
Adaptive Constraint Pushing
in Frequent Pattern Mining

Francesco Bonchi1,2,3, Fosca Giannotti1,2,
Alessio Mazzanti1,3, and Dino Pedreschi1,3

1 Pisa KDD Laboratory
http://www-kdd.cnuce.cnr.it

2 ISTI - CNR Area della Ricerca di Pisa, Via Giuseppe Moruzzi, 1 - 56124 Pisa, Italy
Giannotti@cnuce.cnr.it

3 Department of Computer Science, University of Pisa
Via F. Buonarroti 2, 56127 Pisa, Italy

{bonchi,mazzanti,pedre}@di.unipi.it

Abstract. Pushing monotone constraints in frequent pattern mining
can help pruning the search space, but at the same time it can also reduce
the effectiveness of anti-monotone pruning. There is a clear tradeoff.
Is it better to exploit more monotone pruning at the cost of less anti-
monotone pruning, or viceversa? The answer depends on characteristics
of the dataset and the selectivity of constraints. In this paper, we deeply
characterize this trade-off and its related computational problem. As a
result of this characterization, we introduce an adaptive strategy, named
ACP (Adaptive Constraint Pushing) which exploits any conjunction of
monotone and anti-monotone constraints to prune the search space, and
level by level adapts the pruning to the input dataset and constraints,
in order to maximize efficiency.

1 Introduction

Constrained itemsets mining is a hot research theme in data mining [3,4,5,6]. The
most studied constraint is the frequency constraint, whose anti-monotonicity is
used to reduce the exponential search space of the problem. Exploiting the anti-
monotonicity of the frequency constraint is also known as the apriori trick [1]:
this is a valuable heuristic that drastically reduces the search space making the
computation feasible in many cases. Frequency is not only computationally ef-
fective, it is also semantically important since frequency provides ”support” to
any discovered knowledge. For these reasons frequency is the base constraints
and in general we talk about frequent itemsets mining. However, many other
constraints can facilitate user focussed exploration and control as well as reduce
the computation. For instance, a user could be interested in mining all frequently
purchased itemsets having a total price greater than a given threshold and con-
taining at least two products of a given brand. Classes of constraints sharing
nice properties have been individuated. The class of anti-monotone constraints
is the most effective and easy to use in order to prune the search space. Since

N. Lavrač et al. (Eds.): PKDD 2003, LNAI 2838, pp. 47–58, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

48 Francesco Bonchi et al.

any conjunction of anti-monotone constraints is an anti-monotone constraint,
we can use all the constraints in a conjunction to make the apriori trick more
selective.

The dual class, monotone constraints, has been considered more complicated
to exploit and less effective in pruning the search space. As highlighted by Bouli-
caut and Jeudy in [3], pushing monotone constraints can lead to a reduction of
anti-monotone pruning. Therefore, when dealing with a conjunction of mono-
tone and anti-monotone constraints we face a tradeoff between anti-monotone
and monotone pruning.

In [2] we have shown that the above consideration holds only if we focus
completely on the search space of all itemsets, which is the approach followed so
far. With the novel algorithm ExAnte we have shown that an effective way of at-
tacking the problem is to reason on both the itemsets search space and the trans-
actions input database together. In this way, pushing monotone constraints does
not reduce anti-monotone pruning opportunities, on the contrary, such opportu-
nities are boosted. Dually, pushing anti-monotone constraints boosts monotone
pruning opportunities: the two components strengthen each other recursively.
ExAnte is a pre-processing data reduction algorithm which reduces dramati-
cally both the search space and the input dataset. It can be coupled with any
constrained patterns mining algorithm, and it is always profitable to start any
constrained patterns computation with an ExAnte preprocess. Anyway, after
the ExAnte preprocessing, when computing frequent patterns we face again the
tradeoff between anti-monotone and monotone pruning.

The Tradeoff

Suppose that an itemset has been removed from the search space because it
does not satisfy a monotone constraint. This pruning avoids checking support
for this itemset, but however if we check its support and find it smaller than the
threshold, we may prune away all the supersets of this itemset. In other words,
by monotone pruning we risk to loose anti-monotone pruning opportunities given
by the removed itemset. The tradeoff is clear [3]: pushing monotone constraint
can save tests on anti-monotone constraints, however the results of these tests
could have lead to more effective pruning.

On one hand we can exploit all the anti-monotone pruning with an apriori
computation, checking the monotone constraint at the end, and thus not per-
forming any monotone constraint pushing. We call this strategy g&t (generate
and test). On the other hand, we can exploit completely any monotone pruning
opportunity, but the price to pay is less anti-monotone pruning. We call this
strategy mcp (monotone constraint pushing).

No one of the two extremes outperforms the other on every input dataset
and conjunction of constraints. The best strategy depends of the characteristics
of the input and the optimum is usually in between the two extremes.

In this paper, we introduce a general strategy, ACP, that balances the two
extremes adaptively. Both monotone and anti-monotone pruning are exploited
in a level-wise computation. Level by level, while acquiring new knowledge about

Adaptive Constraint Pushing in Frequent Pattern Mining 49

the dataset and selectivity of constraints, ACP adapts its behavior giving more
power to one pruning over the other in order to maximize efficiency.

Problem Definition

Let Items = {x1, ..., xn} be a set of distinct literals, usually called items. An
itemset X is a non-empty subset of Items. If k = |X| then X is called a
k-itemset. A transaction is a couple 〈tID, X〉 where tID is the transaction
identifier and X is the content of the transaction (an itemset). A transac-
tion database TDB is a set of transactions. An itemset X is contained in a
transaction 〈tID, Y 〉 if X ⊆ Y . Given a transaction database TDB the subset
of transaction which contain an itemset X is named TDB[X]. The support
of an itemset X, written suppTDB(X) is the cardinality of TDB[X]. Given a
user-defined minimum support δ, an itemset X is called frequent in TDB if
suppTDB(X) ≥ δ. This the definition of the frequency constraint Cfreq[TDB]: if
X is frequent we write Cfreq[TDB](X) or simply Cfreq(X) when the dataset is
clear from the context. Let Th(C) = {X|C(X)} denotes the set all itemsets X
that satisfy constraint C. The frequent itemset mining problem requires to com-
pute the set of all frequent itemsets Th(Cfreq). In general given a conjunction
of constraints C the constrained itemset mining problem requires to compute
Th(C); the constrained frequent itemsets mining problem requires to compute
Th(Cfreq) ∩ Th(C).

Definition 1. Given an itemset X, a constraint CAM is anti-monotone if:

∀Y ⊆ X : CAM (X) ⇒ CAM (Y)

Definition 2. Given an itemset X, a constraint CM is monotone if:

∀Y ⊇ X : CM (X) ⇒ CM (Y)

independently from the given input transaction database.

Observe that the independence from the input transaction database is necessary
since we want to distinguish between simple monotone constraints and global
constraints such as the ”infrequency constraint”: (suppTDB(X) ≤ δ). This con-
straint is still monotone but it is dataset dependent and it requires dataset scans
in order to be computed.

Since any conjunction of monotone constraints is a monotone constraint, in
this paper we consider the problem:

Th(Cfreq) ∩ Th(CM).

The concept of border is useful to characterize the solution space of the problem.

Definition 3. Given an anti-monotone constraint CAM and a monotone con-
straint CM we define their borders as:

B(CAM) = {X|∀Y ⊂ X : CAM (Y) ∧ ∀Z ⊃ X : ¬ CAM (Z)}

50 Francesco Bonchi et al.

tID itemset
1 b,d
2 b,d,e
3 b,c,d,e
4 c,e
5 c,d,e
6 c,d
7 a,d,e

item price
a 4
b 3
c 5
d 6
e 15

{}

{c}{a} {b} {e}{d}

{a,b} {a,d}{a,c} {b,c} {b,d} {a,e} {c,d} {b,e} {c,e} {d,e}

{c,d,e}{b,d,e}{a,d,e}{b,c,e}{a,c,e}{a,b,d}{a,b,c}

{a,b,c,d} {a,b,c,e} {a,b,d,e} {a,c,d,e} {b,c,d,e}

{a,b,c,d,e}

{b,c,d}

B(Cm) B(Cam)

{a,b,e} {a,c,d}

Fig. 1. The borders B(CM) and B(Cfreq) for the transaction database and the price
table on the left with CM ≡ sum(X.prices) ≥ 12 and CAM ≡ suppTDB(X) ≥ 2.

B(CM) = {X|∀Y ⊃ X : CM (Y) ∧ ∀Z ⊂ X : ¬ CM (Z)}
Moreover, we distinguish between positive and negative borders. Given a general
constraint C we define:

B+(C) = B(C) ∩ Th(C) B−(C) = B(C) ∩ Th(¬ C)

In Figure 1 we show the borders of two constraints: the anti-monotone con-
straint supp(X) ≥ 2, and the monotone one sum(X.prices) ≥ 12. In the given
situation the borders are:

B+(CM) = {e, abc, abd, acd, bcd} B+(Cfreq) = {bde, cde}
B−(CM) = {ab, ac, ad, bc, bd, cd} B−(Cfreq) = {a, bc}

The solutions to our problem are the itemsets that lie under the anti-monotone
border and over the monotone one: R = {e, be, ce, de, bde, cde}.

Our Contributions:

In the next section we provide a through characterization of the addressed com-
putational problem, and we compare the two opposite extreme strategies. Then
we introduce a general adaptive strategy, named ACP, which manages the two
extremes in order to adapt its behavior to the given instance of the problem.
The proposed strategy has the following interesting features:
– It exploits both monotone and anti-monotone constraints in order to prune

the search space.
– It is able to adapt its behavior to the given input in order to maximize effi-

ciency. This is the very first adaptive algorithm in literature on the problem.
– It computes the support of every solution itemset, which is necessary when

we want to compute association rules.
– Being a level-wise solution it can be implemented exploiting the many op-

timization techniques and smart data structure studied for the apriori algo-
rithm.

Adaptive Constraint Pushing in Frequent Pattern Mining 51

2 Level-Wise Solutions

Strategy g&t performs an apriori computation and then tests among frequent
itemsets which ones satisfy also the monotone constraint. Strategy mcp, intro-
duced by Boulicaut and Jeudy [3] works the opposite. The border B+(CM) is
considered already computed and is given in input. Only itemsets over that
border, and hence in Th(CM), are generated by a special generation procedure
generatem. Therefore we just need to check frequency for these candidates. The
procedure generatem takes in input the set of the solutions at the last iteration
Rk, the border B+(CM), and the maximal cardinality of an element in B−(CM),
which we denote maxb. In the rest of this paper we use Itemsk to denote the
set of all k-itemsets.

Procedure: generatem(k, Rk, B+(CM))

1. if k = 0 then return B+(CM) ∩ Items
2. else if k ≤ maxb then
3. return generate1(Rk, Items) ∪ (B+(CM) ∩ Itemsk+1)
4. else if k > maxb then
5. return generateapriori(Rk)

Where:
– generate1(Rk, X) = {A ∪ B|A ∈ Rk ∧ B ∈ X}
– generateapriori(Rk) = {X|X ∈ Itemsk+1 ∧ ∀ Y ∈ Itemsk : Y ⊆ X . Y ∈ Rk}

The procedure generatem creates as candidates only supersets of itemsets which
are solution at the last iteration. Thus these candidates only need to be checked
against Cfreq since they surely satisfy CM . These candidates are generated adding
to a solution a 1-itemset. Unluckily we can not use the apriori trick completely
with this strategy. In fact a candidate itemset can not be pruned away simply
because all its subsets are not solution, since some of them could have not been
considered at all. What we can do is prune whenever we know that at least one
subset of the candidate itemset is not a solution because it does not satisfy Cfreq.
This pruning is performed on the set of candidates Ck by the following procedure.

Strategy: mcp

1. C1 := generatem(0, ∅, B+(CM)); R0 := ∅; k := 1
2. while Ck �= ∅ or k ≤ maxb do
3. Ck := prunem(Rk−1, Ck)
4. test Cfreq(Ck); Rk := Th(Cfreq) ∩ (Ck)
5. Ck+1 := generatem(k, Rk, B+(CM)); k := k + 1
6. end while
7. return

⋃k−1
i=1 Ri

Procedure: prunem(Rk−1, Ck)

1. C′ := Ck

2. for all S ∈ Ck do for all S′ ⊆ S : S′ ∈ Itemsk−1
3. do if S′ /∈ Rk−1 ∧ Cm(S′) then remove S from C′

4. return C′

52 Francesco Bonchi et al.

Example 4. Consider the executions of strategy mcp and strategy g&t on the
dataset and the constraints in Figure 1, focussing on the numbers of checking of
Cfreq. At the first iteration strategy mcp produces a unique candidate C1 = {e}
which is the only 1-itemset in B+(CM). This candidate is checked for the anti-
monotone constraint and it results to be a solution R1 = {e}. At the second
iteration 4 candidates are produced C2 = {ae, be, ce, de}. Only ae does not satisfy
CAM , hence R2 = {be, ce, de}. At the third iteration 7 candidates are produced
C3 = {abc, abd, acd, bcd, bce, bde, cde}. Only two of these pass the anti-monotone
checking: R3 = {bde, cde}. Finally C4 = ∅. Therefore, with the given dataset and
constraints, strategy mcp performs 1+4+7 = 12 checking of Cfreq. Strategy g&t
uses a normal apriori computation in order to find Th(Cfreq) and then check
the satisfaction of CM . It performs 13 checking of Cfreq.

Example 5. This example is borrowed by [3]. Suppose we want to compute fre-
quent itemsets {X|supp(X) ≥ 100 ∧ |X| ≥ 10}. This is a conjunction of an
anti-monotone constraint (frequency) with a monotone one (cardinality of the
itemset ≥ 10). Strategy mcp generates no candidate of size lower than 10. Ev-
ery itemset of size 10 is generated as candidate and tested for frequency in one
database scan. This leads to at least

(
n
10

)
where n = |Items| candidates and,

as soon as n is large this turns to be intractable. On the other hand strategy
g&t generates candidates that will never be solutions, but this strategy remains
tractable ever for large n.

The two examples show that no one of the two strategies outperforms the
other on every input dataset and conjunction of constraints.

2.1 Strategies Analysis

We formally analyze the search space explored by the two extreme level-wise
strategies. To this purpose we focus on the number of frequency tests, since the
monotone constraint is cheaper to test.
Definition 6. Given a strategy S the number of frequency test performed by
S is indicated with |Cfreq|S .

Generally, a strategy S checks for frequency a portion of Th(CM) (which can
produce solutions) and a portion of Th(¬CM) (which can not produce solutions):

|Cfreq|S = γ|Th(¬CM)| + β|Th(CM)| γ, β ∈ [0, 1] (1)

The mcp strategy has γ = 0, but evidently it has a β much larger than strategy
g&t, since it can not benefit from the pruning of infrequent itemsets in Th(¬CM),
as we formalize later. Let us further characterize the portion of Th(¬CM) ex-
plored by strategy g&t as:

γ|Th(¬CM)| = γ1|Th(¬CM) ∩ Th(Cfreq)| + γ2|Th(¬CM) ∩ B−(Cfreq)| (2)

For g&t strategy γ1 = γ2 = 1: it explores all frequent itemsets (Th(Cfreq)) and
candidate frequent itemsets that results to be infrequent (B−(Cfreq)) even if
they are in Th(¬CM) and thus can not produce solutions. Let us examine what
happens over the monotone border. We can further characterize the explored
portion of Th(CM) as:

Adaptive Constraint Pushing in Frequent Pattern Mining 53

β|Th(CM)| = β1|B+(CM) ∩ (Th(¬Cfreq) \ B−(Cfreq))| + β2|R| + (3)
β3|B−(Cfreq) ∩ Th(CM)|

Trivially β2 = 1 for any strategy which computes all the solutions of the problem.
Moreover, also β3 is always 1 since we can not prune these border itemsets in
any way. The only interesting variable is β1, which depends from γ2. Since the
only infrequent itemsets checked by strategy g&t are itemsets in B−(Cfreq), it
follows that for this strategy β1 = 0. On the other hand, strategy mcp generates
as candidates all itemsets in B+(CM) (see line 3 of generatem procedure), thus
for this strategy β1 = 1. the following proposition summarizes the number of
frequency tests computed by the two strategies.

Proposition 7.
|Cfreq|g&t = |Th(¬CM) ∩ Th(Cfreq)|

+|Th(¬CM) ∩ B−(Cfreq)| + |R| + |B−(Cfreq) ∩ Th(CM)|
|Cfreq|mcp = |B+(CM) ∩ (Th(¬Cfreq) \ B−(Cfreq))| + |R| + |B−(Cfreq) ∩ Th(CM)|

In the next section we introduce an adaptive algorithm which manages this
tradeoff, balancing anti-monotone and monotone pruning w.r.t. the given input.

3 Adaptive Constraint Pushing

The main drawback of strategy g&t is that it explores portions of search space in
Th(¬CM) which will never produce solutions (γ1 = 1); while the main drawback
of strategy mcp is that it can generate candidate itemsets in Th(¬ Cfreq) \
B−(Cfreq) that would have been already pruned by a simple apriori computation
(β1 = 1). This is due to the fact that strategy mcp starts computation bottom-
up from the monotone border and has no knowledge about the portion of search
space below such a border(Th(¬ CM)). However, some knowledge about small
itemsets which do not satisfy CM could be useful to have a smaller number
of candidates over the border. But on the other hand, we need some additional
computation below the monotone border in order to have some knowledge. Once
again we face the tradeoff. The basic idea of a general adaptive pushing strategy
(ACP) is to explore only a portion of Th(¬ CM): this computation will never
create solutions, but if well chosen it can prune heavily the computation in
Th(CM). In other terms, it tries to balance γ and β1. To better understand we
must further characterize the search space Th(¬CM):

γ|Th(¬CM)| = γ1|Th(¬CM) ∩ Th(Cfreq)| + γ2|Th(¬CM) ∩ B−(Cfreq)| + (4)

+γ3|Th(¬CM) ∩ (Th(¬Cfreq) \ B−(Cfreq))|
Strategy ACP tries to reduce γ1 but the price to pay is a possible reduction of
γ2. Since the portion of search space Th(¬CM) ∩ B−(Cfreq) is helpful to prune,
a reduction of γ2 yields a reduction of pruning opportunities. This can lead to
the exploration of a portion of search space (γ3 > 0) that would have not been
explored by a g&t strategy. This phenomenon can be seen as a virtual raising of
the frequency border: suppose we loose an itemset of the frequency border, we
will later explore some of its supersets and obviously find them infrequent. By
the point of view of the strategy these are frequency border itemsets, even if they

54 Francesco Bonchi et al.

are not really in B−(Cfreq). The optimal ideal strategy would have γ1 = γ3 = 0
and γ2 = 1 since we are under the monotone border and we are just looking for
infrequent itemsets in order to have pruning in Th(CM). Therefore, a general
ACP strategy should explore a portion of Th(¬CM) in order to find infrequent
itemsets, trying not to loose pieces of Th(¬CM) ∩ B−(Cfreq).
Proposition 8.

|Cfreq|ideal = |Th(¬CM) ∩ B−(Cfreq)| + |R| + |B−(Cfreq) ∩ Th(CM)|
|Cfreq|acp = γ|Th(¬CM)| + β|Th(CM)| (as defined in equations (3) and (4)).

Two questions arise:
1. What is a ”good” portion of candidates?
2. How large this set of candidates should be?

The answer to the first question is simply: ”itemsets which have higher proba-
bilities to be found infrequent”. The answer to the second question is what the
adaptivity of ACP is about. We define a parameter α ∈ [0, 1] which represents
the fraction of candidates to be chosen among all possible candidates. This pa-
rameter is initialized after the first scan of the dataset using all information
available, and it is updated level by level with the newly collected knowledge.

Let us now introduce some notation useful for the description of the algo-
rithm.

– Lk ⊆ {I| I ∈ (Itemsk ∩ Th(Cfreq) ∩ Th(¬ CM))}
– Nk ⊆ {I| I ∈ (Itemsk ∩ Th(¬ Cfreq) ∩ Th(¬ CM))}
– Rk = {I| I ∈ (Itemsk ∩ Th(Cfreq) ∩ Th(CM))}
– Pk = {I| I ∈ Itemsk ∧ ∀n, m < k.(�L ⊂ I.L ∈ Bm) ∧ (�J ⊂ I.J ∈ Nn)}
– Bk = {I| I ∈ (B+(CM) ∩ Pk)}
– Ek = {I| I ∈ (Th(¬ CM) ∩ Pk)}

Lk is the set of frequent k-itemsets which are under the monotone border:
these have been checked for frequency even if they do not satisfy the monotone
constraint hoping to find them infrequent; Nk is the set of infrequent k-itemsets
under the monotone border: these are itemsets used to prune over the monotone
border; Rk is the set of solutions k-itemsets; Pk is the set of itemsets potentially
frequent (none of their subsets have been found infrequent) and potentially in
B+(CM) (none of their subsets have been found satisfying CM). Bk is the subset
of elements in Pk which satisfy CM and hence are in B+(CM) since all their
subsets are in Th(¬ CM). Ek is the subset of elements in Pk which still do not
satisfy CM . From this set is chosen an α-portion of elements to be checked against
frequency constraint named CU

k (candidates Under). This selection is indicated
as α ⊗ Ek. Finally we have the set of candidates in which we can find solutions
CO

k (candidates Over) which is the set of candidates over the monotone border.
The frequency test for these two candidates sets is performed with a unique
database scan and data structure. Itemsets in CO

k which satisfy Cfreq will be
solutions; itemsets in CU

k which do not satisfy Cfreq go in Nk and will prune
itemsets in CO

j for some j > k.

Adaptive Constraint Pushing in Frequent Pattern Mining 55

We now introduce the pseudo-code for the generic adaptive strategy. In the
following with the sub-routine generateover, we mean generate1 followed by
the pruning of itemsets which are superset of itemsets in N (we call it pruneam),
followed by prunem (decribed in Section 2).

Strategy: generic ACP

1. R0, N := ∅; C1 := Items

2. test Cfreq(C1) ⇒ C1 := Th(Cfreq) ∩ (C1)
3. test CM(C1) ⇒ R1 := Th(CM) ∩ (C1); L1 := Th(¬ CM) ∩ (C1)
4. P2 := generateapriori(L1)
5. k := 2
6. while Pk �= ∅ do
7. test CM(Pk) ⇒ Bk := Th(CM) ∩ (Pk); Ek := Th(¬CM) ∩ (Pk)
8. CO

k := generateover(Rk−1, C1, N) ∪ Bk

9. initialize/update(α)
10. CU

k := α ⊗ Ek

11. test Cfreq(CU
k ∪ CO

k) ⇒
Rk := Th(Cfreq) ∩ CO

k ; Lk := Th(Cfreq) ∩ CU
k ; Nk := Th(¬Cfreq) ∩ CU

k

12. N := N ∪ Nk

13. Pk+1 := generateapriori(Ek \ Nk)
14. k := k+1
15. end while
16. Ck := generateover(Rk−1, C1, N)
17. while Ck �= ∅ do
18. test Cfreq(Ck); Rk := Th(Cfreq) ∩ (Ck)
19. Ck+1 := generateapriori(Rk)
20. k := k + 1
21. end while
22. return

⋃k−1
i=1 Ri

It is worthwhile to highlight that the pseudo-code given in Section 2 for
strategy mcp, which is a theoretical strategy, does not perform the complete
first anti-monotone test, while strategies ACP and g&t perform it. This results
to be a reasonable choice on our toy-example, but it turns to be a suicide choice
on every reasonably large dataset. Anyway, we can imagine that any practical
implementation of mcp would perform at least this first anti-monotone test. We
call this practical implementation strategy mcp∗. Moreover, strategy mcp∗ does
not take the monotone border in input but it discovers it level-wise as ACP does.
In our experiments we will use mcp∗ instead of mcp.

Note that:

– if α = 0 constantly, then ACP ≡ strategymcp∗;
– if α = 1 constantly, then ACP ≡ strategy g&t ;

Our adaptivity parameter can be seen as a setting knob which ranges from
0 to 1, from an extreme to the other. To better understand how ACP works, we
show the execution given the input in Figure 1.

56 Francesco Bonchi et al.

3.1 Run-through Example

Strategy ACP starts with C1 = {a, b, c, d, e}, tests the frequency constraint,
tests the monotone constraint and finds the first solution, R1 = {e} and L1 =
{b, c, d}. Now (Line 4) we generate the set of 2-itemsets potentially frequent
and potentially in B+(CM): P2 = {bc, bd, cd}. At this point we enter in the
loop from line 6 to 15. The set P2 is checked for CM , and it turns out that
no element in P2 satisfies the monotone constraint: thus B2 = ∅, E2 = P2. At
line 8 ACP generates candidates for the computation over the monotone border
CO

2 = {be, ce, de} and performs the two pruning procedure that in this case have
no effects. At this point ACP initializes our adaptivity parameter α ∈ [0, 1]. The
procedure initialize(α) can exploit all the information collected so far, such as
number of transactions, total number of 1-itemsets, support threshold, number of
frequent 1-itemsets and their support, number of solutions at the first iteration.
For this example suppose that α is initialized to 0.33. Line 10 assigns to CU

k , a
portion equals to α of Ek. Intuitively, since we want to find infrequent itemsets
in order to prune over the monotone border, the best third is the 2-itemset which
has the subsets with the lowest support, therefore CU

2 = {bc}. Line 11 performs
the frequency test for both set of candidates sharing a unique dataset scan. The
count of support gives back four solutions R2 = {be, ce, de}, moreover we have
L2 = ∅ and N2 = {bc}. Then ACP generates P3 = ∅ (line 13) and exits the loop
(line 6). At line 16 we generate C3 = {bde, cde}, we check their support (line 18)
and obtain that R3 = C3; finally we obtain C4 = ∅ and we exit the second loop.
Algorithm ACP performs 5 + 4 + 2 = 11 tests of frequency.

4 Adaptivity Strategies and Optimization Issues

In the previous section we have introduced a generic strategy for adaptive con-
straint pushing. This can not really be considered an algorithm since we have
left not instantiated the initialize/update function for the adaptivity parameter
α (line 9), as well as the α-selection (line 10). In this section we propose a very
simple adaptivity strategy for α and our first experimental results. We believe
that many other different adaptivity strategies can be defined and compared.

Since we want to select itemsets which are most likely infrequent, the simplest
idea is to estimate on the fly, using all information available at the moment, a
support measure for all candidates itemsets below the monotone border. Then
the α-selection (line 10) will simply choose among all itemsets in Ek the α-
portion with lowest estimated support.

In our first set of experiments, we have chosen to estimate the support for
an itemset using only the real support value of items belonging to the given
itemset, and balancing two extreme conditions of the correlation measure among
the items: complete independence and maximal correlation. In the former the
estimated itemset support is obtained as the product, and in the latter as the
minimum, of relative support of the items belonging to the itemset. Also for
the α-adaptivity we have chosen a very simple strategy. The parameter α is
initialized w.r.t. the number of items which satisfy frequency and monotone
constraint at the first iteration. Then at every new iteration it adapts its value

Adaptive Constraint Pushing in Frequent Pattern Mining 57

Dataset Connect-4 Monotone Constraint Threshold 3000

Minimum Support (%)

60 65 70 75 80 85 90

N
um

be
r

of
 C

an
di

da
te

 It
em

se
ts

0

1x10 6

2x10 6

3x10 6

4x10 6

5x10 6

ACP

g&t

Ideal

Dataset Connect-4, Minimum Support 70%

Monotone Constraint Threshold

2000 2500 3000 3500 4000

N
um

be
r

of
 C

an
di

da
te

 It
em

se
ts

0

1x106

2x106

3x106

4x106
ACP
g&t
ideal

Fig. 2. Number of candidate itemsets tested against Cfreq.

according to the results of the α-selection at the previous iteration. Let us define
the α-focus as the ratio of itemsets found infrequent among α-selected itemsets.
An α-focus very close to 1 (greater than 0.98) suggests that we have selected
and counted too few candidates and thus we raise the α parameter for the next
iteration accordingly. An α-focus less then 0.95 suggests that we are selecting
and counting too much candidates and thus produces a shrink of α.

These two proposed strategies for estimating candidates support and for the
adaptivity of α do not exploit all available information, but they allow an efficient
implementation, and they experimentally exhibit very good candidates-selection
capabilities.

Experimental Results

Since ACP balances the tradeoff between frequency and a monotone constraint,
it gives the best performance when the two components are equally strong, i.e. no
constraint is much more selective than the other. On sparse datasets frequency
is always very selective even at very low support levels: joining it with an equally
strong monotone constraint would result in an empty set of solutions. Therefore,
ACP is particularly interesting in applications involving dense datasets.

In Figure 2, we show a comparison of the 4 strategies g&t, mcp∗, ideal and
ACP, based on the portion of search space explored, i.e. the number of Cfreq tests
performed, on the well-known dense dataset connect-4 1, for different support
thresholds and monotone constraints. In order to create a monotone constraint
we have attached to each item a value v selected using a normal distribution.
Then we have chosen as monotone constraint the sum of values v in an itemset
to be greater than a given threshold.

Strategy mcp∗ always performs very poorly and its results could not be
reported in the graph in Figure 2. Strategy g&t explores a portion of search
space that obviously does not depend by the monotone constraint. On this dense
dataset it performs poorly and becomes hard to compute for low supports (less

1 http://www.ics.uci.edu/∼mlearn/MLRepository.html

58 Francesco Bonchi et al.

than 55%). Our simple strategy for selecting candidates under the monotone
border provides a very good performance: during the first 3-4 iterations (where
is more important not to miss infrequent itemsets) we catch all the infrequent
itemsets with an α ≈ 0.2; i.e. checking only a fifth of all possible candidates.
Thanks to this capability, our ACP strategy does not loose low-cardinality item-
sets in B−(Cfreq) and thus approximates very well the ideal strategy, as showed
by Figure 2, performing a number of Cfreq tests one order of magnitude smaller
than strategy g&t.

5 Conclusions

In this paper, we have deeply characterized the problem of the computation of
a conjunction of monotone and anti-monotone constraints. As a result of this
characterization, we introduce a generic adaptive strategy, named ACP (Adap-
tive Constraint Pushing) which exploits any conjunction of monotone and anti-
monotone constraints to prune the search space. We have introduce an adaptivity
parameter, called α which can be seen as a setting knob which ranges from 0
(favorite monotone pruning) to 1 (favorite anti-monotone pruning); and level by
level adapts itself to the input dataset and constraints, giving more power to one
pruning over the other in order to maximize efficiency. The generic algorithmic
architecture presented can be instantiated with different adaptivity strategy for
α. In this paper we have presented a very simple strategy which does not do
not exploit all available information, but it still provides very good selection
capability and it allows an efficient implementation.

References

1. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large
Databases. In Proceedings of the Twentieth International Conference on Very Large
Databases, pages 487–499, Santiago, Chile, 1994.

2. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAnte: Anticipated data
reduction in constrained pattern mining. In Proceedings of the 7th European Confer-
ence on Principles and Practice of Knowledge Discovery in Databases (PKDD03),
2003.

3. J.-F. Boulicaut and B. Jeudy. Using constraints during set mining: Should we prune
or not? In Actes des Seizième Journúes Bases de Donnúes Avancúes BDA’00, Blois
(F), pages 221–237, 2000.

4. G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained correlated
sets. In 16th International Conference on Data Engineering (ICDE’ 00), pages 512–
524. IEEE, 2000.

5. R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and
pruning optimizations of constrained associations rules. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD-98), volume
27,2 of ACM SIGMOD Record, pages 13–24, New York, June 1–4 1998. ACM Press.

6. J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent item sets with convertible
constraints. In ICDE’01, pages 433–442, 2001.

	1 Introduction
	2 Level-Wise Solutions
	2.1 Strategies Analysis

	3 Adaptive Constraint Pushing
	3.1 Run-through Example

	4 Adaptivity Strategies and Optimization Issues
	5 Conclusions
	References

