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Abstract. Domain specific languages (DSLs) have proven to be a very
adequate mechanism to encapsulate and hide the complex implementa-
tion details of component-based software development. Since evolution
lies at the heart of any software system the DSLs that were built around
them must evolve as well. In this paper we identify important issues that
cause a DSL implementation to be very rigid in which all phases are
tightly coupled and highly dependent upon one another. To increase the
poor evolvability of current day DSL development environments a new
development environment Keyword based programming (KBP) is pro-
posed where DSLs are built by using a language specification to compose
and glue loosely coupled and independent language components (called
keywords).

1 Introduction

Component-based software development has proven to be a significant improve-
ment over traditional software development methods, and is well on its way to
become the dominating software development paradigm. Nowadays, many soft-
ware systems are assembled out of reusable and stand-alone parts. However,
such composition of components is far from an easy task. It requires selecting
the most appropriate components, solving data format and architectural mis-
matches, adapting to the application context, etc [SN99,LB00]. To encapsulate
and hide these complex implementation details, domain specific languages (DSL)
have been proposed [Sin96,SB97]. Unlike general purpose languages, DSLs are
little languages that are expressive over a particular domain. Using DSLs, users
can write higher-level, domain-specific descriptions (DSD) or programs using do-
main terminology. The code generator that produces an executable program out
of the DSD contains the actual implementation details, e.g. the most appropriate
components, their interface, the composition rules, the code to glue and adapt
components, etc.

Unfortunately, developing DSLs is hard and costly. Therefore, their devel-
opment is only feasible for mature enough domains. Such domains have been
extensively analysed, knowledge about it is considered stable, and their com-
ponents have been proven to be truly reusable and composable. As such, it is
believed the DSL can be developed and will remain stable. Examples of those



well-established domains are image manipulation, text processing, database in-
teraction, etc. However, it takes a lot of time before a domain is considered
stable (it took us more than a decade to reach a relative stable GUI building
library [GS94]). And, even then we cannot avoid changes, since it is generally
known that evolution lies at the heart of any software system [MM99]. As such,
DSLs need to evolve, even when they are developed for mature enough domains.

Although current DSL development technologies have boosted DSL develop-
ment, they only freed us from tedious tasks like lexing, parsing, pattern match-
ing, manipulating and transforming an abstract syntax tree (AST). At this low
level, a developer cannot help but implement a rigid DSL in which all phases are
tightly coupled and highly dependent upon one another. As a consequence, the
DSL becomes hard to evolve. To alleviate this problem, we need an advanced
DSL development environment, that takes evolution into account and allows us
to decouple the different phases and remove unnecessary dependencies. The pur-
pose of this paper is therefore two-fold. First, we identify some important issues
related to evolution in current-day DSL development environment. Second, we
propose adequate solutions to these problems, that allow us to define DSLs that
can be evolved in a more easy and straightforward way.

The paper is structured as follows. Section 2 explains the problem statement
in more detail. Section 3 introduces the solution we propose to tackle the prob-
lems. Section 4 reflects on the proposed approach. Section 5 discusses related
work, while section 6 presents our conclusions.

2 Problem Statement

In this section, we will identify the major problems developers are faced with
when evolving a DSL. First, we will discuss the general architecture of a DSL
development environment. Next, we introduce the running example, that we will
use and gradually evolve throughout the paper to illustrate the problems.

2.1 General DSL Development Environment Architecture

In the general development environment architecture for DSLs consists of tree
parts:

1. the grammar of the language, specifying the syntax and the set of correct
sentences;

2. the library of components described in the target language;
3. the transformations that define the DSL’s semantics

The grammar is usually defined using Backus-Naur-Form (BNF) [NAU60]
or some of its variants. A parser processes a character stream according to the
grammar and produces an abstract syntax tree (AST), representing the parse
tree of a program written in the DSL. The transformations transform this AST
to the AST of a program written in the target language, that uses the library
of components. Usually the target language is a general purpose programming
language (GPL), but it can also be a another DSL.



2.2 Running example

Throughout this paper we will use a single simple example. In this example, a
GUI library, written in Visual Basic, will be encapsulated with a DSL. Initially
the GUI library contains only one component: a label. Because labels are widgets
with a rather complex interface, we want to encapsulate the common usages
of this interface in an easier-to-use DSL language. For the moment, the only
expression/sentence that we can write in the DSL is the following:

label "title"

This program defines a label with caption title. As can be seen, a developer
doesn’t need to know which component he has to use, nor how it should be used,
how it should be instantiated or how the caption should be set.

To implement this DSL, we need to specify its syntax and the transforma-
tions that translate the expression label "title" into code in some executable
target language. The syntax is specified in the grammar which is often written
in some BNF variant. The following two BNF-rules specify the syntax of the
’label’ expression:

label ::= "label" labelcaption
labelcaption ::= string

They state that the expression must start with the word ’label’, followed
by a labelcaption sentence. The latter is defined in the second rule, which states
that a labelcaption is simply a string.

Based on this grammer, the parser can generate an abstract syntax tree,
which is manipulated by the transformations associated with the DSL. We will
specify these transformations in pseudo syntax, that is close to existing trans-
formation systems such as ASF+SDF and Khepera [vdBK02,FNP], to abstract
away from irrelevant technical details.

Below is the transformation that translated the DSD expression label "title"
to the target language. It will transform the expression into the equivalent two
Visual Basic expression (lines 5 and 8):

(1) transform label
(2) define
(3) A arg(1)
(4) by VBLabel
(5) Begin VB.Label
(6) name = "mylabel"
(7) End
(8) by VBSub
(9) Public Sub Form_Load()
(10) mylabel.caption = %A%
(11) End Sub

Conceptually, the transformation consists of 3 sections:



– The first section defines the node of the AST that can be transformed by
the transformation. In this case, line 1 states that all label nodes of the AST
tree will be transformed;

– The second section defines the variables that can be used in the target lan-
guage structure to retrieve information out of the AST node. For example,
line 3 defines the variable A and initializes it with the first element of the
label node, i.e the string denoting the labelcaption.

– The last section defines the target language structure that will replace the
matched node in the AST. In this example, lines 4 and 8 state that the
structure of the target language which is generated is respectively a VB.Label
and a VB.Form. Lines 5 to 7 and 9 to 11 generate the resulting expression
written in the syntax of the target language.

In the following subsections the GUI library will be gradually extended with
new features and components. Naturally the DSL will have to keep up and evolve
as well. We will explain the problems we encounter.

2.3 Information Exchange

A transformation defines which elements of an AST tree it transforms. The label
transformation from the previous section, for example, transforms the label node
of the source AST. It uses the label caption (stored in variable A) to produce
a VB.Label node of the target AST. The caption is stored in the label source
AST node and is locally accessible. We call such information local information.

When developing more complex DSLs, transformations often need to access
information that is not available locally, but is available elsewhere in the AST.
Such information is called non-local information.

In what follows, we will gradually extend our running example. First, we will
show that the evolvability of a DSL is hampered if information is hard-coded
into the transformations. Second, we will argue that simply parameterizing the
transformation, and passing the information in some way or other, does not
resolve the evolvability problem.

Adding Support for Multilinguality, First Try Suppose we want to extend
our GUI library with support for multilinguality. This requires us to add a
translator component, that translates strings to another language. Naturally, we
need to adapt the DSL accordingly, so that it takes this new component into
account. In a first stage, the translation will be triggered automatically, so the
DSL’s syntax is left unchanged: The DSL program itself thus also remains the
same:

label "title"

Clearly, this example once again illustrates that DSLs abstract away from
implementation details, which allows the component library to change without
affecting DSL programs.



The translation extension requires the introduction of a new transformation,
which is implemented as follows:

(1) transform string in labelcaption
(2) define
(3) A arg(1)
(4) by VBExpression
(5) translator.translate(%A%, "dutch")

This transformation will be triggered for every string node inside a labelcap-
tion node (line 1). The string value itself is stored in variable A (line 3). The
result of the transformation is an expression (line 5) that calls the translate
method on a translator component. This method takes two arguments: the string
(caption of the label) that needs to be translated and the language of user in-
terface.

When we apply these transformations to our domain-specific program, the
following code is generated:

Begin VB.Label
name = "mylabel"

End
Public Sub Form_Load()

mylabel.caption = translator.translate("title", "dutch")
End Sub

Although this code seems correct, we still identify two major problems with
the definition of the above transformation. First of all, the language of the user
interface is hard coded in the transformation, and can thus only be changed
by changing the transformation. This seriously hampers its evolvability. Second,
the translator component that is accessed through the variable translator,
used in the resulting program. Clearly, this variable should be defined elsewhere
in the program, but should be accessible from within the subroutine, according
to the scoping rules of the Visual Basic programming language. The translate
transformation cannot guarantee this however, since it does not know which code
the other transformations generate.

Based on these two observations, we conclude that the evolvability of the
DSL is constrained in two ways: the UI language needs to be defined outside the
transformation, as is the expression used to access the translator component.

Adding Support for Multiple Languages, Second Try To avoid hard-
coding the UI language into the transformation, we can allow the developer
to specify the language elsewhere in the DSD. For example the UI language
could be retrieved from a configuration file. The file has a standard property
bag containing a list of key-value pairs. Such change requires us to extend the
DSL with three new BNF rules. The first states that the ’language’ expression
must start with the language literal followed by two strings denoting the file



and the property in the file, respectively. The file is a string (second rule) and
the property is an identifier (third rule).

language ::= "language" file property
file ::= string
property ::= id.

Our example DSL program now becomes:

language "config.ini" UILanguage

The translator transformation must now retrieve the UI language to be used
out of the AST tree of the DSL program. We will refer to this kind of information
as non-local information because it is located in another node of the AST tree
than the node on which the transformation is applied. The code bellow illustrates
the approach taken. In this transformation two new variables are defined (lines 3-
4) where the variable C is initialized with the property denoting the UI language
in the configuration file.

(1) transform string in labelcaption
(2) define
(3) A arg(1)
(4) C (getParent().getChild(language).getChild(Property))
(6) by VBExpression
(7) translator.translate(%A%, configfile.getProperty(%C%))

The code or expression that locates and retrieves information somewhere in
the AST tree is still a stain on the evolvability of the DSL. Such code or such
expression depends in most cases heavily of the particular structure of the AST
tree. In the translate transformation the configuration file property containing
the UI Language is retrieved by the expression on line (7). The expression con-
tains very detailed information about the location of the information and how
to traverse the AST to get to this location. Suppose we extend the GUI library
with components to make the UI language configurable within the application
itself. Because of the addition of new BNF rules and transformations to support
this extension in the DSL, the UI language is contained in other AST nodes.
Consequently the expression to locate and retrieve non-local information must
changed. So whenever the DSL grammar changes and thus the AST tree, the
whole set of transformations must be examined and checked to determine if they
are affected and possible invalided because of the changes to the DSL.

Transformations are thus tightly coupled with the overall language structure,
requiring permanent maintenance and therefore limiting the evolvability of the
domain language.

2.4 Composition of Transformations

In the previous section, we have shown how the fetching of non-local information
can tightly couple a transformation to the language specification. We will now



show how the scope of the transformation also introduces tight coupling with the
language specification and prevents the arbitrary composition of these transfor-
mations. As a result, transformations cannot be reused in different contexts of
the language. Once again, this complicates DSL evolution.

The scope of a transformation is the definition of the regions in the AST tree
which will be transformed. Consider for example the translate transformation,
it translates only strings within (read, in the context of) labelcaptions. This is
specified in the first line of the transformation:

(1) transform string in labelcaption
(2) ....

Hence the translate transformation will only be triggered in a labelcaption.
When the DSL evolves the translate transformation must be revised and possibly
changed against the new grammar. This forms a major obstacle for evolving the
DSL and the free composition of transformations. To illustrate this problem,
consider an extension of our GUI library with forms which are containers for
labels. The DSL will be extended with the following bnf rule:

form :- "form" id "title" string

The rule states that a form starts with the form-literal followed by its name,
a title-literal and a string. Since the library offers support for multilinguality,
the title of the form must be translated as well. Although the DSL already con-
tains the translate transformation, it cannot be reused for this purpose, because
its scope is defined and fixed in the transformation itself, and limited to the
translation of label captions. Consequently the transformation is tightly coupled
to the overall language context, in this case to the part where the labelcaption
is a string. To be able to reuse the transformation and let evolve the domain
language more easily, the scope of a transformation should be defined outside
the transformation.

One could argue to just remove the scoping information out of the transfor-
mation (as is given below).

(1) transform string
(2) ...

The problem with this transformation is now that all strings of the DSL will
be translated wherever they occur in the AST tree. These kind of uncontrolled
transformations are certainly not what we want because they can seriously dis-
rupt and corrupt the transformation process.

3 Proposed Solution: Keyword Based Programming

To render the implementation of a DSL language more evolvable the trans-
formations need to be decoupled from the overall language structure and other



transformations. Low coupling and high cohesion are the key factors to enable
reusable and composable transformations which lead to a more evolvable DSL
implementation. To increase the reuse of transformations we need to be able
to encapsulate and parameterize them with non-local and other configuration
information. To increase the composability of a transformation the scope of a
transformation should be defined outside the transformation itself. Let’s intro-
duce the general ideas first by showing the stripped version of the translate
transformation that is parameterized by the UI language to use (parameter C)
and how to obtain the translator service (parameter B). To be able to use this
translate transformation you must bound the parameter C to the UI language
and bound the parameter B to an expression which returns a component with
the translate service and specify the scope the transformation to the different
contexts in which it used, e.g. within the label and the form.

(1) transform string
(2) define
(3) A arg(1)
(4) C
(5) B
(6) by VBExpression
(7) %B%.translate(%A%, %C%)

The coupling of the translate transformation with the part of the DSL lan-
guage that specifies the UI language, the component to translate the strings and
the definition of the strings which need to be translated have been removed.
When the DSL evolves all the transformations don’t need to be scanned and
checked for consistency with the overall language structure. Instead only the
parameters to configure the transformations need to be checked. As you can see,
the transformation doesn’t contain any information about the DSL language for
which it was defined. Actually we can now rephrase the last sentence into: the
transformation doesn’t contain any context information in which it is used.

We have developed the Keyword Based Programming (KBP) DSL develop-
ment environment that implements the ideas stated above.

3.1 Architecture

KBP is a DSL development environment (DE) where DSL are built via the com-
position of language components. The architecture is quite different compared
to the architecture of traditional DE and most other DSL DE’s that are based
on the former (cfr. section 5). The architecture of traditional DE is structured
according to the functional layers in the system, e.g. lexing, parsing, generat-
ing, transforming and finally code generation. Functional decomposition results
in rigid models where language features are scattered across the different func-
tional layers. In contrast, the architecture of the KBP DE (figure 1) reflects
a structural decomposition. We followed the component based approach where
each component contains the necessary information to recognize and parse its



syntax and contains its semantics to transform itself by producing a result. These
components, called language components or keywords, are composed and glued
together by a language specification that provides the necessary context infor-
mation to the keywords. Let us discuss the two parts: the language specification
and the language components called keywords in more detail in the next two
sections.
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GEN
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Fig. 1. General overview of the approach. In the middle of the figure the language spec-
ification is shown. It composes, glues and configures keywords or language components.
A keyword consists of three parts: a definition of its AST node (AST), a recognition
pattern describing its syntax (RECOG) and a generator defining its semantics (GEN).
The full arrows between the various parts of the language specification symbolizes the
paths between the the keywords to exchange non-local information.

3.2 Keywords

Each transformation of the previous section is part of a single keyword in KBP.
Keywords are stand-alone components comprising a single fined-grained lan-
guage feature. The term keyword may be somewhat confusing, but in KBP a
keyword doesn’t have to start with a reserved word. Keywords can be a Java
for-statement, a delimiter e.g a dot or a semi-column, a block-statement, or can
have no syntax of its-own like the translator-keyword (i.e. the translator trans-
formation introduced in the previous section will be written as a keyword). A
keyword definition consist of four parts: (1) a name, (2) a recognition pattern
describing the syntax of the keyword, (3) the AST node that needs to be built
during parsing to contain the parsed information and (4) a generator which im-
plements the semantics. The code below is the skeleton of a keyword where:
XXX is the name of the keyword (line 1), YYY is the name of the AST node



(line 2) and ZZZ (line 5) is the type of the structure that will be returned when
generating the keyword.

(1) keyword XXX {
(2) ast { public class YYY { ... } }
(3) recognition pattern { ... }
(4) generator {
(5) public ZZZ generate() {
(6) return ... ;
(7) }
(8) }
(9) }

The recognition pattern describes the syntax of the language component. Pars-
ing is done according to this pattern. The pattern is described using a syntax
close to regular expressions. During parsing the recognized information is stored
in the AST node (the second part of a keyword). The AST node is a java class
definition augmented with some new constructs to facilitate the definition, e.g.
keyword c (which will be further explained in an example). The last part of
a keyword is called the generator. The generator is a Java method containing
the code that produces a new target language structure, hereby using the in-
formation stored in the AST node defined by the keyword. Apart form the java
constructs, additional constructs are provided here as well, e.g. generate c. In
KBP terminology the actual transformation is called a generator because it only
produces some results rather than transformations that besides producing, also
change the AST tree.

Let’s revise the first part of the language that we gradually evolved in the
problem statement in KBP. We will not go in all the details of the environment
because in this paper we focus on the dependencies inside the transformations.
The code below is the definition of the label keyword. Before we go into the de-
tails of definition, a keyword can be parameterized with other keywords through
keyword parameters defined in the AST, recognition pattern and generator. The
label keyword has one parameter c which is the caption of the label. To avoid any
confusion the expression ’keyword c’ is not the definition of the ’c’ keyword, but
is a formal parameter. In the language specification (which will be introduced
later on) keywords can be bound to it.

Let’s walk over the definition of the label-keyword step by step. The recogni-
tion pattern states that in a DSD one should write the word label first followed
by an expression that matches the recognition pattern of the keyword in the
parameter c. During parsing the AST node (defined right above the recognition
pattern) will contain a reference to the AST node defined by the keyword in
the parameter c. In the last part of the keyword the generator is defined. The
keyword returns a object of type VB.Label. First the keyword in the parameter
c is generated, which can trigger the generation of a chain of keywords. Its result
is stored in the variable A. Note that the variable has type VB.Expression. This
implies only that the result of the generation of the keyword c must be a Visual



Basic expression. Afterwards a new typed target language structure (#VB.Label
and #VB.Sub) is created which will be returned as the result of the keyword.
The target structures that are returned are AST nodes of the target language.
To avoid the need to create and initialize them manually e.g.

VB.ASTLabel lab = new VB.ASTLabel();
lab.name = "mylabel"
VB.ASTSub sub = new VB.ASTSub();
sub.modifiers.add(Modifiers.PUBLIC);
sub.name="Form_Load";
sub.statements = ...

A new construct is added of the form #Language.Type{ ... }. This will
create an appropriate AST node of type Type, and parse the content between
the curly brackets. During parsing the AST node will be probably initialized.
Expressions of the form ’%=XXX%’ inside the target language structure denote
variables that are parameterizing the target language structure, the variables
are substituted in to the structure. In the label keyword the expression ’%=A%’
means that the content of the variable A will be substituted by the result of
the generation of the keyword inside the parameter c. You may wonder why
the subroutine is nested within the Label. The generator returns a user interface
control. In Visual Basic definition of the user interface and the accompanying
code is seperated, just like in Java the definition of datamembers and methods
is seperated in a class definition. The two AST nodes label and sub may thus
not be returned together for example in a single set. To solve this problem,
other target structures (AST nodes of the target language) can be hooked to the
actual target structure that is returned. The former is called a non-local target
structure. The hooking is achieved by nesting the two structures.

keyword label {
ast { public class AST { keyword c; } }
recognition pattern { ("label", keyword c) }
generator {

public VB.Label generate() {
VB.Expression A = generate c;
return #VB.Label{

Begin VB.Label
name = "mylabel"

End
#VB.Sub{

Public Sub Form_Load()
mylabel.caption = %=A%

End Sub
}

};
}

}



}

3.3 Language Specification

The language specification glues the keywords together and provides information
about the overall structure of the language to the keywords. Below the language
specification (LS) for our initial toy language. LS are written in XML syntax. It
composes two keywords: a string and a label so that the caption of the label is
a string. The keyword tag introduces a keyword into the language. Inside this
tag other tags can be written to configure the keyword, e.g. the param tag. The
first line introduces the label keyword (defined above). It has one parameter c
in which the string keyword is put. This is how the formal parameter c defined
in the definition of the label keyword gets bound to the string keyword.

<keyword type="label">
<param name="c">

<keyword type="string"/>
</param>
</keyword>

In KBP (like most other environments) a language implementation consists
of two parts: a parser that constructs the AST tree from the DSL program and
a transformer to translate this tree to the AST tree of the desired program
written in the target language. The KBP development environment generates a
parser and a transformer out of the language specification. The parser is built by
composing the recognition patterns of the keywords according to the language
specification. The transformer is built likewise using the generators of the key-
words. After parsing, the transformation is initiated by triggering the generator
belonging to the keyword of the toplevel AST node of the AST tree.

In the next two subsections we will discuss the parameterization mechanism
of keywords, how these parameters can get values in the language specification
and how keywords are scoped through the language specification.

3.4 Information Exchange

The information non-local to a transformation (e.g. the UI language of the
translate-transformation) is supplied via the language specification. This infor-
mation is thus parameterizable, hereby reducing coupling of the keyword with
the overall language structure.

To illustrate how in KBP non-local information is obtained we will likewise
extend the current language specification with a new translate keyword just
like we did in the problem statement. The translate keyword is parameterized
with a keyword-parameter that contains the string keyword, and a value to
provide the UI language. The latter can be provided to the keywords by means
of the value-tag (see the example below). Using this mechanism we are free to
determine how to provide the non-local information, the form and the location of



the non-local information. One is free to chose how the information can be pro-
vided, e.g. a location in the AST tree or a fixed value <value ...> "english"
</value> etc. The form denotes which keywords hold the information needed.
The location is the location that the information containing keyword(s) have in
the grammar.

To locate and retrieve information from other parts of the AST tree a path
can be defined between two nodes. In KBP every keyword is a Document Object
Model [Whi02] (DOM) element and the AST is thus a DOM tree. This gives us
the advantage of being able to reuse many algorithms already available in the
java programming language api. One of them was xpath [AB02]. With xpath
expressions, connections between two or more nodes can be easily established
(symbolised by the arrows in figure 1).

To avoid the problems caused by coupling of DSL components to a specific
DSL language in which they are used, we specify where the context-information
of the component is located with structure shy paths [Lie96], [LPS97]. These
paths are more robust to changes in the DSL, because they do not contain
detailed information about the actual path that needs to be followed to reach
the desired AST node. It turns out that xpaths can be used to specify structure
shy paths. For example the path //XXX denotes a grand child XXX regardless
of the position of the child in the current subtree. These paths are more robust
to changes in the specification language than fully specified paths; and thus
increase the evolvability of the domain specific language.

<keyword type="label">
<param name="c">

<keyword type="translate">
<param name="value">

<keyword type="string"/>
</param>
<value name="language" type="String">

execute("/ancestor::XXX//Language/Property")
</value>
<value name="translator" type="String">

"translator"
</value>
</keyword>

</param>
</keyword>

The above code shows the language specification for the DSL of the com-
ponent library that supports multilinguality. The translate keyword is put
inside the c parameter of the label and encapsulates the string keyword. The
translate keyword is defined below. The information which is provided through
the value-tags in the language specification are accessible within the transfor-
mation with getter-methods. In the example, the values in the value-tags with the
name language and translator accessible via respectively the getTranslator()



method and the getLanguage() method. Inside the value tag a path /ancestor
::XXX//Language/Property to another AST node is executed via the execute
method. The first part of the path /ancestor::XXX locates an ancestor AST
node with the name XXX. The second part of the path //Language searches
for a Language AST child node somewhere located in the XXX AST node. And
finally the third part of the path /Property retrieves the direct Property AST
child node of the Language AST node.

In this example no information needs to be passed from the keyword to the
language specification, but there is support for it. Making two-way communica-
tion possible.

keyword translate {
ast { public class AST { keyword value; } }
recognition pattern { keyword value }
generator {

public VB.Label generate() {
Object A = generate value;
return #VB.Expression{

%=getTranslator()%.translate(
%=A%,
configfile.getProperty(%=getLanguage()%)) . }

}
}

}

With this approach the non-local information for a transformation is no
longer hard-coded in the transformation itself but is supplied via the language
specification. This information is thus parameterizable, and reducing coupling
of the keyword with the overall language structure. Furthermore, the code to
retrieve and locate information out of the AST defined in the language specifica-
tion is structure shy, making this code more robust to changes in the language.

3.5 Composition of Transformations

In the previous section we’ve shown that keywords can be parameterized with
other keywords and with configuration information. Although the composability
is already greatly improved we identified another important issue concerning the
composability of the transformation being the scope of a transformation.

The scope of a transformation is the definition of the regions in the AST tree
which will be transformed by the transformation. In KBP the scope of a keyword
is defined by its position in the language specification. This is illustrated with
the translate keyword whose scope is defined through the wrapping around the
string keyword and the placement inside the label keyword (cfr. the language
specification above). Therefore the transformation in translate keyword doesn’t
need to specify where in the source AST tree it must be applied, rendering the
keyword more independent and the domain language more evolvable.



Lets revise the extension of the GUI library and DSL from the problem
statement to illustrate how the definition of the scope of transformations in KBP
increases the evolvability of the DSL. In the problem statement the language has
been further extended to support forms i.e. containers for labels. The titles of the
forms must also be translated. The extension in KBP is pretty straightforward.
The form can be easily added to the language and thereby reusing the both parts
of the translate keyword, e.g. the bnf rule and the transformation respectively
the recognition pattern and the generator. Because the scope of a keyword is
defined in the language specification and there is no further coupling between
the translate keyword and overall language structure, the translate keyword
could be easily reused. Therefore, in contrast with the situation in the problem
section, only the language specification must be changed.

Below is the part of the language specification to support multilingual forms.
Recall that a form has a name and a title. In KBP the form will thus have
three parameters name, title and body. The title parameter has been bound
to the translate keyword which encapsulates the string keyword. The name
parameter has been bound to an identifier. The body parameter is bound to the
label keyword which has been defined earlier.

<keyword type="form">
<param name="title">

<keyword type="translate">
<param name="value">

<keyword type="string">
</param>
<value name="language" type="String">

execute("/ancestor::XXX//Language/Property")
</value>
<value name="translator" type="String"> "translator" </value>
</keyword>

</param>
<param name="name"> <keyword type="ID"/> </param>
<param name="body">

<keyword type="Label">
...
</keyword>

</param>
</keyword>

Recall that the translate keyword must be parameterized with the UI lan-
guage . The code to retrieve the UI language from the AST was defined using
structure shy paths. When the path should become invalid in the context of
a form the translate keyword can be easily reused and be redefined, as is pre-
sented in the language specification above. When the path remains valid in the
context of a form, then the translate keyword must not be redefined but can
be referenced a such. This is shown in the code below where the keyword in the



parameter title points to the keyword with id translatedstring. In either case
the DSL is easily evolvable and the translate keyword is reusable.

<keyword type="form">
<param name="title">

<keyword refid="translatedstring"> </keyword>
</param>
...
</keyword>

The following illustrates the usages of the form extension in a DSL program.

form form1 title "sample form" {
label "title"

}

The definition of the form keyword is given below. The recognition pattern and
the AST node definition are obvious. The generator creates a form AST node f
and return this as its result. First the keywords in the parameters name, title
and body are generated. A Form definition contains two parts: a UI part and
some code. The name, title and the body are parameterizing the forms definition
consisting of a form UI definition and a subroutine Form Load. The construction
and parsing of the AST form node is done by the expression #VB.Form{ ... }).
The label keyword (when bound to the body parameter through the language
specification) returns a label AST node which contains a subroutine AST node.
The result is stored in the variable C. The content of the variable is inserted
in the UI part of the form, a part where only user interface controls may be
inserted. Therefore the subroutine AST node is automatically extracted form
the label AST node and placed in the appropiate syntactical area.

keyword form {
ast { public AST {

keyword name;
keyword title;
keyword body; }

}
recognition pattern {

("form", keyword name, "title",
keyword title, "{", keyword body, "}" )

}
generator {

public VB.Form generate() {
String A = generate name;
String B = generate title;
Object C = generate body;
return #VB.Form{

Begin Form



name = %=A%
%=C%

End Form
Public Sub Form_Load()

%=A%.title = %=B%
End Sub

};
}

}
}

4 Discussion

The keywords in KBP are stand-alone, more reusable and composable language
components. Stand-alone because in their definition they contain their syntax
representation, AST node to hold information and a generator to implement its
effect. Due to the parameterization of keywords with information that is non-
local to them keywords are reusable in the sense that when the language in which
they are used evolves they remain usable as such. Keywords are easily compos-
able because they are parameterizable with other keywords and their scope is
defined through the language specification. Changing the language involves only
changing the composition and parameterization of the keywords in the langauge
specification.

The DSL is implemented via a language specification that configures, com-
poses and glues the form, label and translate keywords. The following code is an
example program written in the DSL:

language "config.ini" UILanguage
form form1 title "sample form" {

label "title"
}

which gets translated to

Begin Form
name = "form1"
Begin VB.Label

name = "mylabel"
End

End Form
Public Sub Form_Load()

form1.title = translator.translate("sample form",
configfile.getProperty("UILanguage"))

mylabel.caption = translator.translate("title",
configfile.getProperty("UILanguage"))

End Sub



A first prototype of KBP has been implemented in Java supporting all the
features and properties introduced in this paper. In addition to those, more ex-
perimental features concerning the integration of the results produced by each
keyword into a AST, providing defaults values to keywords by reusing other
keywords etc. are included. Various DSLs have been implemented, e.g. a meta-
circular implementation of the system, tuple calculus, small business adminis-
tration programs, etc. ranging from 10 to 45 keywords.

5 Related work

The architecture of KBP is quite similar to the one of intentional program-
ming [Sim96], [Sim95] and delegating compiler objects (DCO’s) [Bos97]. In
both environments DSLs are built out of the composition of language compo-
nents. However, the granularity of DCO’s is more corse grained then keywords.
DCO’s are actually small conventional compilers which contain lexers, parsers,
transformers etc.

The language specification mechanism in KBP is unique. Only the Jakarta
Tool Suite (JTS) [BLS98] and DCO’s use BNF as a, somewhat limited com-
position mechanism since it does not allow to configure the parameters of the
transformations. This language specification is used to compose, trigger and
scope the transformations. Environments without this use some sort of other
scheduling and scoping mechanism. The transformations in ASF+SDF Meta-
Environment [vdBK02] and XSLT [Cla99] define within themselves which ele-
ments of the AST they can transform, rendering them tightly coupled, highly
dependent and not reusable in other parts of the language. In intentional pro-
gramming dependencies can be defined to further aid the scheduling mechanism.
Jargons [NJ97], [NAOP99] do not have a language specification, nor sheduling,
nor scoping mechanism. A transformation is linked to a syntax description and
is triggered where the user has used this syntax.

In each development environment mentioned above there is no explicit sup-
port for parameterizing the transformations. In most cases some work-around
is possible because either the transformations are written in a GPL allowing
proprietary solutions, or either some other feature can be bent to serve for this
purpose.

Only in XSLT non-local information between the transformations or language
components can be easily exchanged via structure shy navigation expressions.
Both KBP and XSLT use XPaths to accomplish this. But due to lack of pa-
rameterization in XSLT these expressions are hard coded in the transformations
themselves. Intentional programming and JTS does offer some navigation prim-
itives but the resulting code contains detailed information about the structure
of the AST limiting severely the evolvability of the DSL language. Retrieving
non-local information is not supported in Jargons and in the ASF+SDF envi-
ronment.



6 Conclusion

Domain specific languages are an excellent mechanism to encapsulate a library
of components and hide the complexity of component composition from the
library user. However as component libraries evolve, so must their DSLs, which
represents an unacceptable cost. In this paper we introduced keyword-based
programming as a technology to develop more easily evolvable domain specific
languages. Using this technology, developing DSLs for immature libraries has
become more feasible.

Keyword-based programming extracts these parts that cause the entangle-
ment from the transformations with the overall language structure and other
transformations and introduces a separate language specification which glues the
language implementation ’keywords’ together. This separation allows to write
language features (keywords) that are not tangled with context, non-local and
scope information by allowing them to parameterized with configuration infor-
mation and other keywords. Instead, these are provided by the language specifi-
cation. The capabilities of KBP allow a developer to implement a DSL which is
more easy to evolve and, as such, is more suitable to write a DSL for continously
evolving component libraries.

Structure shy paths are used to exchange information between the various
parts of the language (the keywords) allowing the language specification to evolve
without invalidating those paths.
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