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Abstract. What patterns can we find in a bursty web traffic? On the
web or internet graph itself? How about the distributions of galaxies in
the sky, or the distribution of a company’s customers in geographical
space? How long should we expect a nearest-neighbor search to take,
when there are 100 attributes per patient or customer record? The tra-
ditional assumptions (uniformity, independence, Poisson arrivals, Gaus-
sian distributions), often fail miserably. Should we give up trying to find
patterns in such settings?
Self-similarity, fractals and power laws are extremely successful in de-
scribing real datasets (coast-lines, rivers basins, stock-prices, brain-
surfaces, communication-line noise, to name a few). We show some old
and new successes, involving modeling of graph topologies (internet, web
and social networks); modeling galaxy and video data; dimensionality re-
duction; and more.

Introduction – Problem Definition

The goal of data mining is to find patterns; we typically look for the Gaussian
patterns that appear often in practice and on which we have all been trained
so well. However, here we show that these time-honored concepts (Gaussian,
Poisson, uniformity, independence), often fail to model real distributions well.
Further more, we show how to fill the gap with the lesser-known, but even more
powerful tools of self-similarity and power laws.

We focus on the following applications:

– Given a cloud of points, what patterns can we find in it?
– Given a time sequence, what patterns can we find? How to characterize and

anticipate its bursts?
– Given a graph (e.g., social, or computer network), how does it look like?

Which is the most important node? Which nodes should we immunize first,
to guard against biological or computer viruses?

All three settings appear extremely often, with vital applications. Clouds of
points appear in traditional relational databases, where records with k-attributes
become points in k-d spaces; e.g. a relation with patient data (age, blood pres-
sure, etc.); in geographical information systems (GIS), where points can be, e.g.,
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cities on a two-dimensional map; in medical image databases with, for example,
three-dimensional brain scans, where we want to find patterns in the brain ac-
tivation [ACF+93]; in multimedia databases, where objects can be represented
as points in feature space [FRM94]. In all these settings, the distribution of k-
d points is seldom (if ever) uniform [Chr84], [FK94]. Thus, it is important to
characterize the deviation from uniformity in a succinct way (e.g. as a sum of
Gaussians, or something even more suitable). Such a description is vital for data
mining [AIS93],[AS94], for hypothesis testing and rule discovery. A succinct de-
scription of a k-d point-set could help reject quickly some false hypotheses, or
could help provide hints about hidden rules.

A second, very popular class of applications is time sequences. Time se-
quences appear extremely often, with a huge literature on linear [BJR94], and
non-linear forecasting [CE92], and the recent surge of interest on sensor data
[OJW03] [PBF03] [GGR02]

Finally, graphs, networks and their surprising regularities/laws have been
attracting significant interest recently. The applications are diverse, and the dis-
coveries are striking. The World Wide Web is probably the most impressive
graph, which motivated significant discoveries: the famous Kleinberg algorithm
[Kle99] and its closely related PageRank algorithm of Google fame [BP98]; the
fact that it obeys a “bow-tie” structure [BKM+00], while still having a sur-
prising small diameter [AJB99]. Similar startling discoveries have been made
in parallel for power laws in the Internet topology [FFF99], for Peer-to-Peer
(gnutella/Kazaa) overlay graphs [RFI02], and for who-trusts-whom in the epin-
ions.com network [RD02]. Finding patterns, laws and regularities in large real
networks has numerous applications, exactly because graphs are so general and
ubiquitous: Link analysis, for criminology and law enforcement [CSH+03]; anal-
ysis of virus propagation patterns, on both social/e-mail as well as physical-
contact networks [WKE00]; networks of regulatory genes; networks of interact-
ing proteins [Bar02]; food webs, to help us understand the importance of an
endangered species.

We show that the theory of fractals provide powerful tools to solve the above
problems.

Definitions

Intuitively, a set of points is a fractal if it exhibits self-similarity over all scales.
This is illustrated by an example: Figure 1(a) shows the first few steps in con-
structing the so-called Sierpinski triangle. Figure 1(b) gives 5,000 points that
belong to this triangle. Theoretically, the Sierpinski triangle is derived from an
equilateral triangle ABC by excluding its middle (triangle A’B’C’) and by recur-
sively repeating this procedure for each of the resulting smaller triangles. The
resulting set of points exhibits ‘holes’ in any scale; moreover, each smaller trian-
gle is a miniature replica of the whole triangle. In general, the characteristic of
fractals is this self-similarity property: parts of the fractal are similar (exactly
or statistically) to the whole fractal. For our experiments we use 5,000 sam-
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ple points from the Sierpinski triangle, using Barnsley’s algorithm of Iterated
Function Systems [BS88] to generated these points quickly.

B

CA A C

B

A C

B

C’

’

A’

B’

C’

B’

A’

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(a) construction (b) a finite sample

Fig. 1. Theoretical fractals: the Sierpinski triangle (a) the first 3 steps of its recursive
construction (b) a finite sample of it (5K points)

Notice that the resulting point set is neither a 1-dimensional Euclidean object
(it has infinite length), nor 2-dimensional (it has zero area). The solution is to
consider fractional dimensionalities, which are called fractal dimensions. Among
the many definitions, we describe the correlation fractal dimension, D, because
it is the easiest to describe and to use.

Let nb(ε) be the average number of neighbors of an arbitrary point, within
distance ε or less. For a real, finite cloud of E-dimensional points, we follow
[Sch91] and say that this data set is self-similar in the range of scales r1, r2 if

nb(ε) ∝ εD r1 ≤ ε ≤ r2 (1)

The correlation integral is defined as the plot of nb(ε) versus ε in log-log scales;
for self-similar datasets, it is linear with slope D.

Notice that the above definition of fractal dimension D encompasses the
traditional Euclidean objects: lines, line segments, circles, and all the standard
curves have D=1; planes, disks and standard surfaces have D=2; Euclidean
volumes in E-dimensional space have D = E.

Discussion – How Frequent Are Self-similar Datasets?

The reader might be wondering whether any real datasets behave like frac-
tals, with linear correlation integrals. Numerous the real datasets give linear
correlation integrals, including longitude-latitude coordinates of stars in the
sky, population-versus-area of the countries of the world [FK94]; several geo-
graphic datasets [BF95] [FK94]; medical datasets [FG96]; automobile-part shape
datasets [BBB+97,BBKK97].

There is overwhelming evidence from multiple disciplines that fractal datasets
appear surprisingly often [Man77](p. 447),[Sch91]:
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– coast lines and country borders (D ≈ 1.1 - 1.3);
– the periphery of clouds and rainfall patches (D ≈ 1.35)[Sch91](p.231);
– the distribution of galaxies in the universe (D ≈ 1.23);
– stock prices and random walks (D=1.5)
– the brain surface of mammals (D ≈ 2.7);
– the human vascular system (D = 3, because it has to reach every cell in the

body!)
– even traditional Euclidean objects have linear box-counting plots, with inte-

ger slopes

Discussion – Power Laws

Self-similarity and power laws are closely related. A power law is a law of the
form

y = f(x) = xa (2)

Power laws are the only laws that have no characteristic scales, in the sense that
they remain power laws, even if we change the scale: f(c ∗ x) = ca ∗ xa

Exactly for this reason, power laws and self-similarity appear often together:
if a cloud of points is self similar, it has no characteristic scales; any law/pattern
it obeys, should also have no characteristic scale, and it should thus be a power
law.

Power laws also appear extremely often, in diverse settings: in text, with the
famous Zipf law [Zip49]; in distributions of income (the Pareto law); in scientific
citation analysis (Lotka law); in distribution of areas of lakes, islands and animal
habitats (Korcak’s law [Sch91,HS93,PF01]) in earthquake analysis (Gutenberg-
Richter law [Bak96]; in LAN traffic [LTWW94]; in web click-streams [MF01];
and countless more settings.

Conclusions

Self-similarity and power laws can solve data mining problems that traditional
methods can not. The two major tools that we cover in the talk are: (a) the “cor-
relation integral” [Sch91] for a set of points and (b) the “rank-frequency” plot
[Zip49] for categorical data. The former can estimate the intrinsic dimensionality
of a cloud of points, and it can help with dimensionality reduction [TTWF00],
axis scaling [WF02], and separability [TTPF01]. The rank-frequency plot can
spot power laws, like the Zipf’s law, and many more.
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