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Abstract. In this paper we study the influence of noise in probabilistic
grammatical inference. We paradoxically bring out the idea that special-
ized automata deal better with noisy data than more general ones. We
propose then to replace the statistical test of the ALERGIA algorithm by
a more restrictive merging rule based on a test of proportion comparison.
We experimentally show that this way to proceed allows us to produce
larger automata that better treat noisy data, according to two different
performance criteria (perplexity and distance to the target model).
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1 Introduction

Nowadays the quantity of data stored in databases becomes more and more im-
portant. Beyond the fact that the amount of information is hard (in terms of
complexity) to process by machine learning algorithms, these data often contain
a high level of noise. To deal with this problem, many data reduction techniques
aim at either removing irrelevant instances (prototype selection [1]) or deleting
irrelevant features (feature selection [2]). These techniques always need positive
examples and negative examples of the concept to learn. An outlier is seen as a
positive (resp. negative) instance which should be negatively (resp. positively)
labeled in absence of noise. However, in some real applications, it is difficult, even
impossible, to have negative examples, that is for example the case in natural
language processing. In such a context, learning algorithms exploit statistical
information to infer a model allowing to define a probability distribution on
positive data. Because of the absence of negative examples, standard data re-
duction techniques are not adapted for removing outliers, which require in fact
specific processes. In the context of probabilistic models, an outlier can be seen
as a weakly relevant instance, i.e. weakly probable because of noise. While such
models are a priori known to be more efficient for dealing with noisy data, no
study, as far as we know, has been devoted to analyze the impact of noise in the
specific field of probabilistic grammatical inference.
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Grammatical inference [3] is a subtopic of machine learning which aims at
learning models from a set of sequences (or trees). Probabilistic grammatical
inference allows to learn probabilistic automata defining a distribution on the
language recognized by the automaton. In this framework, the data (always
considered as positive) are supposed to be generated from a probability distri-
bution, and the objective is to learn the automaton which generated the data. A
successful learning task produces a probabilistic automaton which gives a good
estimation of the initial distribution.

In this paper we are interested in probabilistic grammatical inference algo-
rithms based on state merging techniques. In particular, we study the behavior
of the ALERGIA algorithm [4,5] in the context of noisy data. Our thought con-
cerns the generalization process: we think that a generalization issued from the
merging of noisy and correct data in the same state is particularly irrelevant.
This can be dramatic, especially in cyclic automata, because this kind of gener-
alization could increase the deviation from the initial distribution. Then we need
to restrict the state merging rule for avoiding such situations. In ALERGIA, the
generalization process consists in merging states that are considered statistically
close according to a test based on the Heeffding bound [6]. However this bound is
an asymptotic one and is then only relevant for large samples. To deal with small
sets, [7] proposed a more general approach (called MALERGIA) using multino-
mial statistical tests in the merging decision. Despite its good performances with
small dataset sizes, MALERGIA has a major disadvantage: a high complexity on
very small datasets for which the calculation of a costly statistic is needed. In
this paper we overcome both the ALERGIA and M ALERGIA drawbacks. We re-
place the original test of ALERGIA by a more restrictive one based on a test of
proportion comparison. This test can deal with both large and small datasets
and we show experimentally that it better performs in the context of noisy data.

After a brief recall about probabilistic finite state automata and their learn-
ing algorithms, we describe in Section 2 the state merging rule of the algorithm
ALERGIA and its extension with a multinomial approach in MALERGIA. In Sec-
tion 3, we propose a new approach based on a test of proportion comparison.
We theoretically prove that the bound of our test is always smaller than the
Heeffding’s one, expressing the fact that the merge will be always more difficult
to be accepted in presence of noise. We also relate our work in comparison to
the multinomial approach. Section 4 deals with experiments comparing the three
approaches with different levels of noise.

2 Learning of Probabilistic Finite State Automata

Probabilistic Finite State Automata (PFSA) are a probabilistic extension of
finite state automata and define a probability distribution on the strings recog-
nized by the automata.
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2.1 Definitions and Notations

Definition 1 A PFSA A is a 6-tuple (Q, X, 8, p, qo, F). Q is a finite set of states.
XY is the alphabet. § : Q x X — Q is the transition function. p: Q x X — [0,1]
is the probability of a transition. qo is the initial state. F : Q — [0,1] is the
probability for a state to be a final state.

In this article, we only consider deterministic PFSA (called PDFA), i.e. where
¢ is injective. This means that given a state ¢ and a symbol s, the state reached
from the state ¢ by the symbol s is unique if it exists. In order to define a
probability distribution on X* (the set of all strings built on X'), p and F must
satisfy the following consistency constraint: Vg € Q, F'(q) + > ,cx p(¢,a) = 1.

2(02)

Fig. 1. A PDFA with ¢o = 0 and its probabilities

A string sg...s,—1 is recognized by an automaton A iff there exists a se-
quence of states eq . . . e, such that: (i) eg = qo, (ii) Vi € [0,1—1], d(e;, $;) = €it1,
(iii) F(en) # 0. Then the automaton assigns to the string the following proba-
bility:

Pa(sg...8p-1) = (Ui":_olp(ei, SZ)) x F(ey)
For example the automaton represented in Figure 1 recognizes the string baaa
with probability 0.75 x 1.0 x 0.2 x 0.2 x 0.6 = 0.018.

2.2 Learning Algorithms

A lot of algorithms have been proposed to infer PDFA from examples [4, 5, 7-9].
Most of them follow the same scheme based on state merging and summarized in
Algorithm 1. Given a set of positive examples Sy, the algorithm first builds the
probabilistic prefix tree acceptor (PPTA). The PPTA is an automaton accepting
all the examples of S (see left part of Figure 2 for an example, A corresponding
to the empty string). It is constructed such that the states corresponding to
common prefixes are merged and such that each state and each transition is
associated with the number of times it is used while parsing the learning set.
This number is then used to define the function p. If C(g) is the number of
times a state ¢ is used while parsing Sy, and C(g,a) is the number of times

the transition (g, a) is used while parsing S, then p(q,a) = CCE‘(I&‘)I). Similarly, if

C¢(g) is the number of times ¢ is used as final state in S for each state ¢, we
have F(q) = &4
The second step of the algorithm consists in running through the PPTA

(function choose_states(A)), and testing whether the considered states are sta-
tistically compatible (function compatible(g;, g5, c)). Several consecutive merging
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Data: S training examples (strings)
Result: A a PDFA
begin
A — build_ PPTA(S,);
while (gi, gj) < choose_states(A) do
| if compatible(q;, qj, @) then merge(A, ¢, q;);
end
return A;
end

Algorithm 1. Generic algorithm for inferring PDFA

Fig. 2. PPTA of S = {ba, baa,baba, A} on the left. On the right the PDFA obtained
after two state mergings

operations are done in order to keep the automaton structurally deterministic.
The algorithm stops when no more merging is possible. For example, the right
part of Figure 2 represents the merging of the states labeled b and bab, and the
merging of the three states labeled ba, baa, baba from the PPTA on the left part
of the figure.

2.3 Compatibility in the Algorithm ALERGIA

In ALERGIA [5], the compatibility of two states depends on: (i) the compatibility
of their outgoing probabilities on the same letter, (ii) the compatibility of their
probabilities to be final and (iii) the recursive compatibility of their successors.

C(gl,a)  C(q2,a)
C(ql) C(q2)

Definition 2 Two states g1, q2 are compatible iff: (i) Va € X
Crlql) _ Cr(q2)
Clql) Clq2)
than 0, (iii) the two previous conditions are recursively satisfied for all the states
reachable from (q1,q2).

is not significantly higher than 0, (ii) is not significantly higher

The notion of significance is statistically assessed in ALERGIA. It consists in

comparing the deviation between two proportions: }% — z—g |, where nl = C(q1),
n2 = C(q2), z1 equals either C(q1,a) or C¢(g1) and 22 either C(go,a) or Cy(g2)

(a € X).

The test of compatibility is derived from the Heeffding bound [6]. This bound
is used to define a probability on the estimation error of a Bernoulli variable p
estimated by the quantity I, which is a frequency observed over n trials.
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P(‘p—%‘< (1/%111%)*%) >1—«

Since ALERGIA takes into account two frequencies (£} and £2), it must add

two estimation errors that assesses, in a way, the worst possible case.

Definition 3 Two proportions are compatible in ALERGIA iff:

xl x2

nl n2

1. 2 1 1
h—(—=+—= (1)
2« (x/ﬁ Vn2 )

Despite the fact that this upper-bound is statistically correct, we can note
that by adding two estimation errors, the test tends to often accept a state
merging. Consequently, the probability to wrongly accept a merging (risk of
second type ) is under-estimated, that can have dramatic effects on the final
automata, particularly in the presence of noise. Moreover, the asymptotic bound
introduced in inequality (1) is only relevant for large samples. In order to over-
come this drawback, Kermorvant and Dupont have proposed MALERGIA [7] for
dealing with small datasets.

2.4 Compatibility in the Algorithm MALERGIA

In MALERGIA, each state of the automaton is associated with a multinomial dis-
tribution modeling the outgoing transition probabilities and the final probability.
In other words, each state is associated with a multinomial random variable with
parameters T = {71, ..., 7k }, each 7; corresponding to the transition probability
of the i*" letter of the alphabet including a special final state symbol. In the
PPTA each state is seen as a realization of the multinomial random variable
(see [7] for more details). Two states are merged if they are both a realization
of the same multinomial random variable. A statistical test following asymptot-
ically a Khi-square distribution is used. When the constraints of approximation
are not verified (i.e. for very small datasets), a Fisher exact test is used. How-
ever, in MALERGIA, this test requires the estimation of the probability of all
contingency tables of size 2 x K of the same marginal counts, that results in a
very high complexity of the algorithm.

3 A New Compatibility Test Based on Proportions

In this section, we propose a new statistical approach overcoming the drawbacks
of ALERGIA and MALERGIA and particularly relevant in presence of noise.

3.1 Statistical Framework

We use here a test of proportion comparison. It aims at comparing the propor-
tions Z—} and }% (the same as those used in ALERGIA), estimators of the proba-

bilities pl and p2, and testing the hypothesis: Hy : pl = p2 versus H, : pl # p2.
We compute the statistic:
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zl
L — = — (pl —p2 1 2
7 = il P1=p2)  erepo1_g= FLta2
N A(n1+n2) nl+4+n2
nln2

Z approximately follows the normal distribution when Hj is true. We reject
Hy in favor of H, whenever |Z| > z,/o where z, /5 is the (1 — /2)-percentile of
the normal distribution.

Then we consider that two proportions are not statistically different if:

zl x2

nl n2

. (nl+4+n2)
nl * n2

*

Note that the constraints of approximation are satisfied when nl + n2 > 20
or when nl + n2 > 40 when either 21 or 22 is smaller than 5. When these con-
ditions are not satisfied, we use a Fisher exact test, without the high calculation
constraints of MALERGIA.

3.2 Theoretical Comparison

We have seen before that the risk § is under-estimated in ALERGIA. We prove
now that our test results in a more restrictive merging rule.

Theorem 1 Va < 0.734, V0 < o' < 1:

. \/MM<\/EM(E) 1,1
s\ P T2 2 M\ T Ve

: . _ A ~ (nl+n2) _ 1
Proof. First we denote: A = zg and B = /5 In( a, \/— \/_
Since p < 1 and ¢ < 1 and so v/pg § 1 then we can deduce that:

A< / n1+n2 /
204 =Za —
nlxn2 2 nl

Then if we choose o < 0.734, then the (1 — §)-percentile of the standard
normal distribution is lower than 0.34, thus: za < 0.34 < 3In(2) < /3 In(2).
Moreover, for all 0 < o/ < 1, In(2) < In(2), then

e,

and then since n—12 + % < % + n—12 + ﬁ, for all n1 > 0 and n2 > 0, then
@/% + % < \/% + \/% and we conclude that:

A<

A
L
2.
2|
S~—
~—
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Fig. 3. Effect of a bad merging from a PPTA built with 4 strings ac and 6 strings bb

Assuming that we rarely build statistical tests with « higher than 0.5, the
condition a < 0.734 is not too constraining. The first direct consequence of this
theorem is that our new merging rule is more restrictive, limiting the impact
of potential noisy data. Secondly, such a rule tends to infer larger automata,
both in the number of states and in the number of transitions. This situation
can seem paradoxical. Actually, according to the theory of the learnable, and
particularly in exact grammatical inference, too large automata tend to overfit
the data resulting in a decrease of the generalization ability. This is true in exact
grammatical inference, when we have both positive and negative examples, and
when the goal consists in building a classifier which can predict, via a final state,
the label of a new example. In this case, one must relax the merging constraint in
the presence of noise, to allow a legitimate merging. Then we aim at inferring an
automaton as small as possible to reduce the complexity of the model and then its
VC-dimension. The problem seems to be different in probabilistic grammatical
inference, where the inferred automaton is only able to provide a probability
distribution. The error imputable to the automaton can come not only from an
over-estimation but also from an under-estimation of the probability density.
In this case, what is the consequence of a wrongly accepted merging due, for
example, to the presence of noise? Figure 3 shows an explicit example. Before
the merging, the probability of a string ac is 0.4 1 %1 = 0.4 and 0 for a string
ab. Assume that a “bad” merging (of the states 1 and 2) is accepted, ac becomes
under-estimated (0.4 % 0.4 * 1 = 0.16) and ab becomes more probable than ac
(0.4 % 0.6 x 1 = 0.24). This example shows that, particularly in the presence of
noise but also in noise-free situations, we must reduce the risk 3, resulting in
the rejection of some mergings, and then in the inference of larger automata.

Thus, we think that the use of a more specific and restrictive test is more rele-
vant for dealing with noise. In MALERGIA, Kermorvant and Dupont empirically
note that their merging rule is also more restrictive. However, we think that it is
not sufficient. Actually in the multinomial approach, the frequencies of a noisy
transition can be absorbed by the global aspect of the test. In our proportion-
based test, the merging rule is applied on each transition allowing us to better
detect differences between the two tested states. Our proportion test also works
with small samples and thus has not the problem of the asymptotic Hoeffding
bound. For very small samples, a Fisher test is used. While, in the multinomial
approach, the number of contingency tables to consider increases exponentially
with the size of the alphabet (K), in our framework, we only consider tables of
a constant size 2 x 2. We reduce then the complexity of the test.
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4 Evaluation in the Context of Noisy Data

We compare, in this section, automata inferred with the test based on the Hoeffd-
ing bound, those obtained with the multinomial approach and those obtained
with the proportion-based test, in two types of situations. The first one deals
with cases where the target automaton is a priori known. In this case we can
measure the distance between the inferred automata and the target automaton.
However we do not know always this one. In this case, we evaluate the merging
rules in another series of experiments using a perplexity measure. This criterion
assesses the relevance of the model on a test sample. In order to show the effec-
tiveness of our approach, experiments were done on two types of data, strings
and trees.

4.1 Evaluation Criteria

Distance from the target automaton: [10] defined distances between two
hidden Markov models introducing the co-emission probability, that is the prob-
ability that two independent models generate the same string. The co-emission
probability of two stochastic automata M1 and M2, is denoted A(M1, M2) and
defined as follows: A(M1,M2) =3 _v. Pai(s) * Pyra(s). Where Pyyi(s) is the
probability of s given the model Mi. The co-emission probability allows us to
define a distance D, between two automata M1 et M2:
D,(M1, M2) = arccos ( AM1,M?2) )
VA(M1,M1)+A(M2,M2)

D, (M1, M2) can be interpreted as the measure of the angle between two vectors
representing the automata M1, M2 in a space where the base is the set of strings
of X*.

Perplexity measure: When the target automaton is not known, the quality
of an inferred model M can be evaluated by the average likelihood on a set of
strings S relatively to the distribution defined by M:

LL = 32 Tog Par(s;)
where Pys(s;) defines the probability of the j!* string of S according to M. A
perfect model can predict each element of the sample with a probability equal to
one, and so LL = 0. In a general way we consider the perplexity of the test set
which is defined by PP = 2L, A minimal perplexity (PP = 1) is reached when
the model can predict each element of the test sample. Therefore we consider
that a model is more predictive than another if its perplexity is lower.

4.2 Experimentations on Strings

Recall that our objective is to study the behavior of the three merging rules in
the context of noisy data. To corrupt our training file, we replace a proportion ~y
(from 0.01 to 0.30) of letters of the training strings by a different letter randomly
chosen in the alphabet. For each level of noise, we use several a parameters from
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|| Base || Size | H | P | M | Sig ||

Reber D, 3000 ]0.20 +£ 0.153(0.16 + 0.12]0.1774 0.13 yes
Reber P, 3000 | 1.76+ 0.14 |1.74 £0.13|1.75 £0.13 yes
ATIS P. ~ 7000 | 92.4+ 11.58| 62.74£6.25 | 64.44+9.49 yes
Agaricus + Pe 4208 |2.23 £ 0.80 | 1.86£0.37 | 1.924+0.48 yes
Agaricus — P, 3918 2.644+1.21 | 2.06+0.52 | 2.134+0.60 yes
Badges + P. 210 24.6 +2.51 | 22.3+2.19 | 20.0+2.95 yes
Badges — P. 120 27.3+2.6 | 24.3+2.31 | 20.5+3.11 yes

Promoters + P. 56 3.80+0.07 | 3.9340.05 | 3.91+0.16 |no for P vs M
Promoters — P, 56 2.61+£0.79 | 2.79+0.62 | 2.47+0.96 yes

Fig. 4. Results on databases of strings. Yes in the column Sig means that all the
deviations between H and P, H and M and P and M are significant, otherwise we
indicate which deviation is not significant

0.0001 to 0.1. The results presented in this section correspond for each approach
to the optimal «, that is the one which provides the smaller evaluation measure.
Since we use different levels of noise, the results are presented for each dataset by
the mean + the standard deviation. We test the significance of our results using
a Student paired t-test with a first oder risk of 5%. In the presentation of our
results, those concerning the Hoeffding test end with H, those for the proportion
one with P, and those for the multinomial approach end with M. We indicate
results obtained with D, for the distance and P. for the perplexity. The column
Sig indicates the significance of the results.

We use a first database for which the target automaton is a priori known. This
one represents the Reber grammar [11]. When the target is unknown, we suppose
to have a training set and a test set. Only the first one contains noisy data. We
evaluate the perplexity measure on the test set. We use here eight databases: a
sample generated from the Reber grammar; the ATIS database [12]; and three
databases of the UCI repository [13]: Agaricus, Badges and Promoters. For these
three bases, we consider positive and negative examples as two different concepts
to learn. We use a 5-folds cross validation procedure for all the databases, except
for the ATIS one which already contains a training and a test set, and for which
we use different sizes of the training set (from 1000 to 13044).

The results of the experiments are synthesized on Figure 4. Globally, and
independently on the complexity costs, which are highly in favor of our test,
the merging rules based on our proportion test and on the multinomial test
provide better results than ALERGIA, except for Promoters. This result can be
explained by the relatively small size of the sample. Globally, the multinomial
test works better than our approach on small datasets (Badges, Promoters), this
fact confirms the original motivation of M ALERGIA. However when the size of the
training set grows, the proportion based-test is better (Reber, ATIS, Agaricus).
Considering the level of noise, we noted that the results are highly in favor of
our approach, particularly when the noise is higher than 8%. This behavior on
the database Agaricus is shown on Figure 5. Note that the difference between
the two approaches increases with the level of noise.
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Agaricus + Agaricus -
4.5 " 4.5 "
Hoeffding test Hoeffding test
Proportion test -———— Proportion test -~
4r Multinomial test 1 4 r Multinomial test

Using the Proportion test
Using the Proportion test

0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3
Perplexity Perplexity

Fig. 5. Behavior of the merging rules on Agaricus w.r.t. different levels of noise

4.3 Experimentations on Trees

Since the interest about tree-structured data is increasing, notably because of
their huge availability on the web, we also propose to evaluate our extension of
ALERGIA to stochastic tree automata [14] (note that we consider bottom-up tree
automata). The multinomial approach is not compared here because its adaption
to bottom-up tree automata is not trivial.

Stochastic Tree Automata (STA): Tree automata [15] define a regular lan-
guage on trees as a PDFA defines a regular language on strings. Stochastic tree
automata are an extension of tree automata, defining a probability distribu-
tion on the tree language defined by the automaton. We use an extension of
these automata taking into account the notion of type: stochastic many-sorted
tree automata defined on a signature. We do not detail here these automata
and their learning method. The interested reader can refer to [14,16]. We only
precise that a learned stochastic tree automaton allows to define a probability
distribution on trees recognized by the automaton. In the context of trees, we
change a proportion 7 of leaves in order to corrupt the learning set.

Experiments: We use three target grammars, one concerning stacks of objects,
one on boolean expressions and another artificial dataset Art2. From each gram-
mar we generate a sample of trees. We keep the same protocol as presented for
experiments on strings. For cases where the target automaton is unknown, we use
five datasets. We take a sample from each of the three previous tree grammars.
Then we also use the database exploited for the PKDD’02 discovery challenge’
(converted in trees as described in [17]). Finally, we treat the database Student
Loan of the UCI repository, converting prolog facts in trees as describes in [18].
The results of the two series of experiments are presented on Figure 6. Experi-
mentations on trees confirm the results observed on strings. Automata obtained
using the proportion test are better with a lower standard deviation than those
inferred with the test based on the Hoeffding bound.

! http://lisp.vse.cz/challenge/ecmlpkdd2002/
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|| Base || Size | D, H | D, P | Sig ||

Stacks D, 3000 [0.241 £ 0.164| 0.2254+0.17 | yes
Art2 D, 3000 |0.555 4+ 0.138| 0.19040.1 yes
Bool. D, 5000 | 0.1 £ 0.049 | 0.09640.046 | yes
Stacks P, 3000 | 1.85 4+ 0.056 | 1.78+0.063 | yes
Art2 P, 3000 | 3.68 + 0.45 3.21+0.21 yes
Bool. P. 4000 | 2.60 4+ 0.026 | 2.45+0.01 yes
PKDD'02 P. 4178 | 6.90 £+ 1.99 1.94 £0.14 | yes
Student Loan P. 800 5.09+ 1.48 2.88 £0.26 | yes

Fig. 6. Results for trees on the 8 databases

5 Conclusion

In this paper, we addressed the problem of dealing with noise in probabilistic
grammatical inference. As far as we know, this problem has never been studied
but seems very important because of the wide range of applications it is related
to. Since the main objective in the probabilistic grammatical inference frame-
work is to correctly estimate the probability distribution of the examples, we
brought out the paradoxical fact that larger automata deal better with noise
than more general (smaller) ones. We studied this behavior in the context of
state merging algorithms and gave the intuitive idea that a bad merging, due to
the presence of noise, could lead to a very bad estimation of the target distri-
bution. Consequently we propose to use a restrictive statistical test during the
inference process. Practically, we have proposed to replace the initial statistical
test of the ALERGIA algorithm by a more restrictive one based on proportion
comparison. We have proved its restrictiveness and shown its interest, in the
context of noisy data both on artificial and real datasets.

While our approach deals better with noise, we have empirically noticed, in
noise-free situations, that the results are quite similar with those of ALERGIA.
We have also compared our test with the multinomial approach used in MA-
LERGIA. Our proportion-based test is not only relevant, in terms of complexity
and perplexity, on small and large datasets, but also provide better results for
high level of noise.

We are currently working on theoretical aspects of our work. We aim at
proving that the acceptance of a bad merging, especially in the context of noisy
data, implies a larger deviation from the target distribution than its rejection.
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