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Abstract. We present a new approach for exploration in Reinforcement Learning
(RL) based on certain properties of the Markov Decision Processes (MDP). Our
strategy facilitates a more uniform visitation of the state space, a more extensive
sampling of actions with potentially high variance of the action-value function es-
timates, and encourages the RL agent to focus on states where it has most control
over the outcomes of its actions. Our exploration strategy can be used in combi-
nation with other existing exploration techniques, and we experimentally demon-
strate that it can improve the performance of both undirected and directed ex-
ploration methods. In contrast to other directed methods, the exploration-relevant
information can be precomputed beforehand and then used during learning with-
out additional computation cost.

1 Introduction

One of the key features of reinforcement learning (RL) is that a learning agent is not
instructed what actions it should perform; instead, the agent has to evaluate all avail-
able actions [13], and then decide for itself on the best way of behaving. This creates
the need for an RL agent to actively explore its environment, in order to discover good
behavior strategies. Ensuring an efficient exploration process and balancing the risk of
taking exploratory actions with the benefit of information gathering are of great prac-
tical importance for RL agents, and have been the topic of much recent research, e.g.,
[14, 7, 2, 4, 12].

Existing exploration strategies can be divided into two broad classes: undirected
and directed methods. Undirected methods are concerned only with ensuring sufficient
exploration, by selecting all actions infinitely often. The ε-greedy and Boltzman explo-
ration strategies are notable examples of such methods. Undirected methods are very
popular because of their simplicity, and because they do not have additional require-
ments of storage or computation. However, they can be very inefficient for certain do-
mains. For example, in deterministic goal directed tasks with a positive reward received
only upon entering the goal state, undirected exploration is exponential in the number
of steps needed for an optimal agent to reach the goal state [14]. On the other hand,
by using some information about the course of learning, the same tasks can be solved
in time polynomial in the number of states and maximum number of actions available
in each state [14]. The impact of exploration is believed to be even more important for
stochastic environments. Directed exploration strategies attempt not only to ensure a
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sufficient amount of exploration, but also to make the exploration efficient, by using ad-
ditional information about the learning process. These techniques often aim to achieve a
more uniform exploration of the state space, or to balance the relative profit of discover-
ing new information versus exploiting current knowledge. Typically, directed methods
keep track of information regarding the learning process and/or learn a model of the
system. This requires extra computation and storage in addition to the resources needed
by general on-line RL algorithms, in order to make better exploration decisions. More
details on existing exploration methods are given in Section 2.2.

In this paper, we present a new directed exploration approach, which takes into ac-
count the properties of the Markov Decision Process (MDP) being solved. In prior work
[9], we introduced several attributes that can be used to provide a quantitative character-
ization of MDPs. Our approach to exploration is based on the use of the two attributes:
state transition entropy and forward controllability. The state transition entropy pro-
vides a characterization of the amount of stochasticity in the environment. Forward
controllability measures how much the agent’s actions actually impact the trajectories
that the agent follows. Our prior experimental results [9] suggest that these attributes
significantly affect the quality of learning for on-line RL algorithms with function ap-
proximation, and that this effect is due in part to the amount of exploration in MDPs
with different characteristics. In this paper, we show how to use these MDP attributes
in combination with both undirected and directed existing exploration methods.

Using MDP attributes can improve the exploration process in three ways. First, it
encourages a more homogeneous visitation of the state space, similar to other existing
directed methods. Second, it encourages more frequent sampling for actions with po-
tentially high variance in their action-value estimates. Finally, it encourages the learning
agent to focus more on the states in which its actions have more impact. One impor-
tant difference between our exploration strategy and other directed techniques is that
the extra information we use reflects only properties of the task at hand, and does not
depend on the history of learning. Hence, this information does not carry the bias of
previous, possibly unfortunate exploration decisions. Additionally, in some cases the
MDP attributes can be pre-computed beforehand and then used during learning without
any additional computational cost. The attributes’ values can also be transferred be-
tween tasks if the agent is faced with solving multiple related tasks in an environment
in which the dynamics does not change much. The attributes can also be estimated dur-
ing learning, which would require only a small constant amount of additional resources
in contrast to most other directed methods.

The rest of the paper is organized as follows. In Section 2, we provide background
on RL and existing exploration approaches. The details of the proposed exploration
method are presented in Section 3. Empirical results are discussed in Section 4. The
directions for future work are presented in Section 5.

2 Background

2.1 RL Framework

We assume the standard RL framework, in which a learning agent is situated in a dy-
namic stochastic environment and interacts with it at discrete time steps. The envi-
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ronment assumes states from some state space S and the agent chooses actions from
some action space A. On each time step, in response to the agent’s actions, the envi-
ronment undergoes state transitions governed by a stationary probability distribution
Pa

ss′ , where s,s′ ∈ S,a ∈ A. At the same time, the agent receives a numerical reward
from the environment, Ra

ss′ ∈ ℜ, which reflects the one-step desirability of the agent’s
actions. State transitions and rewards are, in general, stochastic and satisfy the Markov
property: their distributions depend only on the current state of the environment and the
agent’s current action and are independent of the past history of interaction. The goal
of the agent is to adopt a policy (a way of choosing actions) π : S×A→ [0,1] that op-
timizes a long-term performance criterion, called return, which is usually expressed as
a cumulative function of the rewards received on successive time steps. Such a learning
problem is called a Markov Decision Process (MDP). Many RL algorithms estimate
value functions which can be viewed as utilities of states and actions. Value functions
are estimates of the expected returns and take into account any uncertainty pertaining
to the environment or the agent’s action choices. For instance, the action-value function
associated with a policy π, Qπ : S×A→ℜ, is defined as:

Qπ(s,a) = Eπ {rt+1 + γrt+2 + . . . |st = s,at = a}
where γ ∈ (0,1] is the discount factor. The optimal action value function, Q∗, is defined
as the action-value function of the best policy: Q∗(s,a) = maxπ Qπ(s,a). In this paper,
we focus on RL algorithms that estimate the optimal action-value function from samples
obtained by interacting with the environment.

2.2 Exploration in RL

The goal of an exploration policy is to allow the RL agent to gather experience with
the environment in such a way as to find the optimal policy as quickly as possible,
while also gathering as much reward as possible during learning. This goal can be itself
cast a learning problem, often called optimal learning [6]. Solving this problem would
require the agent to have a probabilistic model of the uncertainty about its own knowl-
edge of the environment, and to update this model as learning progresses. Solving the
optimal learning problem then becomes equivalent to solving the partially observable
MDP (POMDP) defined by this model, which is generally intractable. However, vari-
ous heuristics can be used to decide which exploration policy to follow, based only on
certain aspects of the uncertainty about the agent’s knowledge of the environment.

As discussed in Section 1, existing exploration techniques can be grouped in two
main categories: undirected and directed methods. Undirected methods ensure that each
action will be selected with non-zero probability in each visited state. For instance, the
ε-greedy exploration strategy selects the currently greedy action (the best according to
the current estimate of the optimal action-value function Q(s,a)), in any given state,
with probability (1− ε), and selects a uniformly random action with probability ε.
Another popular choice for undirected exploration, the Boltzman distribution assigns

probability π(s,a) of taking action a in state s as π(s,a) = e
Q(s,a)

τ /∑b∈A e
Q(s,b)

τ , where τ
is a positive temperature parameter that decreases the amount of randomness as it ap-
proaches zero. When using on-policy RL algorithms, such as SARSA [13], the explo-
ration rate (ε in the ε-greedy exploration and τ in Boltzman exploration) has to decrease
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to zero with time in an appropriate manner [11] in order to ensure convergence to the
optimal (deterministic) policy. In practice, however, constant exploration rates are often
used.

Directed exploration methods typically keep some information about the state of
knowledge of the agent, estimating certain aspects of its uncertainty. The action to be
taken is usually selected by maximizing an evaluation function that combines action-
values with some kind of exploration bonuses, δi:

N(s,a) = K0Q(s,a)+ K1δ1(s,a)+ ...+ Kkδk(s,a) (1)

Exploration is driven mainly by the exploration bonuses that change over time. The
positive constants Ki control the exploration-exploitation balance.

Directed exploration methods differ in the kind of exploration bonuses they define,
which reflect different heuristics regarding what states are important to revisit. For ex-
ample, counter-based methods [14] direct exploration toward the states that were visited
least frequently in the past. Recency-based exploration [14, 12] prefers instead the states
that were visited least recently. In both of these cases, the result is a more homogeneous
exploration of the state space. Error-based exploration [10] prefers actions leading to
states whose value changed most in past updates. Interval Estimation (IE) [3, 16], as
well as its global equivalent, IEQL+ [7], bias exploration toward actions that have the
highest variance in the action value samples. In the value of information strategy [1,
2], the exploration-exploitation tradeoff is solved with a myopic approximation of the
value of perfect information. The E3 algorithm [4] learns a model of the MDP. Based
on the estimated accuracy of this model and a priori knowledge of the worst-case mix-
ing time of the MDP and the maximum attainable returns, E3 explicitly balances the
profit of exploitation and the possibility of efficient exploration. Due to this balancing,
E3 provably achieves near-optimal performance in polynomial time. However, there is
little practical experience available with this algorithm.

3 Using MDP Attributes for Exploration

Similarly to many directed exploration methods, the goal of our approach is to ensure
a more uniform visitation of the state space, while also gathering quickly the samples
most needed to estimate well the action value function. In order to achieve this goal,
we focus on using two attributes that can be used to characterize MDPs: state transition
entropy (STE) and forward controllability (FC). In prior work [9], we found that these
attributes had a significant effect on the speed of learning and quality of the solution
found by on-line RL algorithms. This effect seemed to be due mostly to their influence
on the RL agent’s exploration of the state space. Both attributes can be computed for
each state-action pair (s,a) based on the MDP model (if it is known) or they can be esti-
mated based on sample transitions. The basic idea of our strategy is to favor exploratory
actions which exhibit high values of STE, FC, or both of these features. We will now
explain the details of our approach.

State transition entropy (STE) measures the amount of stochasticity due to the en-
vironment’s state dynamics. Let Os,a ∈ S denote a random variable representing the
outcome (next state) of the transition from state s when the agent performs action a.
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Using the standard information-theoretic definition of entropy, STE for a state-action
pair (s,a) can be computed as follows [5]:

STE(s,a) = H(Os,a) =−∑
s′∈S

Pa
s,s′ logPa

s,s′ (2)

A high value of STE(s,a) means that there are many possible next states s′ (with
Pa

s,s′ �= 0) which occur with similar probabilities. If in some state s, actions a1 and a2 are
such that STE(s,a1) > STE(s,a2), the agent is more likely to encounter more different
states by taking action a1 than by taking action a2. This means that giving preference
to actions with higher STE could achieve a more homogeneous exploration of the state
space. Empirical evidence that a homogeneous visitation of the state space can be help-
ful is present in [13], where the performance of Q-learning with an ε-greedy behavior
policy is compared with the performance of Q-learning performed by picking states
uniformly randomly. The experiments were performed on discrete random MDPs with
different branching factors. Note that a large branching factor means a high STE value
for all states. In these tasks, the ε-greedy on-policy updates resulted in better solutions
and faster learning mainly for the deterministic tasks (with branching factor 1). As the
branching factor (and thus STE) increased, performing action-value updates uniformly
across the state space led to better solutions in the long run, and to better learning speed.

Another potential consequence of a high value of STE(s,a) is a large variance of the
action-value estimates for (s,a). In on-policy learning methods, such as SARSA [13],
the action value of a state-action pair (s,a) is updated toward a target estimate obtained
after taking action a:

Q(s,a)← (1−α)Q(s,a)+ α[Ra
ss′+ γQ(s′,a′)

︸ ︷︷ ︸

Target for (s,a)

],α ∈ (0,1)

These target estimates are drawn according to the probability distribution of the next
state s′. If STE(s,a) is high, there will be many possible next states, and consequently
the variance in the target estimates could be higher. In prior experiments using the
SARSA(0) learning algorithm with linear function approximation [9], we observed that
in environments with high STE values, there was a trade-off in the quality of the approx-
imation achieved between the positive effect of ”natural” exploration and the negative
effect of high variance in the target action-value estimates used by the algorithm. In
order to get a good estimate of Q(s,a) when the target values have high variance, more
samples are needed. By encouraging the exploration of actions with high STE values,
our strategy ensures that we will collect enough samples. This idea is reminiscent of
the IE directed exploration method [3], but we do not rely on explicitly estimating the
variance of the action value samples, which would be much more expensive in terms of
both storage and computation.

The controllability of a state s is a normalized measure of the information gain when
predicting the next state based on knowledge of the action taken, as opposed to making
the prediction before an action is chosen (a similar, but not identical, attribute is used
by Kirman [5]). Let Os ∈ S denote a random variable representing the outcome of a
uniformly random action in state s. Let Os ∈ S denote a random variable representing
the outcome of a uniformly random action in state s. Let As denote a random variable
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representing the action taken in state s. We consider As to be chosen from a uniform
distribution. Given the value of As, information gain is the reduction in the entropy of
Os: H(Os)−H(Os|As), where

H(Os) =−∑s′∈S(
∑a∈A Pa

s,s′
|A| ) log(∑a∈A Pa

s,s′
|A| ); H(Os|As) =−∑a∈A

1
|A| ∑s′∈S Pa

s,s′ log(Pa
s,s′)

The controllability in state s is defined as:

C(s) =
H(Os)−H(Os|As)

H(Os)
(3)

If all actions are deterministic, then H(Os|As) = 0 and C(s) = 1. If H(Os) = 0 (all ac-
tions deterministically lead to the same state), then C(s) is defined to be 0. The forward
controllability (FC) of a state-action pair is the expected controllability of the next state:

FC(s,a) = ∑
s′∈S

Pa
s,s′C(s′) (4)

Favoring actions with high FC will direct an RL agent toward states in which it
has a lot of control on the next state transitions, by making appropriate action choices.
Having such control enables the agent to reap higher returns in environments where
some trajectories are more profitable than others, as shown in our prior experiments [9].
At the same time, actions with high FC lead to states in which different actions have
very different outcomes. Hence, from such states, the agent is likely to explore the state
space more uniformly. A third reason to favor actions with high values of FC(s,a) is
that, similarly to the case of high STE, such actions can potentially have high variance
in the targets used to update their action values, Q(s,a). If a resulting state, s′, is highly
controllable, the actions a′ available there could lead to very different next states, and
hence Q(s′,a′) is likely to have high variance. As a result, gathering more samples from
(s,a) should increase the speed of learning.

The idea of guiding exploration based on the values of the STE and FC attributes
can easily be incorporated in both undirected and directed exploration techniques. For
instance, consider the case of the ε-greedy exploration strategy. The greedy action is still
chosen with probability (1− ε). When a choice to explore is made (with probability ε),
the exploratory action is selected according to a Boltzman distribution:

π(s,a) =
e

K1∗ST E(s,a)+K2∗FC(s,a)
τ

∑b∈A e
K1∗ST E(s,b)+K2∗FC(s,b)

τ

(5)

where τ is the temperature parameter. The nonnegative constants K1 and K2 can be used
to adjust the relative contribution of each term. Of course, STE and FC can be used with
probability distributions other than Boltzman as well.

In directed exploration, the STE and FC attributes can be used as additional explo-
ration bonuses, and hence can be easily incorporated in most existing methods. In this
case, the behavior policy deterministically picks the action maximizing the function:

N(s,a) = K0Q(s,a)+ K1STE(s,a)+ K2FC(s,a)+∑
j

Kjδ j(s,a) (6)
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where δ j(s,a) can be any exploration bonuses based on data about the learning pro-
cess, such as counter-based, recency-based, error-based or IE-based bonuses. In this
case, the trade-off between exploitation and exploration can be controlled by tuning the
parameters Ki associated with each term.

Note that our exploration approach uses only characteristics of the environment,
which are independent of the learning process. Thus, the information needed can be
gathered prior to learning. This can be done if the transition model is known, or if the
agent has an access to a simulator, with which it can interact to estimate the attributes
from sampled state transitions1. Also, the attributes’ values can be carried over if the
task changes slightly (e.g., in the case of goal-directed tasks in which the goal location
moves over time). Alternatively, the attributes can be computed during learning based
on observed state transitions. This can be done efficiently by incremental methods for
entropy estimation [15] and mean estimation with a forgetting factor for FC. In this
case, only a small constant amount of extra computation per time step is needed. This
is in contrast to most other directed exploration methods, which not only rely on es-
timation of transition probabilities, but also require more computation to re-evaluate
their exploration-relevant information on every time step, e.g., [14, 4, 12, 3, 16, 2]. At
the same time, the exploration-relevant information based on the learning history used
in other directed techniques can carry the bias of previous (possibly unsuccessful) ex-
ploration decisions and value estimates.

4 Experimental Results

In order to assess empirically the merit of using STE and FC as heuristics for guiding
exploration, we experimented with using these attributes together with ε-greedy explo-
ration (as a representative of undirected methods) and recency-based exploration (as a
representative of directed methods). We chose recency-based exploration among the di-
rected exploration techniques because in previous experiments [14] it compared favor-
ably to other directed methods, while being less sensitive to the tuning of its parameters.
At the same time, this method is conceptually close to attribute-based exploration, in
that it encourages a homogeneous exploration of the state space. Hence, it is interesting
to see whether the use of MDP attributes can give any additional benefit in this case.

The attributes were incorporated into the ε-greedy strategy as shown in (5). We used
parameter settings K1,K2 ∈ {0,1}, τ = 1 and ε ∈ {0.1,0.4,0.9}. The recency-based
technique was combined with the attributes based on the idea of additive exploration
bonuses, as shown in (6), where we used one recency-based exploration bonus, δ(s,a).
As before, we used K1,K2 ∈ {0,1}. The constant corresponding to the value function
was set to K0 ∈ {1,10,50} and the constant corresponding to the recency bonus was
K3 = 1. The learning algorithm used was tabular SARSA(0) with a decreasing learning
rate α(st ,at) = 1.25

0.5+n(st ,at)
, where n(st ,at) is the number of visits to a state-action pair

(st ,at) at time t. The action values Q(s,a) were initialized to zero at the beginning of
learning.

1 Note that even if the MDP model is known, it is often not feasible to apply dynamic program-
ming methods and the issue of efficient exploration is still important. As suggested in [17],
model-based exploration methods are in fact superior to model-free methods in many cases.



Fig. 1. Performance of ε-greedy exploration (pure and attribute-based) for low-STE (top) and
high-STE tasks (bottom)

The experiments were conducted on randomly generated MDPs with 225 states and
3 actions available in every state. The branching factor for these MDPs varied randomly
between 1 and 20 across the states and actions. Transition probabilities and rewards
were also randomly generated, with rewards drawn uniformly from [0,1]. At each state,
there was a 0.01 probability of terminating the episode. These random MDPs were
divided in four groups of five tasks each. Two of the groups contained MDPs with
”low” average STE values (avg(STE(s,a)) < 1.7), and the other two groups contained
MDPs with “high” STE values (avg(STE(s,a)) ∈ [1.7,2.7]). This grouping allowed us
to investigate whether the overall amount of stochasticity in the environment influences
the effect of the attributes on exploration. The two groups on each STE level differed in
that one of them (which we will call the test group) had a large variation in the attribute
values for different actions, while the other one (the control group) had similar values
of the attributes across all states and actions. In the control groups, we would expect to
see no effect of using the attributes, because the exploration decisions at all states and
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actions should be mostly unaffected by the attribute values. Hence, we use the control
groups to test the possibility of observing any effect “by chance”. The experimental
results presented below are for the case, where the attributes where precomputed from
simulation of the MDPs prior to learning. Preliminary experiments, where the attributes
were computed during learning, indicate qualitatively similar results.

We use two measures of performance for the exploration algorithms under consid-
eration. The first measure is an estimate of the return of the greedy policy produced
by the algorithms at different points in time. After every 50 trials, we take the greedy
policy with respect to the current action values and we run this policy from 50 fixed
test states, uniformly sampled from the state space. We run 30 trials from each such
state, then we average these returns over the trials and over the 50 states. Because we
are using different tasks, with different optimal value functions (and hence different up-
per bounds on the performance that can be achieved), it is difficult to compare greedy
returns directly, without any normalization. Hence, we normalize the average greedy
return by the average return of the uniformly random policy from the same 50 states
(computed over 30 trials). In our prior experiments [9] we found that this normalization
yields very similar results to normalizing by the return of the optimal policy. Of course,
using the optimal policy would generally give the best normalization, but the optimal
policy cannot always be computed by independent means.

The second performance measure that we use is aimed at providing a quantitative
measure of both the speed of learning and the quality of the solution obtained. It is often
difficult to compare different algorithms in terms of both of these measures, because one
algorithm may have a steeper learning curve, but a more erratic (or worse) performance
in the long run. In order to assess these kinds of differences, we use the following
penalty measure for each run:

P =
T

∑
t=1

t
T

(Rmax−Rt), (7)

where Rmax is an upper limit of the (normalized) return of the optimal policy2, Rt is the
(normalized) greedy return after trial t and T is the number of trials. In this way, failure
to achieve the best known performance is penalized more after more learning trials have
occurred. This measure gives a lower penalty to methods that achieve good solutions
earlier and do not deviate from them. In our experiments, we compute one penalty for
every independent run of every algorithm (which can be viewed as a “summary” for the
run).

The results of the experiments are presented in Figure 1, for the ε-greedy strategy,
and in Figure 2, for recency-based exploration. The performance measures are com-
puted in terms of the normalized greedy returns, averaged over the 5 MDPs in each
group and over 30 runs for each MDP. The left panels represent learning curves for the
normalized greedy returns, while the right panels represent the average penalty mea-
sure over the runs, computed using (7). Light lower portions of the bars represent mean
penalty, and they are topped with standard deviation (dark portions).

We also performed statistical tests to verify whether the observed performance dif-
ferences are statistically significant. Because we are interested in both the asymptotic

2 This limit can be either known or estimated as a maximum return ever observed for a task.



Fig. 2. Performance of pure and attribute-based recency exploration for the low-STE (top) and
high-STE tasks (bottom)

performance and the speed of learning, we used a randomized ANOVA procedure [8]
to compare the learning curves of the different algorithms. This procedure is more ap-
propriate than the conventional one for comparing learning curves, because it does not
rely on the assumption of homogeneity of co-variance, which is violated when there are
carry-over effects. We performed the analysis separately on the learning curves for each
task. We also performed two-way ANOVA of the penalty measure averaged over the 5
MDPs in each group. In this case, one factor was the tunable parameter for the “pure”
exploration strategy (ε for the ε-greedy and K for the recency-based) and the other factor
was the variant of the corresponding strategy (pure vs. using the attribute(s)).

As shown in Figure 1, incorporating the attributes into the ε-greedy strategy has a
positive effect both for the low-STE and for the high-STE test, in all cases except ε = 0.1
in high-STE environments. The randomized ANOVA test for learning curves showed a
difference in the performance between the pure strategy and each of the three attribute-
based variants at the level of significance no smaller than p = 0.008 for each task and
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for each setting of ε. The penalty measure graphs show that the positive effect of using
STE becomes more significant as ε increases, and this trend is especially pronounced in
the case of the high-STE tasks. In this case, most estimates Q(s,a) have high variance,
but with a small exploration rate, many actions are not sufficiently sampled. Using STE
allows more samples to be gathered for such actions, and hence improve the solution
quality. FC has a greater positive effect for the high-STE tasks, as can be seen from
the penalty graphs in the right panels of Fig.1, mainly because it improves the speed
of learning (the learning curves are not shown here, due to lack of space). This shows
that encouraging the agent to learn about states where it can better control the course of
state transitions is helpful especially given a background of high overall stochasticity.
The two-way ANOVA test on the penalty measure showed that the positive effect of
using the attributes is significant.

Figure 2 presents the same performance measures when incorporating the attributes
in the recency-based exploration strategy. The recency-based method is significantly
more robust to the tuning of its main parameter, K0 than the ε-greedy strategy is to
the tuning of ε. With all the settings of K0, the performance of this strategy is close
to the best performance of the ε-greedy strategy (obtained at ε = 0.9). However, using
the MDP attributes further improves performance of the recency-based method as well,
although the effects appear to be smaller than in the case of the ε-greedy method (we
believe this is due to a ceiling effect). Although the differences appear to be small, the
statistical tests show that most differences are significant. In particular, the randomized
ANOVA test shows a significant difference between learning curves in the low-STE
group at the level no smaller than p = 0.04 for all tasks and all attribute versions. For
the high-STE tasks, significance levels range from p = 0.04 for the version using only
FC to p = 0.226 for the version using only STE. The two-way ANOVA on the penalty
measure is also less significant for the recency-based strategy in the high-STE group
(p = 0.03 for comparison of the pure vs. FC-based variant and p = 0.11 for pure vs.
STE-based variant). Similar to the case of the ε-greedy strategy, FC appears to have a
greater positive effect for the high-STE tasks.

For both the ε-greedy and recency-based strategies, in most cases, using STE and
FC together produces an improvement which is very similar to the best improvement
obtained by using either one of the attributes in isolation. For the low-STE test group,
the STE attribute brings a bigger performance improvement, whereas for the high-STE
test group, FC has a bigger effect. Thus, it would be reasonable to always use the com-
bination of two attributes to achieve the best improvement. Note that the improvements
were obtained without tuning any additional parameters, both for the ε-greedy and the
recency-based methods.

The results of the experiments conducted on the control groups did not reveal any
effect of using the attributes with either the ε-greedy or recency-based exploration. This
reinforces our conclusion that the effects observed on the test groups are not spurious.

5 Conclusions and Future Work

In this paper, we introduced a novel exploration approach based on the use of specific
MDP characteristics. Exploration decisions are made independently of the course of
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learning so far, based only on properties of the environment. Our technique facilitates a
more homogeneous exploration of the state space, a more extensive sampling of actions
with a potentially high variance of the action-value function estimates and encourages
the agent to focus on states where it has most control over the outcomes of its actions.
In our experiments, using these attributes improved performance for both undirected (ε-
greedy) and directed (recency-based) exploration in a statistically significant way. The
improvements were obtained without tuning any additional parameters. The attribute
values can be pre-computed before the learning starts, or they can be estimated during
learning. In the latter case, the amount of additional storage and computation is much
less compared to other directed techniques.

We are currently conducting a more detailed empirical study using toy hand-crafted
MDPs in order to better understand the circumstances under which the use of MDP
attributes to guide exploration is most beneficial. We also plan to investigate the use of
other attributes, e.g. the risk of taking exploratory actions and variance of immediate
rewards.
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