Abduction in Classification Tasks

Maurizio Atzori, Paolo Mancarella, and Franco Turini

Dipartimento di Informatica
University of Pisa, Italy
{atzori,paolo,turini}@di.unipi.it

Abstract. The aim of this paper is to show how abduction can be used
in classification tasks when we deal with incomplete data. Some classi-
fiers, even if based on decision tree induction like C4.5 [1], produce as
output a set of rules in order to classify new given examples. Most of these
rule-based classifiers make the assumption that at classification time we
can know all about new given examples. Probabilistic approaches make
rule-based classifiers able to get the most probable class, on the basis of
the frequency of the missing attribute in the training set [2]. This kind
of assumption sometimes leads to wrong classifications. We present an
abductive approach to (help to) choose which classification rule to ap-
ply when a new example with missing information needs to be classified,
using knowledge about the domain.

1 Introduction

Due to the availability of large amounts of data, easily collected and stored via
computer systems, the field of so-called data mining is gaining momentum. Sev-
eral important results have been obtained in the context of specific algorithms,
in applying the techniques in several application fields, and in designing suitable
environments in which the data mining step can be embedded. Such environ-
ments support the phases that come before (e.g. cleaning the data) and the ones
that come after (e.g. visualization of results), and attempt also at providing
a context in which one can process the results of the data mining step in order
to answer higher level questions than the ones directly provided by the computed
data mining model.

For example, extracting the association rules from a set of supermarket trans-
actions is very useful, and can answer basic questions like “which are the items
that induce a buying attitude towards other items?”, but it would be even more
interesting answering the question “did the new layout of the store influence the
buying attitude?”. Answering the last question requires taking the association
rules computed with respect to the old layout and comparing them with the
ones computed according to the new ones, possibly taking into account the rules
underneath the new design.

In brief, we believe that the results of data mining algorithms may be the
input to a reasoning environment, where high level questions can be answered
by the exploitation of both the results of data mining steps and some “domain
knowledge”. A general environment suited for this endeavor is described in [3].

A. Cappelli and F. Turini (Eds.): AT*IA 2003, LNAT 2829, pp. 213-224, 2003.
© Springer-Verlag Berlin Heidelberg 2003

214 Maurizio Atzori et al.

In this paper we concentrate on a very focussed goal: proving that a careful
representation of the results of a data mining algorithm (a decision or classi-
fication tree in this case), a careful representation of extra domain knowledge
(constraints in the case at hand), and a careful choice of a reasoning technique
(abduction in the case at hand) can substantially improve the behavior of the
extracted model (the activity of classification in the case).

Classification trees are one of the main models extracted from web logs data
in the Clickworld Project, that aims at improving the management of web sites
through knowledge discovery means.

In Sect. 2 we sketch some basic concepts on data mining and decision trees
and on abductive reasoning, and we will set up the notations and terminology
used throughout the paper. In Sect. 3 we formalize the concept of classifica-
tion in decision trees and formally show how it can be viewed as an abductive
problem. In Sect. 4 we show that the abductive view of the classification tasks
suggests useful extensions of the latter by exploiting domain-specific knowledge
represented as integrity constraints. Finally, in Sect. 5 we draw some lines of
future research on the subject.

2 Preliminaries

In order to understand the idea that we are going to describe later in this paper,
we briefly review some background on data mining and decision trees and on
abduction.

2.1 Data Mining

Data mining can be defined as the process of finding correlations or patterns
among dozens of fields in large relational databases. It is an essential step of
the knowledge discovery process where intelligent methods are applied in order
to extract data patterns from very large databases [4]. In particular, we are
interested in the classification task, that is predicting categorical labels given
some examples.

Classification of data requires two sequential steps: the first one consists in
building a model that describes a given set of examples by associating a class
label to each of them; the second one concerns using the model to classify new
examples (i.e. predict the categorical label). The only model we are interested in
in this paper is the one of the decision trees that we are going to briefly describe.

Decision Trees. A decision tree is a tree structure in which each internal node
denotes a test on an attribute, each branch represents an outcome of the test
and leaf nodes represent classes. Decision tree induction consists in building such
a tree from a training set of examples and then using it (following a path from the
root to a leaf) to classify new examples given their attribute values. Because of
their structure, it is natural to transform decision trees into classification rules,
that can be easily inserted into a reasoning framework. Notice that some machine

Abduction in Classification Tasks 215

learning tools, such as C4.5 [1], already includes a class rulesets generator. In
the sequel we will see how class rulesets can be embedded into an abductive
reasoning framework which will allow us, in some cases, to better classify new
examples in presence of external information, such as specific domain knowledge.

Let us now set up the main notations and terminologies we will use through-
out the paper as far as decision trees are concerned. Let A be a set of attribute
names and C be a set of classes (possible classifications). For simplicity, we as-
sume that each attribute can be assigned a value over a finite set of values V.
An ezample e is a set of attribute/values pairs

e={a1=v1,...,an = Vp}
where all the a;s are distinct attribute names.

Definition 1. A decision tree T over A and C is a tree such that:

(i) each non-leaf node is labelled by an attribute a € A;
(i1) each leaf node is labelled by a class ¢ € C;
(iii) each branch is labelled by a value v € V;
(iv) the values labelling all the branches exiting from a given node are all dis-
tinct;
(v) the labels of a path are all distinct.

Notice that (v) formalizes the fact that, in each path, only one test can be
performed on each attribute.

Ezample 1. Let us consider a very well known example, taken from [1]. Given
a training set of examples which represent some situations, in terms of weather
conditions, in which it is or it is not the case that playing tennis is a good idea,
a decision tree is built which can be used to classify further examples as good
candidates for playing tennis (class Yes) and bad candidates to play tennis (class
No). Table 1 shows the original training set, given as a relational table over the
attributes {Outlook, Temperature, Humidity, Wind}. The last column of the
table represents the classification of each row.

Using standard decision trees inductive algorithms (e.g., ID3), we may obtain
the decision tree in Fig. 1 from the above training set. As we have already pointed
out, each internal node represents a test on a single attribute and each branch
represents the outcome of the test. A path in the decision tree represents the set
of attribute/values pairs that an example should exhibit in order to be classified
as an example of the class labelled by the leaf node. For instance, given the
above tree, the example {Overlook = Sunny, Humidity = Low} is classified as
Yes, whereas the example {Overlook = Sunny, Humidity = High} is classified
as No. Notice that not all the attribute values have to be specified in order
to find a classification of an example. On the other hand, if an example is too
under-specified, it may lead to different, possibly incompatible, classifications.
For instance, the example {Overlook = Sunny} can be classified both as Yes
or No, following the two left-most branches of the tree. It is also worth noticing
that the decision tree may not consider all the attributes given in the training
set. For instance, the attribute Temperature is not taken into account at all in
the previous decision tree.

216 Maurizio Atzori et al.

Table 1. Training set of examples on attributes Querlook, Temperature, Hu-
midity, Wind. The values Yes and No represent the concept to learn

|Outlook|Temperature|Humidity| Wind ||Cla.ss|

Sunny Hot High Weak No
Sunny Hot High Strong || No
Overcast Hot High Weak Yes
Rainy Mild High Weak Yes
Rainy Cool Low Weak Yes
Rainy Cool Low Strong || No
Overcast Cool Low Strong || Yes
Sunny Mild High Weak No
Sunny Cool Low Weak Yes
Rainy Mild Low Weak Yes
Sunny Mild Low Strong || Yes
Overcast Mild High Strong || Yes
Overcast Hot Low Weak Yes
Rainy Mild High Strong || No

2.2 Abductive Logic Programming

Abduction is a particular form of reasoning introduced by the philosopher
Peirce [5] as a form of synthetic reasoning which infers the case from a rule
and a result, i.e. from the fact that A implies B and the observation B, we can
abduce A. Abduction can be viewed as the probational adoption of an hypothe-
sis as an explanation for observed facts, according to known laws. Obviously, as
Peirce noticed, “it is a weak kind of inference, because we cannot say that we
believe in the truth of the explanation, but only that it may be true”.

In recent years, abduction has been widely studied and adopted in the context
of logic programming [6], starting from the work [7]. In this paper, we basically

Overcast

Sunny Rainy
Humidity
I-yh Strong Weak

D oo

Fig.1. A well-know example of decision tree, obtained from the training set of
Table 1

Abduction in Classification Tasks 217

adopt the definitions and terminologies of [8, 9], that we are going to briefly
review next.

An Abductive Logic Programming (ALP) framework is defined as a triple
(P, A, Ic) consisting of a logic program, P, a set of ground abducible atoms A
and a set of logic formulas ¢, called the integrity constraints. The atoms in A
are the possible abductive hypotheses which can be assumed in order to explain
a given observation in the context of P, provided that these assumptions are
consistent with the integrity constraints in /c. In many cases, it is convenient to
define A as a set of (abducible) predicate symbols, with the intended meaning
that each ground atom whose predicate symbol is in A is a possible hypothesis.

Given an abductive framework as before, the general definition of abductive
explanation is given as follows.

Definition 2. Let (P, A, Ic) be an abductive framework and let G be a goal.
Then an abductive explanation for G is a set A C A of ground abducible atoms
such that:

- PUAEG
— PUAU Ic is consistent.

Ezample 2. Let (P, A, Ic) be an abductive framework where:

— P is the logic program given by the three rules: p<«—a p«—b q<c
- A={a,b,c}
— Ie={}.
Then, there are three abductive explanations for the goal® (p,q) given by A; =
{a,c}, Ay = {b,c} and Az = {a,b,c}.

Consider now the abductive framework (P, A, I¢’), where P and A are as
before and Ic contain the formula —(a,¢). In this new framework, there is only
one explanation for the goal p, ¢, which is A above, since the second potential
explanation is inconsistent with the integrity constraint.

The given notion of abductive explanation can be easily generalized to the
notion of abductive explanation given an initial set of abducibles 4.

Definition 3. Let (P, Ab,Ic) be an abductive framework, Ay be a set of ab-
ducibles and G be a goal. We say that A is an abductive explanation for G given
Ao if Ao U A is an abductive explanation for G.

Notice that this implies that the given set of abducibles Ay must be consis-
tent with the integrity constraints Ic. In some cases, we may be interested in
minimality of abductive explanations.

Definition 4. Let (P, Ab,Ic) be an abductive framework, Ay be a set of ab-
ducibles and G be a goal. We say that A is a Ag—minimal explanation for G if
A is an explanation for G given Ao and for no proper subset A" of A (A" C A),
A’ is an explanation for G given Ag.

W@

1 As in standard logic programming, 7 in rule bodies and goals denotes logical con-
junction.

218 Maurizio Atzori et al.

For instance, in Example 2 with Ic = {}, A is the empty set (we do not have an
initial set of “pre-abduced” abducibles) and both A; and A, are Ap—minimal
explanations for (p, ¢) while Aj is not (in fact A; C Asg).

The notion of abduction as described above has a natural computational
counterpart within a proper extension of the standard SLD-based computational
engine of logic programming. In particular, when integrity constraints are in the
form of denials, i.e. in the form —(p1, ..., p,), the so called KM-proof procedure
can be successfully adopted to compute (minimal) abductive explanations. Due
to lack of space we omit the details of the definition of the KM-proof procedure
which can be found in [8, 9].

3 Classification as an Abductive Problem

In this Section we show how the classification task using decision trees can be
directly seen as an abductive problem. To do this, we first need to spend some
words on the notation and then formally define what decision tree classification
means and on the transformation of decision trees into abductive logic programs.

Given a tree T and a path 7 in T, we denote by Attr(w) the example {a; =
v1,...,a = v} where each a; is a non-leaf node in T and each v; is the attribute
value labelling the branch exiting from a;. Moreover, we denote by Class(m) the
class labelling the leaf node of .

The following defines the concept of classifying an example by means of
a decision tree in case of missing information. The usual definition of classifying
an example is given as a special case, in which there are no missing information.

Definition 5. Let T be a decision tree, e be an example and c be a class. We

say that the example e may be classified as ¢ by T via §, denoted by T “ e if
there exists a path m in T with leaf node Class(m) = ¢ such that e U Attr(m) is
an example and 6 = Attr(w) \ e.

IfT g e we say that the example e is classified as ¢ by T, and we simply write
T=e¢

Notice that, in T LY e, the condition that e U Attr(m) must be an exam-
ple ensures that the attribute values of e are compatible with the set of tests
represented by m. In other words, if for some attribute a, « = v € e and
a = v € Attr(w), then v = v'. Moreover, notice that ¢ represents the exten-
sion to the example e which is needed in order to classify it as ¢ from the chosen
path.

Ezxample 3. Let T be the decision tree of Example 1. We have:

- ris {Overlook = Sunny, Wind = Strong, Humidity = Low}
— e {Overlook = Sunny}, where § = { Humidity = High}

Now, let us explain how to transform a decision tree into an abductive logic
program. Let T' be a decision tree and 7 be a path in T'. The rule r, associated
with 7 is the Horn clause ¢ < a1 (v1),. .., an(vy) such that:

Abduction in Classification Tasks 219

— Class(m) = ¢, and
— Attr(m) ={a1 =v1,...,an, = Uy}

Notice that attribute names are viewed as unary predicate symbols, and that
an attribute/value pair @ = v is mapped into an atom a(v). Moreover, by (v)
in Def. 1, given a path m, Attr(w) is an example. The Horn clause program Pr
associated with a decision tree T is the set of rules

Pp = {rg|mis apathin T}.

Finally, we associate with T the set ICp of canonical integrity constraint con-
taining a denial

—a(z),ay),z #y
for each attribute a € A.

As we will see next, attribute names are viewed as abducible predicates, and
sets of abducibles will represent possible classifications. The integrity constraints
we have just defined ensure that in each consistent set of abducibles, an attribute
occurs at most once (cfr. case (v) of Def. 1).

Given an example e = {a1 = v1,...,ar = vk}, let A, be the set of atoms

Ae ={ay(v1), ..., ar(vi)}

We have set up all the ingredients which are needed to associate an abductive
framework to a decision tree T

Definition 6. Given a decision tree T', the abductive framework ABr associated
with T is the triple
ABr = {(Pr, A, IC7)

where Pr is the Horn program associated with T, ICt is the set of canonical

integrity constraints associated with T and A is the set of attribute names.

The following theorem formalizes the correspondence between classifications
in T and abductive explanations in ABp.

Theorem 1. Let T be a decision tree and ABp be the corresponding abductive
framework. Let also e be an example. Then A is a A.—minimal explanation for
¢ with respect to ABr if and only if for some path w in T we have T <2 ¢ and
A= As.

Proof.

(«<=) Assume that T <2 . Then, by Def. 5, for some path 7 in T', e U Attr(n)
is an example and 6 = Attr(w) \ e. Consider the rule r,

c—ai(v),...,an(vy).

and let body(ry) = {ai1(v1),...,an(vy)}. It is clear that body(rr) = Aasr(r)
and PrUbody(ry) | c. Let A = body(rz)\ Ae: clearly, PrUA,UA = cand A =

220 Maurizio Atzori et al.

Fig.2. A simple example of decision tree

As. Moreover, since e U Attr(m) is an example and (A. UA) C Ay apr(r), PrU
A U AU ICT is consistent. Hence, A is an explanation for ¢ given A.. By
construction, A is also a A,—minimal explanation.

(=) Assume A is a A.—minimal explanation for ¢. Clearly, AN A, = {} by
minimality of A. Since Pr U A, U A = ¢, by construction of Pr there exists
a path 7 in T such that r, is a rule of the form

c—ai(vy),...,an(vy)

and {a1(vi),...,an(vy)} C A U A.

Let 6 = Attr(m)\ e. By construction and minimality of A, we have A = A5 =
{a1(v1), ..., an(vy)}\ Ae. Finally, it is clear that eU Attr(r) is an example, by the
consistency of PrUA,UAUICT and the observation that Ao aspr(r) = Ae UA.

O

Ezample 4. Let us consider the following decision tree (which is nothing but the
decision tree of Example 1 using symbolic names and symbolic values). In the
abductive framework ABr = (Pr, A, ICT) associated with T we have:

— Py is the following set of rules:
cl — a(v2). 2 — b(z1),a(vl).
cl «— b(22),a(vl). 2 — c(xl),a(v3).
cl «— c(22),a(v3).

— IC7 is the following set of canonical integrity constraints:
—a(x),aly),x#y. < bx),bly),zFy. —c@)cly),z#y.

- A={a,b,c}.

Let us consider the example e = {a = v1,b = z1} and the corresponding
initial set of abducibles A, = {a(v1),b(z1)}. Clearly A = {} is a A.—minimal
explanation for ¢2, and indeed it corresponds to the leftmost path in the tree.
Notice that also A’ = {¢(z1)} is an explanation for ¢2 given A., but it is not
A,—minimal and indeed it does not correspond to any path in the tree matching
the attribute/values pairs given in e.

Abduction in Classification Tasks 221

4 TImproving Classification
Exploiting Domain Specific Knowledge

The abductive view of classification given in the previous Section can be seen as
an alternative, though equivalent, way of performing classification given some
decision tree. It is worth noting that the abductive reasoning required in this
alternative view is very limited and does not fully exploit the potential power
of abductive reasoning in logic programming as sketched in Sect. 2.2. In par-
ticular, the transformation requires the use of a pre-defined, canonical set of
integrity constraints that simply avoid explanation to contain different values
for the same attribute. We show in this Section that one way to exploit ab-
ductive reasoning is to add domain specific knowledge in order to improve the
classification task. Domain specific knowledge may be taken into account during
classification in many ways, e.g. to rule out some classifications or to prefer one
particular classification over another. Up to our knowledge, taking into account
domain specific knowledge in standard decision-tree based classification algo-
rithms may be not straightforward and may require substantial modifications of
these algorithms. On the other hand, abductive frameworks, and existing con-
crete implementations of them, are already equipped with mechanisms that can
be directly exploited to represent and handle domain specific knowledge.

In this paper we exploit integrity constraints (beyond the canonical ones) in
abductive frameworks as a way to express domain specific knowledge. Let us
show some examples.

Ezxample 5. Consider the decision tree T of Example 4. As we have already
pointed out, the attributes which label the internal nodes of decision trees may
not be all the attributes that examples are equipped with. In the current ex-
ample, assume that the original set of attributes contained also an attribute d,
beyond the attributes {a, b, ¢} occurring in the tree. Assume now that an exam-
ple is given e = {d = w1}: it is clear that, since d does not occur in the decision
tree, any classification of e can be done using T'. However, assume that we have
extra knowledge on the domain at hand, expressing the fact that the value wl
for the attribute d is incompatible both with the value v1 of the attribute a and
with the value x1 of the attribute c. It is easy to see that this extra knowledge
can be used to classify the example e as belonging to class cl. In the abduc-
tive framework corresponding to T the extra knowledge can be easily coded by
adding the following integrity constraints:

=(d(wl),a(vl)) =(d(wl), e(x1))

If we consider now the full abductive framework (P, A’,Ic), where P is the
program obtained as in Example 4, A’ = {a,b, ¢, d} and Ic are the integrity con-
straints we have just shown, we observe that ¢2 has no abductive explanation
given A, = {d(wl)}, whereas the goal ¢l has two A,—minimal explanations
given A., namely Ay = {a(v2)} and Ay = {a(v3),c(22)}. Notice the corre-
spondence between these two solutions and the two right-most paths with c1 as

222 Maurizio Atzori et al.

the leaf node. From a computational point of view the two explanations can be
computed using, e.g., the KM-proof procedure. The consistency checking phase
of the proof procedure rules out the two potential A,—minimal explanations
{b(21),a(vl)} and {a(v3),c(z1)} for the goal 2. Indeed, the first one is in-
consistent with the integrity constraint —(d(w1l),a(v1)), and the second one is
inconsistent with the integrity constraint —(d(wl), c(z1)).

As the previous example points out, integrity constraints can be used to add
knowledge relating the values of the various attributes, including those which do
not occur in the original decision tree. This can help and improve the classifica-
tion task. The next example shows that integrity constraints may add knowledge
which is relevant to the attributes already occurring in the decision tree, although
it is not explicit in the decision tree itself.

Ezxample 6. Let us consider again the decision tree of Example 1. Assume that,
as it is often the case, whenever there is strong wind the humidity is not high:

—(Humidity(High), Wind(Strong)).

It is important to point out that this kind of knowledge may not be implicit
in the training set from which the original decision tree was built. Actually,
the examples in the training set may even contradict this knowledge (see, e.g.,
Table 1). Indeed, this knowledge may arise from knowledge sources different
from the ones which provide the training set (in this particular example this
knowledge may be associated with typical weather forecast knowledge bases).
Assume now that we want to classify an example described simply as e =
{Overlook = Sunny, Wind = Strong}. In the corresponding abductive frame-
work, given the initial set A, = {Overlook(Sunny), Wind(Strong)}, the clas-
sification Yes has an abductive explanation Ay = {Humidity(Low)} and the
classification No has an abductive explanation Ay = {Humidity(High)}. If
we consider now the above integrity constraint, the abductive explanation As
is ruled out, due to the fact that the full explanation given by A, U Ay =
{Overlook(Sunny), Wind(Strong), Humidity(High)} is inconsistent. Thus, by
adopting the very same computational mechanism we obtain a correct classifi-
cation with respect to the extra domain specific knowledge.

In many cases, decision trees can be equipped with probability measures
on the outcome of attribute/values test. In other words, each branch of the
tree is labelled both by a value corresponding to the attribute labelling the
parent node, as well as with a probability measure which indicates how likely
is that an observation exhibits this value for the given attribute. This kind of
probability information is clearly useful when we try to classify new examples
with missing attribute information. Even in this case, extra domain knowledge
can be taken into account in the classification task in order to dynamically
get better probability measures on possible classification of new under-specified
examples. To show this let us consider a very simple example.

Abduction in Classification Tasks 223

(1) (p2) (P3)
v v2 v3

Ce2>

Fig. 3. A simple example of a decision tree with probabilities associated to each
branch

FEzxzample 7. Let us consider the simple decision tree in Fig. 3. There is only
one internal node, the root, which represents a test on a 3-valued attribute
named a. Probabilities are represented between parenthesis. The classifications
rules extracted from the above tree are the following:

cl — a(vl) 2 — a(v2) 3 — a(v3).

Notice that we could have more information about a new observation than
the a attribute only, but the tree-based classification (and its associated class
ruleset) will use only information about a. But what happens if we know nothing
about a? If we try to classify a new example with no information about a we get
as output the class with highest probability. Again, using integrity constraints in
the corresponding abductive framework which makes explicit extra information
about the domain, we can cut some branches during the classification task,
thus obtaining better classifications and also dynamically improving probability
values. For instance, let this domain knowledge be represented by the integrity
constraint —(a(vl),b(22)). In this case, if we are asked to classify the example
{b = 22} we will discard the classification ¢l whose abductive explanation A, =
{a(v1)} is inconsistent with the integrity constraint. On the other hand, we
would compute the classifications ¢2 and ¢3 with the corresponding explanations
Ay = {a(v2)} and Az = {a(v3)}. We can also dynamically re-compute the
associated probabilities which will be — 2 as far as ¢2 is concerned, and —£2

p2+p3 p2+p3
as far as ¢3 is concerned.

5 Conclusions

Starting from the idea that framing the data mining step into a logic frame-
work provides us with the possibility of exploiting also domain knowledge in
the knowledge extraction and exploitation process, we showed that the result of
a classification tree can be improved if the tree is not simply traversed, but it is
visited in abductive mode. Indeed, the basic observation is that the application
of a classification tree to a new observation can be viewed as a straightforward
abductive computation, as soon as the tree is represented as a collection of rules
in the obvious way. This observation opens up a world of possibilities, since the
abductive computations can become very sophisticated, and they can take into

224 Maurizio Atzori et al.

account several types of knowledge. In this paper we restricted our attention to
domain knowledge represented as simple constraints involving equalities, con-
junction and negation. However, even with this limited power, we could show
examples in which the classification task was radically improved. We are con-
fident that more sophisticated use of knowledge can lead us to much better
improvements.

Several frameworks in the context of logic programming have been already
developed in order to integrate induction and abduction (see, e.g., [10, 11, 12]).

The framework we have outlined is anyway the first one, as far as we know, in
which the inductive task performed by external machine learning algorithms is
not influenced by abductive procedures, but post-processed through abduction
reasoning in order to take into account the domain knowledge and to improve
in some cases the classification task itself.

Acknowledgments

This work has been carried out within the project Clickworld (MIUR S585-P).

References

[1] Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann (1993)
213, 215
[2] Quinlan, J.R.: Unknown attribute values in induction. In: Proc. of the Sixth
International Machine Learning Workshop, Morgan Kaufmann (1989) 164-168
213
[3] Giannotti, F., Manco, G., Pedreschi, D., Turini, F.: Experiences with a logic based
knowledge discovery support environment (Springer-Verlag 1999) 213
[4] Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
(2000) 214
[5] Peirce, C.S.: (Collected papers of Charles Sanders Peirce) Vol. 2, Hartshorn et
al. eds., Harvard Univesity Press. 216
[6] Kakas, A., Kowalski, R., Toni, F.: Abductive logic programming. Journal of Logic
and Computation 2 (1993) 719-770 216
[7] Eshgi, K., Kowalski, R.: Abduction compared with negation by failure. In Levi,
G., Martelli, M., eds.: Proc. of the 1989 International Conference on Logic Pro-
gramming, MIT Press (1989) 234-254 216
[8] Kakas, A., Mancarella, P.: Generalized stable models: a semantics for abduction.
In: Proc. of 9th European Conference on Artificial Intelligence, Pitman (1990)
385-391 217, 218
[9] Kakas, A., Michael, A., Mourlas, C.: Aclp: Abductive constraint logic program-
ming. Journal of Logic Programming 44 (2000) 129-177 217, 218
[10] Lamma, E., Mello, P., Milano, M., Riguzzi, F.: Integrating induction and abduc-
tion in logic programming. Information Science 116 (1999) 25-54 224
[11] Kakas, A., Riguzzi, F.: Abductive concept learning. New Generation Computing
18 (2000) 224
[12] Flach, P. A., Kakas, A. C., eds.: Abduction and Induction: Essays on their relation
and integration. Kluwer Academic Publishers (2000) 224

