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Abstract. Rademacher penalization is a modern technique for obtain-
ing data-dependent bounds on the generalization error of classifiers. It
would appear to be limited to relatively simple hypothesis classes be-
cause of computational complexity issues. In this paper we, nevertheless,
apply Rademacher penalization to the in practice important hypothesis
class of unrestricted decision trees by considering the prunings of a given
decision tree rather than the tree growing phase. Moreover, we general-
ize the error-bounding approach from binary classification to multi-class
situations. Our empirical experiments indicate that the proposed new
bounds clearly outperform earlier bounds for decision tree prunings and
provide non-trivial error estimates on real-world data sets.

1 Introduction

Data-dependent bounds on generalization error of classifiers are bridging the gap
that has existed between theoretical and empirical results since the introduction
of computational learning theory. They allow to take situation specific informa-
tion into account, whereas distribution independent results need to hold for all
imaginable situations. Using Rademacher complexity [1,2] to bound the gener-
alization error of a training error minimizing classifier is a fairly new approach
that has not yet been tested in practice extensively.

Rademacher penalization is in principle a general method applicable to any
hypothesis class. However, in practice it does not seem amenable to complex hy-
pothesis classes because the standard method for computing Rademacher penal-
ties relies on the existence of an empirical risk minimization algorithm for the
hypothesis class in question. The first practical experiments with Rademacher
penalization used real intervals as the hypothesis class [3]. We have applied
Rademacher penalization to two-level decision trees [4], which can be learned
efficiently in the agnostic PAC model [5].

General decision tree growing algorithms are necessarily heuristic because of
the computational complexity of finding optimal decision trees [6]. Moreover, the
hypothesis class consisting of unrestricted decision trees is so vast that traditional
generalization error analysis techniques cannot provide non-trivial bounds for it.
Nevertheless, top-down induction of decision trees by, e.g., C4.5 [7] produces
results that are very competitive in prediction accuracy with better motivated
approaches. We consider the usual two-phase process of decision tree learning;
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after growing a tree, it is pruned in order to reduce its dependency on the
training data and to better reflect characteristics of future data. By the practical
success of decision tree learning, prunings of an induced decision tree have to be
considered an expressive class of hypotheses.

We apply Rademacher penalization to general decision trees by considering,
not the tree growing phase, but rather the pruning phase. The idea is to view
decision tree pruning as empirical risk minimization in the hypothesis class con-
sisting of all prunings of an induced decision tree. First a heuristic tree growing
procedure is applied to training data to produce a decision tree. Then a pruning
algorithm, for example the reduced error pruning (Rep) algorithm of Quinlan
[8], is applied to the grown tree and a set of pruning data. As Rep is known to be
an efficient empirical risk minimization algorithm for the class of prunings of a
decision tree, it can be used to compute the Rademacher penalty for this hypoth-
esis class. Thus, by viewing decision tree pruning as empirical risk minimization
in a data-dependent hypothesis class, we can bound the generalization error of
prunings by Rademacher penalization. We also extend this generalization error
analysis framework to the multi-class setting.

Our empirical experiments show that Rademacher penalization applied to
prunings found by Rep provides reasonable generalization error bounds on real-
world data sets. Although the bounds still overestimate the test set error, they
are much tighter than the earlier distribution independent bounds for prunings.

This paper is organized as follows. In Section 2 we recapitulate the main idea
of data-dependent generalization error analysis. We concentrate on Rademacher
penalization which we extend to cover the multi-class case. Section 3 concerns
pruning of decision trees, reduced error pruning of decision trees being the main
focus. Related pruning approaches are briefly reviewed in Section 4. Combining
Rademacher complexity calculation and decision tree pruning is the topic of
Section 5. Empirical evaluation of the proposed approach is presented in Section
6 and, finally, Section 7 presents the concluding remarks of this study.

2 Rademacher Penalties

Let S = { (xi, yi) | i = 1, . . . , n } be a sample of n examples (xi, yi) ∈ X ×Y each
of which is drawn independently from some unknown probability distribution on
X ×Y. In the PAC and statistical learning settings one usually assumes that the
learning algorithm chooses its hypothesis h : X → Y from some fixed hypothesis
class H. Under this assumption generalization error analysis provides theoretical
results bounding the generalization error of hypotheses h ∈ H that may depend
on the sample, the learning algorithm, and the properties of the hypothesis class.
We consider the multi-class setting, where Y may contain more than two labels.

Let P be the unknown probability distribution according to which the ex-
amples are drawn. The generalization error of a hypothesis h is the probability
that a randomly drawn example (x, y) is misclassified:

εP (h) = P (h(x) �= y).
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The general goal of learning, of course, is to find a hypothesis with a small gener-
alization error. However, since the generalization error depends on P , it cannot
be computed directly based on the sample alone. We can try to approximate the
generalization error of h by its training error on n examples:

ε̂n(h) =
1
n

n∑

i=1

�(h(xi), yi),

where � is the 0/1 loss function for which �(y, y′) = 1 if y �= y′ and 0 otherwise.
Empirical Risk Minimization (ERM) [9] is a principle that suggest choosing

the hypothesis h ∈ H with minimal training error. In relatively small and simple
hypothesis classes finding a minimum training error hypothesis is computation-
ally feasible. To guarantee that ERM yields hypotheses with small generalization
error, one can try to bound suph∈H |εP (h) − ε̂n(h)|. Under the assumption that
the examples are independent and identically distributed (i.i.d.), whenever H
is not too complex, the difference of the training error of the hypothesis h on
n examples and its true generalization error converges to 0 in probability as n
tends to infinity.

The most common approach to deriving generalization error bounds is based
on the VC dimension of the hypothesis class. The problem with this approach
is that it provides optimal results only in the worst case — when the underlying
probability distribution is as bad as it can be. Thus, the generalization error
bounds based on VC dimension tend to be overly pessimistic. Moreover, the VC
dimension bounds are hard to extend to the multi-class setting. Data-dependent
generalization error bounds, on the other hand, can be provably almost optimal
for any given domain [1]. In the following we review the foundations of a recent
promising approach to bounding the generalization error.

A Rademacher random variable takes values +1 and −1 with probability 1/2
each. Let r1, r2, . . . , rn be a sequence of Rademacher random variables indepen-
dent of each other and the data (x1, y1), . . . , (xn, yn). The Rademacher penalty
of the hypothesis class H is defined as

Rn(H) = sup
h∈H

∣∣∣∣∣
1
n

n∑

i=1

ri�(h(xi), yi)

∣∣∣∣∣ .

The following symmetrization inequality [10], which covers also the multi-class
setting, connects Rademacher penalties to generalization error analysis.

Theorem 1. The inequality

E
[
sup
h∈H

|εP (h) − ε̂n(h)|
]

≤ 2E [Rn(H)]

holds for any distribution P , number of examples n, and hypothesis class H.

The random variables suph∈H |εP (h)− ε̂n(h)| and Rn(H) are sharply concen-
trated around their expectations [1]. The concentration results are based on the
following McDiarmid’s bounded difference inequality [11].
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Lemma 1 (McDiarmid’s inequality). Let Z1, . . . , Zn be independent random
variables taking their values in a set A. Let f : An → R be a function such that
over all z1, . . . , zn, z′

i ∈ A

sup |f(z1, . . . , zi, . . . , zn) − f(z1, . . . , z
′
i, . . . , zn)| ≤ ci

for some constants c1, . . . , cn ∈ R. Then for all ε > 0

P (f(Z1, . . . , Zn) − E [f(Z1, . . . , Zn)] ≥ ε) and
P (E [f(Z1, . . . , Zn)] − f(Z1, . . . , Zn) ≥ ε)

are upper bounded by exp(−2ε2/
∑n

i=1 c2
i ).

Using McDiarmid’s inequality one can bound the generalization error of hy-
potheses using their training error and Rademacher penalty as follows.

Lemma 2. Let h ∈ H be arbitrary. Then with probability at least 1 − δ

εP (h) ≤ ε̂n(h) + 2Rn(H) + 5η(δ, n), (1)

where η(δ, n) =
√

ln(2/δ)/(2n) is a small error term that goes to zero as the
number of examples increases.

Proof. Observe that replacing a pair ((xi, yi), ri) consisting of an example (xi, yi)
and a Rademacher random variable ri by any other pair ((x′

i, y
′
i), r

′
i) may change

the value of Rn(H) by at most 2/n. Thus, Lemma 1 applied to the i.i.d. random
variables ((x1, y1), r1), . . . , ((xn, yn), rn) and the function Rn(H) yields

P
(

Rn(H) ≤ E [Rn(H)] − 2η(δ, n)
)

≤ δ

2
. (2)

Similarly, changing the value of any example (xi, yi) can change the value of
suph∈H |εP (h) − ε̂n(h)| by no more than 1/n. Thus, applying Lemma 1 again to
(x1, y1), . . . , (xn, yn) and suph∈H |εP (h) − ε̂n(h)| gives

P
(

sup
h∈H

|εP (h) − ε̂n(h)| ≥ E
[
sup
h∈H

|εP (h) − ε̂n(h)|
]

+ η(δ, n)
)

≤ δ

2
. (3)

To bound the generalization error of a hypothesis g ∈ H observe that

εP (g) ≤ ε̂n(g) + sup
h∈H

|εP (h) − ε̂n(h)|.

Hence, by inequality (3), with probability at least 1 − δ/2

εP (g) ≤ ε̂n(g) + E
[
sup
h∈H

|εP (h) − ε̂n(h)|
]

+ η(δ, n)

≤ ε̂n(g) + 2E [Rn(H)] + η(δ, n),

where the second inequality follows from Theorem 1. Finally, applying inequality
(2) yields that with probability at least 1 − δ

εP (g) ≤ ε̂n(g) + 2Rn(H) + 5η(δ, n).
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The usefulness of inequality (1) stems from the fact that its right-hand side
depends only on the training sample and the Rademacher random variables but
not on P directly. Hence, all the data that is needed to evaluate the generalization
error bound is available to the learning algorithm. Furthermore, Koltchinskii [1]
has shown that in the two-class situation the Rademacher penalty can be com-
puted by an empirical risk minimization algorithm applied to relabeled training
data. We now extend this method to the multi-class setting.

The expression for Rn(H) is first written as the maximum of two suprema
in order to remove the absolute value inside the original supremum:

Rn(H) = max

(
sup
h∈H

± 1
n

n∑

i=1

ri�(h(xi), yi)

)
.

The sum inside the supremum with positive sign is maximized by the hypothesis
h1 that tries to correctly classify those and only those training examples (xi, yi)
for which ri = −1. To formalize this, we associate each class y ∈ Y with a
complement class label ȳ that represents the set of all classes but y. We denote
the set of these complement classes by Y and extend the domain of the loss
function � to cover pairs (y, z) ∈ Y × Y by setting �(y, z) = 1 if z = ȳ and 0
otherwise. Using this notation, h1 is the hypothesis that minimizes the empirical
error with respect to a newly labeled training set { (xi, zi) }n

i=1, where

zi =

{
yi, if ri = −1;
ȳi, otherwise.

The case for the supremum with negative sign is similar.
Altogether, the computation of the Rademacher penalty entails the following

steps.

– Toss a fair coin n times to obtain a realization of the Rademacher random
variable sequence r1, . . . , rn.

– Change the label yi to ȳi if and only if ri = +1 to obtain a new sequence of
labels z1, . . . , zn.

– Find functions h1, h2 ∈ H that minimize the empirical error with respect to
the set of labels zi and z̄i, respectively. Here, we follow the convention that
¯̄z = z for all z ∈ Y ∪ Y.

– The Rademacher penalty is given by the maximum of |{ i : ri = +1 }| /n −
ε̂(h1) and |{ i : ri = −1 }| /n − ε̂(h2), where the empirical errors ε̂(h1) and
ε̂(h2) are with respect to the labels zi and z̄i, respectively.

In the two-class setting, the set ȳ of all classes but y, Y \ { y }, is a singleton.
Thus, changing class y to ȳ amounts to flipping the class label. It follows that a
normal ERM algorithm can be used to find the hypotheses h1 and h2 and hence
the Rademacher penalty can be computed efficiently provided that there exists
an efficient ERM algorithm for the hypothesis class in question.

In the multi-class setting, however, a little more is required, since the sample
on which the empirical risk minimization is performed may contain labels from
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Y and the loss function differs from the standard 0/1-loss. This, however, is not
a problem with Rep nor with T2, a decision tree learning algorithm used in our
earlier study, since both empirical risk minimization algorithms can easily be
adapted to handle this more general setting as explained in the next section for
Rep and argued by Auer et al. [5] for T2.

3 Growing and Pruning Decision Trees

A common approach in top-down induction of decision trees is to first grow a
tree that fits the training data well and, then, prune it to reflect less the peculiar-
ities of the training data — i.e., to generalize better. Many heuristic approaches
[8,12,13] as well as more analytical ones [14,15] to pruning have been proposed.
A special class of pruning algorithms are the on-line ones [16,17]. Even these
algorithms work by the two-phase approach: An initial decision tree is fitted to
the data and its prunings are then used as experts that collectively predict the
class of observed instances.

Reduced error pruning was originally proposed by Quinlan [8]. It has been
used rather rarely in practical learning algorithms mainly because it requires
part of the available data to be reserved solely for pruning purposes. However,
empirical evaluations of pruning algorithms indicate that the performance of Rep
is comparable to other more widely used pruning strategies [12,13]. In analyses
Rep has often been considered a representative pruning algorithm [13,18]. It
produces an optimal pruning of a given tree — the smallest tree among those
with minimal error (with respect to the set of pruning examples) [13,19].

Table 1 presents the Rep algorithm in pseudo code (for simplicity only for
decision trees with binary splits). It works in two phases: First the set of pruning
examples S is classified using the given tree T to be pruned. The node statistics
are updated simultaneously. In the second phase — a bottom-up pruning phase —
those parts of the tree that can be removed without increasing the error of the
remaining hypothesis are pruned away. The pruning decisions are based on the
node statistics calculated in the top-down classification phase.

The scarceness of (expensive) data used to be considered a major problem
facing inductive algorithms. Therefore, Rep’s requirement of a separate pruning
set of examples has been seen prohibitive. Nowadays the situation has turned
around: In data mining abundance of data is considered to be a major problem
for learning algorithms to cope with. Thus, it should not be a major obstacle to
leave some part of the data aside from the decision tree building phase and to
reserve it for pruning purposes.

Rep is an ERM algorithm for the hypothesis class consisting of all prunings
of a given decision tree (for a proof, see [19]). Thus, it can be used to efficiently
compute Rademacher penalties and, hence, also generalization error bounds for
the class of prunings of a decision tree. This leads us to the following strategy.
First, we use a standard heuristic decision tree induction algorithm (C4.5) to
grow a decision tree based on a set of training examples. The tree serves as a
representation of the data-dependent hypothesis class that consists of its prun-
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Table 1. The Rep algorithm capable of handling complement labels also. The algo-
rithm first classifies the pruning examples in a top-down pass using method classify
and then, during a bottom-up pass, prunes the tree using method prune

decTree REP( decTree T, exArray S ) // Prune the tree
for( i= 0 to S.length-1 ) classify( T, S[i] );
prune( T ); return T;

void classify( decTree T, example e ) // Update node counters top-down
T.total++; T.count[e.label]++;
if( !leaf(T) )
if( T.test(e)==0 ) classify( T.left, e );
else classify( T.right, e );

int error( label y, cntArray count ) // Compute classification error
int errors= 0;
foreach( z in Y-{y} ) errors+= count[z];
return errors + count[bar(y)];

int prune( decTree T ) // Output classification error after pruning
int leafError= error( T.label, T.count );
if( leaf(T) ) return leafError;
int treeError= prune( T.left )+ prune( T.right );
if( treeError < leafError ) return treeError;
else replace T with a leaf labeled T.label;
return leafError;

ings. As C4.5 usually performs quite well on real-world domains, it is reasonable
to assume — even though it cannot be proved — that the class of prunings
contains some good hypotheses.

Having grown a decision tree, we use a separate pruning data set to select
one of the prunings of the grown tree as our final hypothesis. In this paper, we
use Rep as our pruning algorithm, but in principle any other pruning algorithm
using the same basic pruning operation could be used as well. However, since
Rep is an empirical risk minimization algorithm, the derived error bounds will
be the tightest when combined with it.

Our view on pruning is similar to that of Esposito et al. [20], who viewed
many decision tree pruning algorithms as instantiations of search in the state
space consisting of all prunings of a given decision tree, the state transition
function being determined by the basic pruning operation. In this setting, Rep
can be seen as a search algorithm whose bias is determined by the ERM principle
and the tendency to favor small hypotheses. Our goal, however, is not to analyze
the search itself, but to evaluate the goodness of the final pruning produced by
the search algorithm. We pursue this goal further in Section 5.

One shortcoming of the two-phase decision tree induction approach is that
there does not exist any well-founded approach for deciding how much data to
use for the training and pruning phases. Only heuristic data set partitioning
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schemes are available. However, the simple rule of using, e.g., two thirds of the
data for training and the rest for pruning has been observed to work well in
practice [13]. If the initial data set is very large, it may be computationally
infeasible to use all the data for training or pruning. In that case one can use
heuristic sequential sampling methods for selecting the size of the training set
and determine the size of the pruning set, e.g., by using progressive Rademacher
sampling [4]. Because Rep is an efficient linear-time algorithm, it is not hit hard
by overestimated pruning sample size.

4 Related Pruning Algorithms

Rep produces the smallest of the most accurate prunings of a given decision tree,
where accuracy is measured with respect to the pruning set. Other approaches
for producing optimal prunings for different optimality criteria have also been
proposed [21,22,23,24]. However, often optimality is measured over the training
set. Then it is only possible to maintain the initial training set accuracy, assuming
that no noise is present. Neither is it usually possible to reduce the size of
the decision tree without sacrificing the classification accuracy. For example,
Bohanec and Bratko [22] as well as Almuallim [24] have studied how to efficiently
find the smallest pruning that satisfies a given minimum accuracy requirement.

The strategy of using one data set for growing a decision tree and another for
pruning it closely resembles the on-line pruning setting [16,17]. In it the prun-
ings of the initial decision tree are viewed as a pool of experts. Thus, pruning
is performed on-line, while giving predictions to new examples, rather than in a
separate pruning phase. The main advantage of the on-line methods is that no
statistical assumptions about the data generating process are needed and still
the combined prediction and pruning strategy can be proven to be competitive
with the best possible pruning of the initial tree. These approaches do not choose
or maintain one pruning of the given decision tree, but rather a weighted com-
bination of prunings which may be impossible to interpret by human experts.
The loss bounds are meaningful only for very large data sets and there exists no
empirical evaluation of the performance of the on-line pruning methods.

The pruning algorithms of Mansour [14] and Kearns and Mansour [15] are
very similar to Rep in spirit. The main difference with these pruning algorithms
and Rep is the fact that they do not require the sample S on which pruning
is based to be independent of the tree T ; i.e., T may well have been grown
based on S. Moreover, the pruning criterion in both methods is a kind of a cost-
complexity condition [21] that takes both the observed classification error and
(sub)tree complexity into account. Both algorithms are pessimistic: They try
to bound the true error of a (sub)tree by its training error. Since the training
error is by nature optimistic, the pruning criterion has to compensate it by being
pessimistic about the error approximation.

Both Mansour [14] and Kearns and Mansour [15] provide generalization error
analyses for their algorithms. The bound presented in [14] measures the com-
plexity of the class of prunings by the size of the unpruned tree. If this size or an
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upper bound for it is known in advance, the bound applies also when the pruning
data is not independent of the tree to be pruned. Mansour’s bound can be used
in connection with Rep, too, and we will use it as a point of comparison for our
generalization error bounds in Section 6. Kearns and Mansour [15] prove that
the generalization error of the pruning produced by their algorithm is bounded
by that of the best pruning of the given tree plus a complexity penalty. However,
the penalty term can grow intolerably large and cannot be evaluated because of
its dependence on the unknown optimal pruning and hidden constants.

5 Combining Rademacher Penalization
and Decision Tree Pruning

When using Rep, the data sets used in growing the tree and pruning it are
independent of each other. Therefore, any standard generalization error analysis
technique can be applied to the pruning found by Rep as if the hypothesis class
from which Rep selects a pruning was fixed in advance. A formal argument
justifying this would be to carry out the generalization error analysis conditioned
on the training data and then to argue that the bounds hold unconditionally by
taking expectations over the selection of the training data set.

By the above argument, the theory of Rademacher penalization can be ap-
plied to the data-dependent class of prunings. Therefore, we can use the results
presented in Section 2 to provide generalization error bounds for prunings found
by Rep (or any other pruning algorithm). Moreover, since Rep is a linear-time
ERM algorithm for the class of prunings, it can be used to evaluate the gener-
alization error bounds efficiently.

To summarize, we propose the following decision tree learning strategy that
provides a generalization error bound for the hypothesis it produces:

– Split the available data into a growing set and a pruning set.
– Use, e.g., C4.5 (without pruning) on the growing set to induce a decision

tree.
– Find the smallest most accurate pruning of the tree built in the previous

step using Rep (or any other pruning algorithm) on the pruning set. This is
the final hypothesis.

– Evaluate the error bound as explained in Section 2 by running Rep two more
times.

Even though the tree growing process is heuristic, the generalization error
bounds for the prunings are provably true under the i.i.d. assumption. They are
valid even if the tree growing heuristic fails, that is, when none of the prunings of
the grown tree generalize well. In that case the bounds are, of course, unavoidably
large. The situation is similar to, e.g., margin-based generalization error analysis,
where the error bounds are good provided that the training data generating
distribution is such that a hypothesis with a good margin distribution can be
found. In our case the error bounds are tight whenever C4.5 works well for the
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data-generating distribution in question. The empirical evidence overwhelmingly
demonstrates that C4.5 usually fares quite well.

Generalization error bounds can be roughly divided into two categories:
Those based on a training set only and those requiring a separate test set [25].
Our generalization error bounds for prunings may be seen to lie somewhere be-
tween these two extremes. We use only part of the data in the tree growing
phase. The rest — the set of pruning data — is used for selecting a pruning and
evaluating the generalization error bound. Thus, some of the information con-
tained in the pruning set may be lost as it cannot be used in the tree induction
phase. However, the pruning set is still used for the non-trivial task of selecting
a good pruning, so that some of the information contained in it can be exploited
in the final hypothesis. The pruning set is thus used as a test set for the outcome
of the tree growing phase and also as a proper learning set in the pruning phase.

6 Empirical Evaluation

The obvious performance reference for the approach of Rademacher penaliza-
tion over decision tree prunings is to compare it to existing generalization error
bounds such as the ones presented by Mansour [14] and Kearns and Mansour [15].
The bound in the latter is impossible to evaluate in practice because it requires
knowing the depth and size of the pruning with the best generalization error.
This leaves us with the bound of Mansour which only requires knowing the
maximum size of prunings in advance. Bounds developed in the on-line pruning
setting [16] are incomparable with the one presented in this paper because of
the different learning model. Thus, they will not be considered here.

Mansour [14] derived, based on the Chernoff bound, the following bound for
the generalization error of a decision tree h with k nodes:

εP (h) < ε̂n(h) + c

√
k log d + log(2/δ)

n
,

where d is the arity of binary example vectors xi and c is a constant. The bound
applies only to binary decision trees in the two-class setting. When used for
the class of unrestricted multi-class decision trees, the bound will give an overly
optimistic estimate of what could be obtained with Mansour’s proof technique
in this more general setting. For the value of c we use a crude underestimate 0.5.
Both these choices are in favor of Mansour’s bound in the comparison.

The error bound based on Rademacher penalization depends on the data
distribution so that its true performance can be evaluated only empirically. As
benchmark data sets we use six large data sets from the UCI Machine Learning
Repository, namely the Census income (2 classes), Connect (3 classes), Covertype
(7 classes), and generated Led datasets (10 classes) with 5, 10, and 15 percent
attribute noise and 300,000 instances. In each experiment we allocate 10 percent
of the data for testing and split the rest to growing and pruning sets. As the
split ratio we chose 2:1 as suggested by Esposito et al. [13].
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Table 2. Averages and standard deviations of sizes of trees grown by C4.5 (left) and
error bounds for Rep (right) over 10 random splits of the data sets

Data set Unpruned Default Rep Test set R-bound M-bound
Census 19732 ±732 1377 ±268 4749 ±397 4.9 ±0.1 8.7 ±0.2 49.9 ±0.9
Connect 10973 ±361 4253 ±104 4338 ±235 20.7 ±0.8 32.4 ±0.4 89.3 ±1.5
Cover 25356 ±221 22095 ±228 17404 ±179 6.9 ±0.1 12.7 ±0.1 44.0 ±0.2
Led24-5 27357 ±139 7042 ±74 3850 ±233 13.4 ±0.2 19.7 ±0.2 61.3 ±0.2
Led24-10 51790 ±204 13624 ±220 7671 ±323 26.4 ±0.1 36.8 ±0.2 91.7 ±0.2
Led24-15 71162 ±156 20273 ±259 11344 ±265 38.6 ±0.2 52.2 ±0.2 114.6 ±0.2

Table 2 summarizes the results of our experiments averaged over ten ran-
dom splits of the data sets. Observe that the unpruned decision trees are very
large, which means that the class of prunings may potentially be very complex.
The results indicate that the default pruning of C4.5 and Rep both manage to
decrease the tree sizes considerably.

The right-hand side of Table 2 presents the test set accuracies and error
bounds for Rep prunings based on Rademacher penalization and Mansour’s
method. In both bounds, we set δ = 0.01. Even though the bounds based on
Rademacher penalization clearly overshoot the test set accuracies, they still pro-
vide reasonable estimates in many cases. Note that in the multi-class settings
even error bounds above 50 percent are non-trivial. The Rademacher bounds
are clearly superior to even the underestimates of the bounds by Mansour that
we used as a benchmark. The amount by which the Rademacher bound over-
estimates the test set error is seen to be almost an order of magnitude smaller
than the corresponding quantity related to Mansour’s bound.

7 Conclusion

Modern generalization error bounding techniques that take the observed data
distribution into account give far more realistic sample complexities and gener-
alization error approximations than the distribution independent methods. We
have shown how one of these techniques, namely Rademacher penalization, can
be applied to bound the generalization error of decision tree prunings, also in
the multi-class setting. According to our empirical experiments the proposed
theoretical bounds are significantly tighter than previous generalization error
bounds for decision tree prunings. However, the new bounds still appear unable
to faithfully describe the performance attained in practice.
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