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Abstract. In this paper, we address the characterization task and we
present a general framework for the characterization of a target set of
objects by means of their own properties, but also the properties of ob-
jects linked to them. According to the kinds of objects, various links can
be considered. For instance, in the case of relational databases, associa-
tions are the straightforward links between pairs of tables. We propose
CaracteriX, a new algorithm for mining characterization rules and we
show how it can be used on multi-relational and spatial databases.

Keywords: Machine Learning, Inductive Logic Programming, Data
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1 Introduction

Characterization is a descriptive data mining task which aims at mining concise
and compact descriptions of a set of objects, called the target set. It consists in
discovering properties that characterize these objects, taking into account their
own properties but also properties of the objects linked to them.

In comparison to classification and discrimination, characterization is inter-
esting since it does not require negative examples. This is an important feature
for some real world applications where it is difficult to collect negative examples.

Several fields have contributed to this task. On the one hand, characterization
has been treated as descriptive generalization in the field of Machine Learning
[12]. Characterizing a set of objects has also been considered as computing the
least general generalization (l.g.g.) in Inductive Logic Programming [14], but
such an approach leads to complexity problems. An object oriented view for
computing the l.g.g. called structural matching has been proposed in [8, 17] and
applied to air traffic control in [9]. On the other hand, in Data Mining, Han
et al. [7, 6] have introduced attribute oriented induction for data generalization,
but in their framework, background knowledge such as taxonomies is needed for
generalizing data, and objects are described in a single table, which limit the
applicability of such a method.
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We can also consider that characterization is close to the task of mining
frequent properties on the target set. This task has already long been studied
[1, 11, 5, 16] , since in many systems, it is the first step for mining association
rules. Nevertheless, most works suppose that data is stored in a single table,
and few algorithms [3] really handle multi-relational databases. Moreover, the
frequency (also called the support) is not sufficient to characterize the objects of
the target set, because it is also important to determine whether a property is
truly a characteristic feature by considering also the frequency of that property
outside the target set.

The approach we propose handles multi-relational databases taking into ac-
count the structure of the database. It relies on the definition of a Quantified
Path which is an expression that specifies how to take into account different
kinds of objects and their relationships, starting from the target objects. For
instance, considering as a target set the set of films produced by a given person
Sp and denoted by Movie(Sp), the following expression:

Movie(Sp) : ∃Award :: Award.kind in(Oscar, GoldenPalm)

is a characteristic rule which means that each movie produced by Sp has received
at least one Oscar award or Golden Palm award. The expression Movie(Sp) :
∃ Award is a quantified path. It specifies that we are interested in the proper-
ties satisfied by at least one award received by Sp’movies. On the other hand,
considering the Quantified Path Movie(Sp) : ∀Award means that we are looking
for properties satisfied by all the awards received by all Sp’s movies.

At lifo, we have developed CaracteriX, a levelwise1 algorithm, for mining
interesting characteristic rules. It starts with the most general Quantified Paths,
exploring the search space, according to notion of generality between rules. More-
over, it uses two heuristics, link-coverage and open-coverage, to efficiently prune
the search space. Another important feature of our approach is the form of the
rules, which relies on quantified paths defining how to ’navigate’ between sets
of objects. As far as we know the form of rules we have introduced has not yet
been used in that field.

The paper is organized as follows. Section 2 formalizes the problem of mining
characteristic rules. In Section 3, we give definitions on which our approach relies:
the notion of quantified paths, properties and characteristic rules, the notion of
coverage and generality orders. Section 4 is devoted to the general algorithm and
Section 5 to experiments.

2 Problem Statement

The characterization task we are interested in can be formulated as follows:

– given a set of types Ti, and attributes for describing objects of type Ti,
– given a set E of objects, E =E1 ∪ E2 · · · ∪ En, where each Ei contains objects

with the same type Ti,

1 see [11, 13, 15] for a description of levelwise algorithms family.
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– given a set R of binary relations (in the following, rij denotes a binary
relation on Ei × Ej)

– given a target set Etarget, such that there exists i, Etarget ⊆ Ei,
→ find a set of characterization rules of Etarget.

The size of the search space for the characterization rules depends, among others,
on the number of relations in R and on their cardinalities. Without restrictions
on the possible forms of the rule, the search space may become so large that the
learning task is intractable.

Example 1. Application to relational databases

Studio Movie

Award

Remake

0..1 1..*

0..*

1..*

0..*

2

Actor0..* 0..*

People

0..*

0..*

0..1

Fig. 1. Movies database

Our approach is illustrated throughout this paper by a running example
Movies2 given in Figure 1. This database is stored in a relational form composed
of several files. There is information on actors, casts, directors, producers, stu-
dios,... The main file Movie is a list of movies described by their category, title,
year, process, and so on. The actors are listed with their roles in another file
Casts. More information about individual actors such as name, date of birth,
gender and origin can be found in the file Actors. The file People gives more in-
formation about actors, directors, producers, writers, and cinematographers. Re-
makes links movies to their remakes, whereas Awards gives the different awards
that can be won by a movie. Finally, Studios provides some information about
each studio, such as the location and the founder.

For instance, we could be interested by characterizing the properties of comic
movies, or the properties of movies produced by a given producer, and so on.

2 inspired from http://kdd.ics.uci.edu/databases/movies/movies.html
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3 General Framework

3.1 Quantified Path

Definition 1. A Quantified Path (denoted in the following by QP) on X0 is
a formula:

Q1 X1 . . .Qn Xn

where n ≥ 0, X0 represents the target objects, and for each i �= 0, Qi = ∀ or ∃,
Xi is a type of objects, and there exists a relationship in R between Xi−1 and
Xi. When necessary, in order to remember the target set, it will prefixed by X0

leading to X0 : Q1 X1 . . . Qn Xn.
Let us notice that when there exists several relationships between Xi−1 and Xi,
the quantifier Qi may be indexed by the relation used in the QP.
A QP has a size n that is the number of its quantifiers.

Example 2. • Links between movies (M) and awards (W) give two paths denoted
by M : ∀W and M : ∃W . M : ∀W means ”all awards of each movie”, while
M : ∃W stands for ”for at least one award of each movie”.
• Pname=Hit : ∀M∀W is another path, where Pname=Hit is a target set of people
(P). This path means that we are interested in all awards of all Hit’s movies.

Definition 2. We say that two quantified paths are variants if they have the
same size, if they involve the same type of objects, the same relations in the
same order and if they differ by at least a quantifier.

Example 3. If we consider people (P) as a target set and links between people
and movies (M), we have the four following paths: P : ∀M∀W , P : ∀M∃W ,
P : ∃M∃W , P : ∃M∀W . These QPs are variants of size 2.

Definition 3. We say that a quantified path δ1 is more general than a quantified
path δ2 (denoted by δ1 � δ2) iff δ1 and δ2 are variants and for 1 ≤ i ≤ size(δ1)(=
size(δ2)), either :
- Q1

i ≡ Q2
i , or

- Q1
i = ∃ and Q2

i = ∀.
Example 4. For instance, we have P : ∃M∃W � P : ∀M∃W � P : ∀M∀W and
also P : ∃M∃W � P : ∃M∀W � P : ∀M∀W but P : ∀M∃W �� P : ∃M∀W and
P : ∃M∀W �� P : ∀M∃W .

3.2 Properties

A set of properties is associated to each type of objects. We consider many kinds
of properties such as: attribute=value, attribute ∈ {value1, . . .,valuen}, attribute
≥ value, attribute ≤ value, and even aggregates such as: count, min, max, . . . For
a type T and a property p on T , we assume that there exists a boolean function
Vp, such that for each object o of type T , Vp(o) = true or Vp(o) = false. It
means that a property may be satisfied by an object o or not.
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Definition 4. We define two basic properties True and False such that for any
object o, VTrue(o) = true and VFalse(o) = false.

Definition 5. We say that a property p1 is more general than a property p2

(denoted by p1 � p2) iff all objects that satisfy the property p2 also verify the
property p1.

Example 5. The property W.kind ∈ {Oscar, GoldenPalm}where W represents
the set of awards is more general than W.kind ∈ {GoldenPalm}.

3.3 Characteristic Rules

Definition 6. We define a characteristic rule on a target set X0 as the con-
junction of a quantified path δ and a property p , denoted by: X0 : δ :: p.

Definition 7. We say that two characteristic rules r1 (T : δ1::p1) and r2 (T :
δ2::p2) are variants if δ1 and δ2 are variants and p1 ≡ p2.

Example 6. Pname=Hit : ∀M :: M.category = Suspense
is a characteristic rule, where Pname=Hit is a target set of People whose name is
Hit. This rule means that all Hit’s movies belong to the Suspense category.

3.4 Coverage

The notion of coverage is defined for a property p relatively to a quantified
path δ. It measures the number of objects that have this property. For a rule
r = X0 : δ::p and an object o ∈ Xo, we define Vδ::p(o) recursively as follows:
- V∀X.δ′::p(o) = Vδ′::p(o1) ∧ · · · ∧ Vδ′::p(on) or false if there is no object linked to o
- V∃X.δ′::p(o) = Vδ′::p(o1) ∨ · · · ∨ Vδ′::p(on) or false if there is no object linked to o

- Vδ∅::p(o) = Vp(o) , that is true if o has the property p, false otherwise.

Where o1, . . . on are the objects of type X linked to the object o, and δ∅ is the
empty path (size 0).

Example 7. Let us consider the rule: PD : ∀M∃W :: w.kind ∈{Oscar, Golden palm},
where PD denotes the directors in the relation people.
V∀M∃W ::w.kind∈{Oscar,Goldenpalm}(Sp) =
V∃W ::w.kind∈{Oscar,Goldenpalm}(film1) ∧ . . .
∧ V∃W ::w.kind∈{Oscar,Goldenpalm}(filmm)
where film1, . . . , f ilmm denote the movies directed by Sp.

Definition 8. Coverage is given by the following:
coverage(r, Etarget) = |{o|o∈Etarget and vr(o)=true}|

|Etarget|

Example 8. Let us consider all the movies as the target set. The coverage of the
rule M : ∃A :: A.gender = female is equal to 2526

11404 , where 2526 is the number of
movies with female actors and 11404 is the total number of movies. In the same
way, we can calculate coverage(M : ∃A :: A.gender = animal, movies)= 16

11404 .
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3.5 Generality Order

Definition 9. We say that a characteristic rule r1 (δ1::p1) is more general than
a rule r2 (δ2::p2) (denoted by r1 � r2) iff δ1 � δ2 and p1 � p2. We write r1 
 r2,
when r1 � r2 and ¬(r2 � r1).

Example 9. M : ∃W :: W.kind in(Oscar, Golden-Palm)�
M : ∀W :: W.kind in(Oscar).

Lemma 1. Coverage is monotone with respect to the generality order, i.e.,
if coverage(r2, Etarget) ≥ ε and r1 � r2 then coverage(r1, Etarget) ≥ ε, or else
if ¬(coverage(r1, Etarget) ≥ ε) and r1 � r2 then ¬(coverage(r2, Etarget) ≥ ε).

3.6 Specialization Operator

Definition 10. We define the specialization operator ρ as a binary relation on
the set of characteristic rules as follows:

ρ(δ :: p) = {δ′::p|δ′ differs from δ by one ∃ quantifier set to ∀}∪{δ::p′|p 
 p′

and there is no p′′ s.t. p 
 p′′ 
 p′}
Let us notice that for all r′′ ∈ ρ(r), there is no r′ /∈ ρ(r) such that r 
 r′ and
r′ 
 r′′.

Example 10. Suppose that we consider only the following properties for Actors:
{Actor.gender = male, Actor.gender = female}, and Movies as the target set.
The complete search space starting with ∃A :: True is given in Figure 2.

∃A::True

∀A::True

∀A::Gender=Male ∀A::False

∀A::Gender=Female ∀A::False

∃A::Gender=Male

∀A::Gender=Male

∃A::False ∀A::False

∃A::Gender=Female

∀A::Gender=Female

∀A::False

Fig. 2. Search space starting with the rule Movies: ∃ A::True

The definition of a specialization operator allows to define a top down, lev-
elwise, search strategy, for mining characteristic rules. For pruning the search
space, we define two notions: open-coverage and link-coverage.
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3.7 Link-Coverage

We define link-coverage (δ::p, Etarget) =coverage(open(δ)::True, Etarget) Intuitively,
link coverage measures the number of target objects for which there exists at
least an object linked to them through δ. This can be useful when there is a 0..∗
relation, which means that some objects can be linked to none objects by this
relation.

3.8 Open-Coverage

We define open-coverage (δ::p, Etarget) = coverage(open(δ)::p,Etarget) where open(δ)
is obtained by setting all the quantifiers of δ to ∃. Intuitively, open-coverage
counts the number of target objects for which there is at least an object linked
to them by δ and satisfying p.

3.9 Interesting Characteristic Rules

For a rule δ :: p, coverage measures the number of objects in the target set
having the property p. We would like to estimate whether this property is really
characteristic of Etarget or not. This can be achieved by verifying if the property
covers enough objects in the target set, while covering few objects outside the
target set. One should find a trade-off between these two conditions and estimate
the quality of rules.

Furthermore, in descriptive data mining tasks, such as characterization, thou-
sands of rules may be discovered, so making the rule filtering step as a necessary
post processing step. In our framework, we define a function named Interesting
that can filter the rules relying on such heuristics in order to keep only inter-
esting ones. In [10], Lavrac̆ et al. analyze some rule evaluation measures used
in Machine Learning and Knowledge Discovery. They propose only a measure
that can be considered as a measure of novelty, precision, accuracy, negative
reliability, or sensitivity. In our experiments, we used their novelty measure: the
novelty of a rule H ←− B is given by: (P represents a probability)

Novelty(H ←− B) = P (HB)− P (H) ∗ P (B)
For a characteristic rule r, for each object o ∈ E , we can consider the facts o ∈

Etarget and Vr(o) = true. We are looking for a strong association between these
two facts. This one can be estimated by the novelty measure. In our framework,
the novelty of a rule can be estimated by:

Novelty(r) =
|{o|o ∈ Etarget and vr(o) = true}|

|E|
−|Etarget|
|E| · |{o|o ∈ E and vr(o) = true}|

|E|

According to [10], we have −0.25 ≤Novelty(r)≤ 0.25. A strongly positive
value indicates a strong association between the two facts.
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Function Interesting (r, Etarget): boolean
If Novelty(r) → 0.25 then return True
else return False

We can also use other measures such as entropy, purity, or Laplace estimate. See
[4] for more details. In addition to the novelty we used in our experiments the
Laplace estimate given by:

Laplace(r) =
coverage(r, Etarget)+1

coverage(r, Etarget)+coverage(r, E−Etarget)+2

0 ≤Laplace(r)≤ 1. If a rule covers no examples, then Laplace is equal to 0.5.

4 Algorithm

We can use a variant of the levelwise algorithm [11] for mining all potentially
interesting characteristic rules.

CaracteriX Algorithm
input C1 = {r, such that there is no r′, r′ 
 r }
i = 1
while Ci �= ∅
1. Fi = {r ∈ Ci|link-coverage(r, Etarget) ≥ ε}
2. F ′

i = {r ∈ Fi|open-coverage(r, Etarget) ≥ ε}
3. F ′′

i = {r ∈ F ′
i|coverage(r, Etarget) ≥ ε}

4. Ci+1 = (
⋃

ρ(r)|r ∈ F ′′
i)\

⋃
j≤i Cj

5. i = i + 1
end while
output {r ∈ ⋃

j<i F ′′
j |Interesting(r, Etarget)}

CaracteriX starts with C1, the set of the most general characteristic rules
given by the user. The algorithm then iterates coverage tests (lines 1,2,3) and
generation of next candidate rules (line 4), taking care to discard previously
considered rules. The iteration stops when it is not possible to generate further
candidate rules. Pruning heuristics, link-coverage (line 1) and open-coverage (line
2) are used to reduce the number of coverage evaluations done in line 3. Open-
coverage and, a fortiori, link-coverage are the same for variant rules. They are
stored and retrieved as needed to avoid unnecessary computations. Let us notice
that these pruning strategies only exclude characteristic rules that do not fulfill
the minimum coverage requirement ε. The algorithm then outputs the set of all
interesting rules.

Lemma 2. CaracteriX is correct and complete w.r.t. C1.
Proof. The proof relies on the following inequality: link-coverage(r, Etarget) ≥
open-coverage(r, Etarget) ≥ coverage(r, Etarget).

5 Experiments

The model that we have proposed and the system CaracteriX have been devel-
oped by the first three authors at lifo, and experimented on a real geographic



Learning Characteristic Rules Relying on Quantified Paths 479

database provided by the BRGM3. The rules that have been learned have been
evaluated by a geologist expert (the fourth author of the paper). For this pur-
pose, we have extended our framework in order to take into account the spatial
dimension, mainly the topological and distance information between geographic
objects. In our experiments we have used a GIS [2], which handles many layers:
geographic, geologic, seismic, volcanic, mineralogic, gravimetric,. . . . These layers
store more than 70 thousands geographic objects. We aim at finding characteri-
zation rules for characterizing mineral ore deposits using geological information,
faults, volcanos . . . This task can be stated as follows:
- given a set E of geographic objects,E =E1 ∪E2 ∪E3 ∪E4 ∪E5, where E1 contains
mineral deposits, E2 represents the geology, E3 the volcanoes, E4 the faults and
E5 the seisms;
- given a set R of binary relations based on spatial proximity;
- given a target set Etarget ={gold mines} ⊆ E1;
→ find a set of characterization rules of {gold mines}
To take into account the distance between objects, we introduce a parameter
λ and rλ

ij represents a binary relation between objects in Ei and objects in
Ej parameterized by λ. In the case of geographic objects, this parameter may
denote the distance between objects. For instance r100km

1,3 represents a binary
relation between mineral deposits and volcanoes at a distance less or equal to
100 kms. As a consequence, the notion of quantified path described in section
3.1 has been extended, considering the parameter λ used in binary relations. For
instance: M : ∀10kmF∀5kmV denotes all the volcanoes at less than 5 kilometers
than faults at less than 10 kilometers than each mine. In order to handle distance
information between objects, we construct growing buffers around target objects
progressively, while checking for the properties satisfied by objects entering into
the buffers. This notion is illustrated by Figure 3, where buffers are constructed
around mineral deposits.

The Quantified path generality order defined in Section 3.1 can be extended
to such parametrized quantified paths. In fact, in the case of characteristic rules
with one parameter, we have:δλ � δλ′ if (λ ≥ λ′ and λ, λ′ indexes a ∃) or
(λ ≤ λ′ and λ, λ′ indexes a ∀). We have:

M : ∀3KmF �M : ∀5KmF �M : ∀10KmF
M : ∃10KmF �M : ∃5KmF �M : ∃3KmF

Intuitively, this means that if a property holds for all faults at a distance less
than 10km from a mine, then this property also holds for all faults at less than
5km and 3km from this mine. Vice versa, if there exists a fault at less than 3km
from a mine with a given property, than there exists a fault at less than 5km
and less than 10km with the same property.

When we have more than one parameter, we can induce a partial order, by
taking into account the relation δλ1,...,λn � δλ′

1,...,λ′
n

if ∀i, (λi ≥ λ′
i and λi, λ

′
i

indexes a ∃) or (λi ≤ λ′
i and λi, λ

′
i indexes a ∀).

3 French public institution based on Earth Sciences
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Fig. 3. Buffers around some target points in the GIS. Layers represented here are
geology, mineral deposits, fault and volcanoes

Table 1. Some examples of tested rules

Rule Coverage Laplace Novelty

M: M.Era ∈ {Mesozoic,Cretacious} 4.59% 0,750 0,0080
M: M.Era ∈ {Mesozoic, Jurassic, Cretacious} 6,42% 0,148 -0,0133
M: M.Lithology = sedimentary deposits 5,50% 0,070 -0,0413
M: M.Lithology=volcanic deposits 64,22% 0,266 0,0102
M: M.Distance Benioff ∈ [170..175] 66,97% 0,365 0,0529
M: ∃10km G::G.Age=tertiary 86,24% 0,259 0,0086
M: ∃5km V::V.Age=recent 7,34% 0,310 0,0030
· · · · · · · · · · · ·

5.1 Results

Our system tested hundreds of rules. Some examples are given Table 1.
The following rule has been discovered and covers 60% of gold mines and

rejects most of the other mines.

M : ∃10km G :: M.MainSubstance= au∧
G.CodeGeology= TertiaryV olcanic∧
M.BenioffDepth∈ [75..150]∧
M.Distance Benioff∈ [170..275]∧
M.BenioffSlope ∈ [8◦..16◦]∧
G.Age= tertiary∧
M.Lithology= volcanic∧
M.Gitology= epithermal∧
M.Morphology= veins

This rule, considered as interesting by experts, expresses that for all gold
mines, there exists a tertiary volcanic geology at a distance less than 10 km
from this mine, and these mines are epithemal ones with a morphology of veins
and are at a benioff depth between 75 and 150 km and at a slope benioff of
8◦ and 16◦. According to geologist experts, this rule is interesting because it is
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Fig. 4. Link Coverage of the rule M : ∃AF ∃BV::True

related to a natural phenomenon: the plate tectonics.
Figure 4 illustrates the notion of link-coverage and represents the number of gold
mines that contain at least a fault in a buffer of size A around the mine and
such that the fault contains at least a volcanoe in a buffer of size B around this
fault.

6 Conclusion

In this paper, we have presented a new general approach for mining a new
kind of characteristic rules in a target set of objects. These rules handle both
properties and quantified paths. These latters specify how to take into account
different kinds of objects and their relationships, in other words, how to go
from objects to others without flattening the tables describing these objects.
We propose CaracteriX, a levelwise algorithm exploring the search space looking
for characteristic rules, taking into account a generality relation between rules.
Moreover, the notions of link-coverage and open-coverage are useful heuristics
to prune the search space. We have experimented our approach on a geographic
database and we have submitted our rules to geologists. They considered that
these rules are interesting and give a good description of a set of chosen target
objects. Quantified paths give a convivial way to look for the characteristics of
the target objects according to the spatially linked objects. In the future, we aim
at extending our framework on other kinds of databases, such as object oriented
databases.
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