
rita@liacc.up.pt

Abstract. This paper describes a method designed for data mining ap-
plications where the main goal is to predict extreme and rare values of
a continuous target variable, as well as to understand under which con-
ditions these values occur. Our objective is to induce models that are
accurate at predicting these outliers but are also interpretable from the
user perspective. We describe a new splitting criterion for regression trees
that enables the induction of trees achieving these goals. We evaluate our
proposal on several real world problems and contrast the obtained mod-
els with standard regression trees. The results of this evaluation show
the clear advantage of our proposal in terms of the evaluation statistics
that are relevant for these applications.

1 Introduction

The work described in this paper addresses applications where the main ob-
jective is to model rare extreme values, usually known as outliers. Given that
the target variable is continuous we are facing regression problems. However,
the main difference to standard regression tasks is that our main interest is to
predict accurately the occurrences of rare high or low values of the target vari-
able. A typical real world application is the prediction of stock market returns,
where small and highly frequent returns are irrelevant for investors, while large
movements of the market are the key events where accurate prediction pays off.
Our interest is not only to anticipate the occurrence of an extreme value but
also to be accurate at predicting its concrete value, because the amplitude of
the outlier is relevant for the user of these applications, as it may lead to dif-
ferentiated actions. Another major requirement of our target applications is the
interpretability of the models. This means that discovering the conditions that
lead to these extreme values is also a major goal of our models.

Applications where the main modeling objective are rare events abound in
recent data mining literature. Nevertheless, existing related work is mostly fo-
cused on discrete target variables (i.e. classification tasks). These works include
topics like activity monitoring [4], prediction of rare events [17J1§], anticipation
of surprising patterns [7], novelty detection, anomaly detection, among others.
Most of this research is also linked to applications where a data stream is being
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monitored with the goal of anticipating rare events, that is time-dependent data.
This research is usually focused in the task of distinguish between interesting
cases and “normal” occurrences.

The importance and impact of rare cases has been the topic of research
on small disjuncts (e.g. [6[19]). This research is again mainly focused on clas-
sification tasks and is also strongly related to the study of applications with
unbalanced class distributions (e.g. [5]).

A frequent strategy to bias the models towards being accurate in particular
types of cases is the use of differentiated misclassification costs (e.g. [16]). This is
a common practice in classification tasks and was also used in solving regression
problems through a classification approach [15].

All these classification approaches do not solve the problem of being able to
accurately predict the specific value of outliers, and are particularly inadequate
when these spread over a wide range of values. If the amplitude of the extreme
values is relevant for the user, for instance for taking different actions, all these
approaches based on classification are not applicable. Obviously, one could fur-
ther divide the classes representing the extreme values into more specific classes
to differentiate their importance but that would mean that we would partition
an already low populated class into several classes, thus making our modeling
task even more difficult. As such, for this kind of applications only a regression
model can handle the problem properly.

Buja and Lee [2] have recently presented a series of new splitting criteria for
both classification and regression trees that address related problems. Regarding
regression, they propose two different splitting criteria with two objectives: iden-
tifying extreme buckets of the data; and identifying pure (low variance) buckets.
The first objective is particularly related to ours. The goal of Buja and Lee is
to identify areas of the regression surface where the target variable shows a high
or low mean value. Although our goal is related to this, we are particularly in-
terested in applications where these extreme values are rare, which demands for
specific criteria.

We propose a new splitting criterion for regression trees which enables the
induction of models that meet our application requirements. In Section 2] we
formalize our target problems and propose evaluation criteria that should guide
the search for the best models. Section [3] describes the details of our proposal.
The experimental evaluation of this proposal is presented in Section @l We finish
with the conclusions of this work and future research directions.

2 Problem Formulation

In this section we present a general description of our problem. Let D be a
data set, consisting of n cases {(x;,y;)}" ,, where x; is a vector of p discrete or
continuous variables, and y; is a continuous target variable value. As we have
mentioned before, we are interested in models that are able to predict accurately
rare extreme values of Y. To achieve this goal we need to formalize the notion of
rare extreme values. We use the statistical notion of outlier with this purpose.
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Box plots are visualization tools that are often used to identify outliers. Extreme
values are defined in these plots as values above or below the so-called adjacent
values [3]. Let r be the interquartile range defined as the difference between the
3rd and 1st quartiles of the target variable. The upper adjacent value, adjg,
is defined as the largest observation that is less or equal to the 3rd quartile
plus 1.5r. Equivalently, the lower adjacent value, adjy,, is defined as the smallest
observation that is greater or equal to the 1st quartile minus 1.5r. Given these
two limits we can define our rare extreme values as,

O={yeD|y>adjiuVy<adj}
On={yeD|y>adju} (1)
OL={yeD|y<adjr}

Depending on the application we may have either Op, or Oy empt. Figure [

shows the box plots of the targets in two applications where we have different
types of outliers. These values are drawn with circles in these graphs.
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Fig. 1. Two example box plots with different types of extreme values: a) The relative
performance of a set of CPUs; b) The 3-days returns of IBM closing prices.

Having described the main features of our target applications we need to
define some evaluation criteria to guide the search for the best models. Typical
performance measures used in regression settings, such as the mean squared
error, are inadequate as they do not stress the fact that we are only interested
in the performance in extreme values. This is the same kind of phenomenon as

1 We will discard applications where both sets are empty as these are not relevant for
this study.
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the one reported regarding the use of classification accuracy on problems with
unbalanced class distributions [S/T0].

In the information retrieval literature (e.g. [9]) the notion of relevance seems
particularly adequate to our needs. Relevance is defined as the value or utility
of a system output as a result of a user search. Relevance is most of the times
assessed using two measures: precision and recall. Precision is defined as the
proportion of the cases predicted as target events that really are target events.
Recall is defined as the proportion of existing target events that are captured by
the model. Our proposal consists of adapting these two measures to our problem
setup with the goal of developing a learning tool that maximizes the relevance
of the induced model to our application goals.

We define recall in the context of our target applications as the proportion
of outliers in our data that are predicted as such (i.e. covered) by our model,

recall = | {ye Yo | (y € OH/\ y>|a’g][|{)v(ye OL/\y < adjL)} ‘ (2)

where Yy is the set of § predictions of the model for the outlier cases (i.e. O).
With respect to precision, if we use its standard definition we have,

[ {§€Yo | (y€Ou A §>adjin)V (y € OL Ajj < adjp)} |
[{geY |g<adiLV§>adjp} |

PrecisioNstand =

(3)
where Y is the set of y predictions of the model.

However, this definition is not adequate to our goals. For instance, with this
formulation, assuming adjy = 5.6, a predicted value of 5.8 would have the same
value as a prediction of 10.1, for a test case where the true value is 10.5. In our
applications this is not acceptable. Otherwise, the best solution would probably
be to discretize the target variable and handle the problem as a classification
task with differentiated misclassification costs. As we want to distinguish this
kind of errors we need to use another definition of precision (precision,eq,) that
takes into account the distance between the predicted and true values. At the
same time we want to maintain the scale of the measure within the 0..1 interval
so that we are able to integrate recall and precision into a single measure using
standard approaches. Our proposed definition of precision,.q, is the following,

Precisionegr =1 — NMSEo (4)

where NMSEy is the normalized squared error of the model for the outliers,

7 i — )’

yi€ O

>0V —w)

yi € O

NMSEo = (5)
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The value of NMSEo will usually be between 0 and 1. For the cases where
this value goes above 1, which means that the model is performing worse than
the naive average model, we consider that the precision of the model is 0.

Obtaining an overall evaluation measure from the values of recall and preci-
sion provides a global preference criterion that can be used to guide the search

for the models. The F-measure [I1] is among the most used measures and is
defined as,

(ﬁ2 + 1) - precision - recall

F= (6)

(32 - precision + recall

where 3 controls the relative importance of recall to precision. This is the defi-
nition we use replacing precision by our proposed precision,egy,.

3 An Approach Using Regression Trees

Regression trees are known for their computational efficiency, model interpreta-
bility and competitive accuracy. For these reasons we have decided to use these
models as the base paradigm behind our proposal.

Standard regression trees are obtained using a procedure that minimizes the
squared error. This means that the best splits for each tree node are chosen to
minimize the weighed squared error between the two branches. As mentioned
by Buja and Lee [2] this criterion is not adequate for several data mining appli-
cations. That is also the case of our target problems. Moreover, outliers can be
a problem for standard regression trees as they may distort the selection of the
best splits and may also have a large impact on the average values chosen for
the leaves of the trees [14].

The main idea of our proposal to avoid the problems reported above is to use
the F-measure presented in Equation (6) to guide the split selection procedure
used to grow the trees. As such, the key distinguishing feature of our method is
the criterion used to select the best test for each tree node. In our proposal the
best split s*, is chosen using the following criterion,

§"(Dy) = max max (F(Dy, ), F(Dir)) (7)

s €

where S is the set of trial splits for the node t@; Dy, is the subset of cases in ¢
(Dy) that satisfy the test s (i.e. the left sub-branch of ¢), while D;,, contains the
remaining cases (i.e. Dy, = Dy — Dy, ); and F (D) is the F-measure for a set of
cases.

In order to obtain the F-measure for the branches of a candidate split we
need to obtain the values of precision and recall, which we do using the following
formulas,

2 That are the same as in a standard regression tree.
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_ 2
Z (Gt — yi)
1 weouD) g, > adip VoG > G
>, (V-u)
yi € O (Dy)
Precision,cgr, = (8)
_ 2
Z (Yt — vi)
RIS TACED) = ) if gy <adjr, V g <y
Y. (V-w)
yi € O (Dy)

where Oy (Dy) (O (Dy)) is the set of cases of node t that belong to Oy (Op); 7
is the average Y value in the node; §; is the median Y of the node; and Y is the
average Y in the training data.

This means that depending on the value of the node average we consider this
branch as a tentative to predict high or low outliers, and calculate its precision
accordingly. Even if the node average is not in the outlier range of values we still
calculate the precision in the node, using the median as a threshold for deciding
whether to calculate it with respect to high or low outliers.

Regarding recall we use,
0 if g > adj, N 9 < adju

O o — .
recall, = L yeDe A y€0H | yeDlt OAHy‘G CEIT: yr > adjyg (9)

Luebe AveOul if g, < adj,

When a trial split leads to a branch having an average target value that is
not an outlier, the respective recall is zero. This would lead to an F value of
zero according to Equation (). This is a common situation particularly in top
level nodes, where the partitions are still too big, and thus the average Y is
seldom an outlier. Moreover, sometimes all trial splits for a node are in these
circumstances. This means that we are not able to select the best split for these
nodes as all splits have the same score, and thus the tree growth procedure
would stop prematurely. These situations occur because in complex applications
we seldom find a single split that is able to isolate extreme values in one of
the branches so that the branch has an average target that is an outlier. This
problem decreases as the tree grows because the number of cases in the nodes
gets smaller and thus finding such splits is easier. Although these top level splits
have zero recall we should still be able to establish a preference criterion to select
one, because we can calculate their precision. In order to overcome this difficulty
we have added a small threshold? to the value of recall in Equation () so that
the value of F is not zero even when the recall is null.

Summarizing, our proposal consists of selecting the splits that are able to
generate a branch (a subset of cases) with a high value of the F-measure. No-
tice, that we do not search for a weighted solution between the two branches.

3 We have used the value of 0.001 in our experiments.
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Even if one of the branches as a poor F score, as long as the other achieves a
high F-measure we have a good candidate split. This strategy is similar to the
one followed by Buja and Lee [2], which also do not search for splits with a
good compromise between the left and right branches. These strategies lead to
unbalanced trees. Still, we share the opinion of Buja and Lee that consider these
trees more interpretable.

Another important question that needs to be addressed when developing
a tree-based system, is the tree growth stopping criteria. This is a statistical
estimation problem and most systems use a two-stages procedure consisting of
growing an overly large tree (possibly overfitting the training data), and then
use some statistical estimation procedure (e.g. cross validation) for post-pruning
this treeﬁ. Given that outliers are insignificant from a statistical perspective,
these strategies are difficult to implement in our system because they are based
on statistical significance. Because of this we have decided not to post-prune our
trees. This is consistent with what is mentioned by Weiss and Hirsh [19] in the
context of learning from small disjuncts. These authors mention that pruning is
considered questionable when the learning objectives are small subsets of cases.

Our method obtains a tree model in a single stage, stopping the tree growth
when one of the following conditions arise:

— The F-measure of the node is above a certain user-definable threshold,
— Or the node does not contain any extreme value (i.e. D; N O = ¢).

In order to illustrate the effects of using the proposed splitting criteria as
opposed to standard least squares methods, we describe a small example ap-
plication. Due to space reasons we have chosen a dataset that leads to small
trees. We have used the well-known CPU performance dataset. In this domain
the task is to predict the relative performance of a set of CPUs given some hard-
ware characteristics of these machines. The dataset has 23 high outlier values
(values above 237, c.f. Figure [Th). Using a CART-alike regression tred with a
standard 1-SE cross validation pruning algorithm [I], we get the tree on the
right-hand side of Figure 21 From the point of view of outliers this tree isolates
two classes of outliers, both formed by machines with a maximum main memory
size above 28000Kb: One class is less extreme in terms of performance (average
performance of 299) and includes machines with cache size below 80Kb; and
the other class contains machines with larger cache size that have higher per-
formance (average of 667). According to this tree, all computers with less than
28000Kb memory have low performance. Still, there are three exceptions to this
(the numbers between parentheses on each node are the number of outliers in
that node) that are neglected by this tree. The solution of our model is given
at the left hand-side of Figure 2} Our tree is much more specific in terms of
describing the conditions leading to outliers. Moreover, it further distinguishes

4 See [13] for an overview of pruning methods for regression trees.

5 In this paper we have used as base implementation of regression trees the package
rpart [12] of the open source statistical software R (www.r-project.org). This package
is a close re-implementation of most of CART’s [1] features.
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the type of outliers. Namely, we can identify even more extreme performance
machines that have a high main memory size (above 48000Kb). Our tree also
describes the machines with an outlier performance that have less than 28000Kb
memory. This tree is clearly more consistent with the distribution of the outliers
(i.e. the type of machines with high performance), as it can be seen from the box
plot of the target variable presented in Figure Th. Although one may think that
this tree could be simply overfitting the data, the fact is that as we will see on
the results of our experiments for this domain, our models achieve a significantly
higher precision, recall and F-value.

In summary, from the perspective of understanding the type of extreme values
occurring in this domain, and also under which conditions these appear, we claim
that our tree is more informative than a standard regression tree. Moreover, this
higher interpretability is accompanied by better accuracy as it will be shown in
Section
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Fig. 2. Our regression tree vs the tree obtained by a CART-alike system, on the ma-
chine CPU dataset.

4 Experimental Results

In this section we perform an experimental analysis of the trees obtained with
our method. Our analysis compares our proposal to its base paradigm, standard
regression trees.

We have carried out a series of experiments using the datasets described in
Table[ll. These datasets include applications obtained from standard repositories
as well as some commercial applications.
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Table 1. Datasets description.

continuous|nominal . low high
Datasets 7# cases attr. attr. # outliers outliers outlgi:ers
Servo 167 0 4 30 0 30
triazines 186 60 0 9 9 0
algael 200 8 3 12 0 12
algae2 200 8 3 10 0 10
algae3 200 8 3 22 0 22
algaed 200 8 3 16 0 16
algaeb 200 8 3 13 0 13
algae6 200 8 3 19 0 19
algae7 200 8 3 21 0 21
machine_cpu 209 6 0 23 0 23
china 217 9 0 19 0 19
Boston 506 13 0 37 0 37
onekm 710 14 3 8 6 2
cw.drag 1449 12 2 52 1 51
co2.emission 1558 19 8 23 0 23
acceleration 1732 11 3 26 0 26
available.power|| 1802 7 8 121 0 121
bank8FM 4499 8 0 69 0 69
delta.ailerons 7129 5 0 107 41 66
ibm 8166 10 0 325 140 185
cpu.small 8192 12 0 430 430 0
delta.elevators 9517 6 0 132 60 72
cal.housing 20460 8 0 1071 0 1071
add 30000 10 0 63 0 63
fried.delve 40768 10 0 25 6 19

We have carried out 5 repetitions of 10-fold cross validation experiments using
these datasets. These experiments were designed with the goal of estimating
the average difference in precision, recall, and F-measure, between a standard
regression tree and our proposed method. For the standard method we have
used the package rpart of R, using cross validation error-complexity pruning
with the 1-SE rule according to the method in [I]. Regarding our method we
have used a F-value of 0.7 as threshold for deciding when to stop tree growth. The
statistical significance of the observed differences was asserted through paired
t-tests. Differences that are significant at the 95% level were marked with one
sign, while differences significant at 99% have two signs. Plus (4) signs are used
to mark differences favorable to standard regression trees, while minus (—) signs
are used to indicate the significant wins of our method. Differences that are not
significant at these confidence levels have no sign. The F-measure of each method
was calculated with 8 = 1, meaning that the same weight was given to precision
and recall (c.f. Equation (@)).

The results of our experiments are shown on Table 2l This table shows an
overwhelming advantage of our method at least from the perspective of the F-
measure, which was the criterion used to grow our trees. In effect, in the 25
datasets there were 18 significant wins, 3 insignificant wins and 4 insignificant
losses of our proposal. The advantage is even more remarkable in terms of the
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proportion of outliers in the domain that are captured by the model (i.e. the
recall). However, the results in terms of precision are not so interesting. We have
tried to understand the reasons for this lack of precision in some domains. We
have varied the F threshold that guides the criterion for stopping tree growth
and have observed some variations on these results that seem to indicate that
there is some space for improvement of our method by tunning this parameter.
Apparently, tree growth may be stopping too soon for these large datasets, where
our performance seems to be degrading. Still, if precision was the key objective
we could also tune the g parameter of the F-measure that weights the preference
between recall and precision when selecting the best splits of the treedd.

Some of the results given in Table 2] deserve further explanations. Given the
definition of precision we use (Equations (@) and () it may seem strange to see
some zero values in precision. These occur because some models have a NMSE
at predicting the outliers equal or above one. Namely, for several datasets the
CART tree is simply a single leaf node, which leads to a NMSE of one, and thus
a precision of zero. The values of zero recall are consequence of models that do
not predict any of the outliers as such, which occurs when a tree does not have
any leaf with an average value that is an outlier.

Summarizing, the results of these experiments clearly show the advantage of
our proposal in terms of predicting outliers. Nevertheless, we think some space
is left for improvements particularly in terms of tunning the system by changing
the stopping criterion as well as the weight between precision and recall. For
large datasets, the best solution would probably be to keep a holdout set for
proper tuning of these parameters.

5 Conclusions

We have described a new splitting criteria for regression trees with the goal of ad-
dressing a specific class of data mining applications. In these domains the main
goal of modeling is to predict accurately outlier values in the target variable
and also to understand under which conditions these values occur. Our pro-
posal addresses these application goals by leading to regression trees designed to
maximize both the number of outliers that are captured by the model and the
precision at predicting their values.

The resulting trees were shown to achieve our goals in an extensive experi-
mental comparison using 25 domains. In these experiments we have compared
our approach to a standard regression tree and concluded that our proposal
clearly outperforms these trees regarding the evaluation criteria that are ade-
quate for this type of applications.

Regarding future work we plan to investigate more deeply the reasons for the
failure of our models in terms of precision in some of the domains. Our current
explanation lies on the tree growth stopping criteria and we intend to explore
other alternatives to the current user settable threshold on the F-measure value.

5 In our experiments we used equal weight.



Predicting Outliers

457

Table 2. Regression trees vs our method in terms of Precision, Recall and F measure.

Precision, g Recall F measure
Datasets CART mg;lﬁg o |Sienif] CART meotllli) o |Sienif| CART mg;lﬁg o |Sienif
servo 0.7616598|0.7829856 0.8713333]0.9800000| —— |0.8053263|0.8668980| —
triazines 0.1474294/0.3113946] — ]0.0400000{0.2233333| — |0.0371048|0.2286451| —
algael 0.2947144|0.4377268| —— |0.0000000(0.3266667| —— {0.0000000{0.3303920, ——
algae2 0.0000000(0.1394068| —— |0.0000000|0.0700000| — [0.0000000{0.0483434
algae3 0.0000000(0.0994022| — |0.0000000{0.1820000, —— |0.0000000|0.0766102| —
algaed 0.0000000]0.1034622| —— {0.0000000{0.1416667| —— |0.0000000|0.0875694| —
algaeb 0.0000000(0.1286299| —— |0.0000000|0.0673333| — ]0.0000000/0.0569739| —
algae6 0.0000000/0.0481409| — |0.0000000{0.1600000| —— |0.0000000|0.0383576| —
algae7 0.0127059|0.0983871| — |0.0100000|0.1336667| — ]0.0111917]0.0964774| —
machine.cpu 0.5517675|0.6879704| —— |0.8186667(0.8950000) — |0.6266528|0.7596690, ——
china 0.0000000/0.0740538| — |0.0000000{0.0706667| — |0.0000000/0.0621120| —
Boston 0.8243590(0.8225584 0.758000010.7595000 0.7675711|0.7361953
onekm 0.4001506|0.3350779 0.0166667(0.2600000] —— {0.0059831[0.2701772| ——
cw.drag 0.9250750(0.8269861| ++ [0.8419906(0.9656190| —— |0.8734481]0.8864179
co2.emission 0.8052664|0.8100812 0.4213333]0.5826667| — |0.4770925|0.6368632| —
acceleration 0.8964751|0.9010154 0.5600000(0.8210000| —— |0.6287861(0.8265599| ——
available.power||0.9668409(0.8567897| ++ |0.9091224|1.0000000| —— [0.9353684|0.9217586
bank8FM 0.9781688|0.9529205| + |0.6532389|0.5876751 0.7592038/0.6971588
delta.ailerons {|0.6442916|0.5902405| ++ [0.1293077|0.1895810| — |0.1659074|0.2671672| —
ibm 0.0000000{0.0100769| —— |0.0000000|0.0055804| — ]0.0000000{0.0038138| —
cpu.small 0.9939290|0.9856554| ++ |0.8519882|0.8620939 0.9165213]0.9189269
delta.elevators [|0.5980803|0.6054747 0.0419848(0.1734476| —— [0.0719734/0.2595248| ——
cal.housing 0.8425739|0.5854252| ++ |0.3140477|0.4403454| —— ]0.4561053|0.5016178| ——
add 0.9320413]0.7925288| ++ |0.0000000(0.1496825| —— {0.0000000{0.2125705| ——
fried.delve 0.8816233|0.5351138| ++ |0.0735714|0.0700794 0.0959500(0.0913309
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