
Improving Numerical Prediction
with Qualitative Constraints

Dorian Šuc and Ivan Bratko

Faculty of Computer and Information Science, University of Ljubljana,
Tržaška 25, 1000 Ljubljana, Slovenia

{dorian.suc,ivan.bratko}@fri.uni-lj.si

Abstract. The usual numerical learning methods, that are primarily
concerned with finding a good numerical fit to the data, often make
predictions that do not correspond to the qualitative mechanisms in
the domain of modelling or a domain expert’s intuition. Consistency
of numerical predictions with a given qualitative model is helpful when
a numerical model is used for explanation of phenomena in the mod-
elled domain, but can also considerably improve numerical accuracy. In
this paper we present a novel approach to numerical machine learning
called Qfilter. Qfilter is a numerical regression method that can take into
account qualitative background knowledge to give qualitatively faithful
numerical prediction. The results on a set of domains including popula-
tion dynamics show considerable prediction accuracy improvements com-
pared to the usual numerical learners. As qualitative domain knowledge
is often available in practice, Qfilter’s ability to exploit such knowledge
should be beneficial in many applications.

1 Introduction

1.1 Qualitative Problems of Numerical Learning

Methods of numerical machine learning, such as regression tree learning and lo-
cally weighted regression (LWR), often make predictions that a knowledgeable
user finds obviously incorrect. A domain expert finds such errors incorrect not so
much in numerical, but in qualitative terms. Often there are a priori known qual-
itative constraints in the domain of application, and for numerical predictions
to make sense, the predictions should be consistent with such constraints.

For example, consider a container filled with water. Let there be an open
drain at the bottom of the container, and water is draining out. Suppose we
want to make predictions about the amount of water at various times. Although
exact numerical predictions of the amount may be hard, obviously these predic-
tions will have to satisfy some qualitative constraints, such as: (1) the amount
can never be negative, and (2) the amount of water in the container can never
be increasing. Suppose that we have examples of measurements of the amount of
water in time, obtained from past behavior of the draining process that started
at different initial amounts. We then use standard methods of numerical machine
learning to make predictions of the amount at future times, starting with some

N. Lavrač et al. (Eds.): ECML 2003, LNAI 2837, pp. 385–396, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

386 Dorian Šuc and Ivan Bratko

new initial amount. Unfortunately, state-of-the-art numerical learning techniques
will typically produce predictions that do not completely respect the above men-
tioned qualitative constraints even when the learning data is noise-free. Šuc et
al. [1] give pertinent experimental results with the draining process, using M5
regression and model trees [2] and LWR [3] (implementation in Weka; [4]).

Such qualitative errors of numerical predictors are undesirable particularly
because they make numerical results difficult to interpret. The underlying mech-
anism in the domain is usually best explained in qualitative terms. However, this
is obscured by qualitative errors in numerical predictions.

1.2 Qfilter

In this paper we introduce a numerical learning method, called Qfilter. Qfilter ac-
cepts as input a set of numerical data points and a set of qualitative constraints,
and performs numerical regression so that the predicted numerical values re-
spect the given qualitative constraints. In a typical application of Qfilter, the
qualitative constraints are provided by the domain expert as (qualitative) back-
ground knowledge. Such constraints are typically part of domain knowledge. For
example, in biological modelling the growth rate of a population is qualitatively
proportional to the current size of the population and to the amount of food
available to the population. Another possibility of applying Qfilter is within the
Q2 learning, described below. In this context, qualitative constraints do not have
to come from a domain expert.

In Section 2 we define the type of qualitative constraints and qualitative
trees accepted by Qfilter. In Section 3 we describe the Qfilter algorithm. Section
4 presents experiments with Qfilter and a comparison with standard numerical
prediction methods. Section 5 gives conclusions.

1.3 Relation of Qfilter to Q2 Learning

To rectify the qualitative problems of numerical learning, Šuc et al. [1] proposed
“qualitatively faithful quantitative learning”, called Q2 learning for short. In ex-
periments with a complex industrial modelling problem, Q2 learning not only
improved the predictions qualitatively, but also numerically. Numerical predic-
tions with Q2 were considerably more accurate than those obtained with the
mentioned numerical learning methods.

Q2 learning consists of two stages:

1. Induce a qualitative model from numerical examples. Program QUIN ([5,6])
that induces qualitative trees from numerical data can be used for this.

2. Transform a qualitative model induced in stage 1 into a quantitative model
(i.e. a numerical function) that fits well the given numerical data and is con-
sistent with the qualitative constraints in the qualitative tree. This transfor-
mation is called Q2Q transformation (qualitative-to-quantitative).

The Q2Q transformation in [1] was based on piece-wise linear regression
where these linear functions were determined heuristically using LWR on a grid

Improving Numerical Prediction with Qualitative Constraints 387

z=M
-,+(x,y) z=M

-,-(x,y) z=M
+,+(x,y) z=M

+,-(x,y)

≤ 0> 0 > 0

≤ 0 > 0

≤ 0

y

x

y

Fig. 1. A qualitative tree that describes the qualitative relations between class Z and
attributes X and Y for the function Z = X2 − Y 2. The rightmost leaf, applying when
attributes X and Y are positive, says that Z is strictly increasing in its dependence on
X and strictly decreasing in its dependence on Y .

of selected points. Although this method worked well in the experiments, it was
ad hoc in that there was no guarantee that the so obtained heuristic functions
would completely respect the qualitative constraints. The Qfilter approach in-
troduced in this paper is a better founded and better performing method for
Q2Q transformation.

2 Qualitative Trees for Knowledge Representation

In this section we describe a formalism for the representation of qualitative back-
ground knowledge. We represent qualitative knowledge in the form of so-called
qualitative trees that are described below and proved to be useful and under-
standable in several different applications [5,7,1]. In these applications qualita-
tive trees were induced from numerical examples by program QUIN [5,6]. In this
paper we assume that they are given, e.g. defined by a domain expert, and study
the advantages in terms of prediction accuracy.

Qualitative trees are similar to decision trees but model qualitative relations
between the class and the attributes. As in decision trees, the internal nodes in a
qualitative tree specify conditions that split the attribute space into subspaces.
In a qualitative tree, however, each leaf specifies a region in the attribute space
where some monotonicity constraints hold. These monotonicity constraints are
represented by what we call qualitatively constrained functions (QCFs for short).
A simple example of QCF is: Y = M+(X). This says that Y is a monotonically
increasing function of X. In general, QCFs can have more than one argument.
For example, Z = M+,−(X, Y) says that Z monotonically increases in X and
monotonically decreases in Y . We say that Z is positively related to X and neg-
atively related to Y . If both X and Y increase, then according to this constraint,
Z may increase, decrease or stay unchanged. In such a case, a QCF cannot make
an unambiguous prediction of the qualitative change in Z as explained below.

Figure 1 gives an example of a qualitative tree. This qualitative tree is a
qualitative model of the function Z = X2−Y 2 and describes how Z qualitatively
depends on attributes X and Y . The tree partitions the attribute space into four

388 Dorian Šuc and Ivan Bratko

regions that correspond to the four leaves of the tree. A different QCF applies
in each of the leaves. The QCF Z = M+,−(X, Y) applies in the rightmost leaf,
where both X and Y are positive.

Qualitatively constrained functions are inspired by the qualitative propor-
tionality predicates Q+ and Q− as defined by Forbus [4] and are also a gener-
alization of the qualitative constraint M+, as used in QSIM [9]. A QCF con-
strains the qualitative change of the class variable in response to the qualitative
changes of the attributes. Namely, a QCF Ms1,...,sm , si ∈ {+,−} represents
an arbitrary function �m �→ � with m continuous attributes that respects the
qualitative constraints given by signs si. The qualitative constraint given by sign
si = + (si = −) requires that the function is strictly increasing (decreasing) in
its dependence on the i-th attribute. We say that the function is positively re-
lated (negatively related) to the i-th attribute. Ms1,...,sm represents any function
which is, for all i = 1, . . . , m positively (negatively) related to the i-th argument,
if si = + (si = −).

Note that the qualitative constraint given by sign si = + only states that
when the i-th attribute increases, the QCF will also increase, barring other
changes. It can happen that a QCF with the constraint si = + decreases even
if the i-th attribute increases, because of a change in another attribute. For ex-
ample, consider the behaviour of gas pressure in a container given by equation
Pres × V ol/Temp = const. We can express the qualitative behaviour of gas
pressure by QCF Pres = M+,−(Temp, V ol). This constraint allows that the
pressure decreases even if the temperature increases, because of a change in the
volume. Notice however, that the qualitative behaviour of gas is not consistent
with the constraint Pres = M+(Temp).

QCFs are concerned with qualitative changes. Qualitative change qi in the
i-th attribute is the sign of change in that variable. This can be either positive,
negative or zero change. For simplicity, we ignore zero changes in the next para-
graphs. QCF-prediction P (si, qi) is the qualitative change of the class variable
predicted according to a single (i-th) attribute. QCF-prediction is positive if si

and qi are both positive or both negative, and is negative otherwise. Qualita-
tive ambiguity, i.e. ambiguity in the class’s qualitative change appears whenever
there exist both positive and negative QCF-predictions according to different
attributes. A qualitatively constrained function is consistent with a pair of ex-
amples if there exists an attribute whose QCF-prediction is equal to the class’s
qualitative change. We say that this example pair is QCF-consistent. A qualita-
tively constrained function is consistent with a set of examples if it is consistent
with all possible example pairs, i.e. when all possible examples pairs are QCF-
consistent.

3 Qfilter

3.1 Idea and Example

Here we describe algorithm Qfilter that, given a set of examples and a qualita-
tive tree, adjusts the class values in such a way that they are consistent with

Improving Numerical Prediction with Qualitative Constraints 389

0 1 2 3 4 5 6 7
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

attribute A

cla
ss

 C
 =

 M
+(

A)

Data points
Points satisfying C = M+(A)

Fig. 2. Achieving consistency with QCF C = M+(A): since the QCF requires that
class C is strictly increasing in attribute A, class values ci (denoted by circles) are
changed into ci + di (denoted by crosses) by minimizing the sum of squared changes
di. The arrows denote the class changes di.

the qualitative tree. Namely, Qfilter is an optimization procedure that finds the
minimal required quadratic changes in class values to achieve qualitative consis-
tency with the qualitative tree. In one respect Qfilter can be viewed as a filter
that smooths the data and removes the qualitative errors introduced by the
measurement errors, but here we use it to remove the qualitative errors made
by numerical predictors, as it will be explained later.

Let us first observe a simple example illustrated in Figure 2. We have eight
examples (ai, ci), i = 0, 1, .., 7 described with the values of class C and attribute
A. The examples are not consistent with the given QCF C = M+(A), because
the QCF requires that ci+1 > ci which is violated at i = 1 and i = 4.

To achieve consistency with C = M+(A), class values should be changed into
ci + di, where the unknown parameter di denotes the change in i-th class value.
Class changes di are constrained by QCF imposed inequalities: ci+1 + di+1 >
ci + di where i = 0, 1, .., 6. This gives the optimization problem that can be
formulated in matrix notation by writing the inequalities as A d > b, where
d is a vector of unknown parameters di, vector b has elements bi = ci − ci+i,
and matrix A has elements ai,i = −1, ai,i+1 = 1 and zeros elsewhere. Therefore
finding minimal quadratic changes in class values that achieve consistency with
a given QCF can be posed as the optimization problem:

find vector d that minimizes dT Hd

such that A d > b
(1)

In the above formulation matrix H is the identity matrix. In general H can be
changed to differently penalize the changes in class values. For example, we could
change H to require that the classes of examples that have higher confidence
are changed less. The above stated optimization problem is a kind of quadratic
programme and can be efficiently solved by a number of methods. We used a
quadratic programming solver in Matlab [10,11,12]. Since the criterion function

390 Dorian Šuc and Ivan Bratko

dT H d with diagonal matrix H is a convex function, and because the linear
constraints A d > b define a convex hull, any local minimum of the criterion
function is a globally optimal solution.

Note that in the above formulation the values of attribute A are not men-
tioned at all. However the ordering of attributes values, i.e. ai+1 > ai, was used
together with QCF C = M+(A) to set the ordering of class values, i.e. ci+1 > ci.
A different ordering of attribute values would require a different ordering of class
values, depending also on the QCF. When more than one attributes are used in
a QCF, finding an appropriate ordering of class values is not as trivial as in the
example above and is explained in the next section.

3.2 Details of the Qfilter Algorithm

Qfilter handles each leaf of a qualitative tree separately. It first splits the ex-
amples according to the qualitative tree and then change class values to achieve
consistency with a QCFs in the corresponding leaf. As mentioned above, Qfilter
uses the attributes’ values and the QCF to find an appropriate ordering of class
values, poses the optimization problem in the form given by Equation 1, and
solves it by using quadratic programming methods. To explain how to find an
appropriate ordering of class values we first define two useful terms, and then
explain some properties of QCFs. Since in general not all of the attributes ap-
pear in a QCF, we call an attribute that appears in a QCF a QCF-attribute.
We call a QCF that doesn’t have a negative dependance on an attribute, i.e. is
positively related with all QCF-attributes, a pure-positive QCF.

The first interesting QCF property is that an arbitrary QCF can be, by
appropriate changes in attributes, replaced by a pure-positive QCF. It is easy
to check that a QCF that is negatively related with attribute Ai and positively
related with all other attributes, is equivalent to a pure-positive QCF, where
the attribute Ai is replaced by Âi = −Ai. For example QCF M+,−(A1, A2) is
equivalent to QCF M+,+(A1, Â2), where Â2 = −A2. Therefore we can simply
multiply by minus one (or any other negative number) all the negatively related
QCF-attributes to get a pure-positive QCF. Actually multiplying by minus one
all negatively related QCF-attributes is the first step in Qfilter. In the rest of
this section we assume that a given QCF is a pure-positive QCF.

The second interesting QCF property is that a QCF defines a partial ordering
of class values and that a pure-positive QCF is consistent with a set of examples
if the class value of every example e is greater than the class values of every
example from a set called Fsg(e). More formally, we show that a pure-positive
QCF is consistent with a set of examples if, and only if:

∀e, f ∈ Examples : f ∈ Fsg(e) ⇒ ce > cf (2)

where Fsg(e) is the set of examples fsg that are smaller than e in every QCF-
attribute and there is no example fs that is in every attribute smaller than
e and in every QCF-attribute greater than fsg. This is explained in the next
paragraphs. We show this by using the QCF consistency criterion that requires

Improving Numerical Prediction with Qualitative Constraints 391

that all possible example pairs are QCF-consistent. A first simplification is that
we do not need to check all possible example pairs. A pure-positive QCF is
consistent with a set of examples if every example e is QCF-consistent with all
the examples fs that are smaller than e in every QCF-attribute. The set of such
examples is denoted by Fs(e). Namely, example pairs of e and examples famb that
are in one QCF-attribute grater than e, and in another QCF-attribute smaller
than e are QCF-consistent with any pure-positive QCF. QCF-consistencies of
example pairs of e and examples fg, that are in all QCF-attributes grater than
e, are checked when examples fg are checked. Since the relation “is smaller than
e in every QCF-attribute” is transitive, we need to check the consistency only
for the “largest” examples from Fsg(e) ⊆ Fs(e), i.e. examples fsg ∈ Fs(e) with
the property that in Fs there is no example that is in every QCF-attribute
greater than example fsg. Since all the examples from Fsg(e) are smaller than
e in every QCF-attribute, a pure-positive QCF requires that the class value of
example e is greater than the class value of every example from the set Fsg(e),
i.e. ∀f ∈ Fsg(e) : ce > cf .

The ordering of class values given by Equation 2 is used to set the inequality
constraints, i.e. matrix A and vector b from Equation 1. For each f ∈ Fsg(e) we
add one (say i-th) constraint ce + de > cf + df , therefore vector b has elements
bi = cf − ce, and matrix A has elements ai,f = −1, ai,e = 1 and zeros elsewhere.

3.3 Qfilter for Numerical Prediction

The basic idea of using Qfilter for numerical prediction is to apply it, with a given
qualitative tree, on predictions of an arbitrary numerical learner. A numerical
predictor is usually trained on a set of learning examples, where “correct” class
values are given. For this reason it is quite natural to provide the learning ex-
amples also to Qfilter. In this case Qfilter is supplied with the learning examples
with “correct” class values together with test examples with predictions of class
values. Qfilter then adjusts the class values of both learning and test examples
to fit a qualitative tree. It is quite obvious that using also learning examples
usually helps Qfilter. This is especially evident when adjusting a prediction of a
test example that is close to some learning examples.

One possible improvement of Qfilter is to also use the confidence estimate in
numerical prediction if it is provided by the numerical predictor. In this case,
Qfilter would change the class values with higher confidence less, for the price
of bigger changes of class values that have lower confidence. This is achieved by
simply changing matrix H in Equation 1 from identity to a diagonal matrix with
hi,i = wi, where weight wi is computed from predictor’s confidence estimate in
i-th class value. Of course, the computation of weight wi depends on the type
and scale of confidence estimate, but would generally be smaller if a numerical
predictor is more confident in i-th class prediction.

392 Dorian Šuc and Ivan Bratko

Fig. 3. Qualitative trees used with Qfilter in domains RoboY1, RoboY2atrY1 and in
the population dynamics domain ZooChange. Note that 1.57 in the first two trees is an
approximation of π

2 where sin(Φ) changes from an increasing to a decreasing function.

4 Experimental Results

Here we compare the numerical accuracy of locally weighted regression [3] (LWR)
and Qfilter. Qfilter was used to adjust the LWR predictions according to given
qualitative trees. We used a standard procedure to optimize LWR. Namely, LWR
optimized the Gaussian kernel width that is used to weigh the neighbor exam-
ples according to the mean squared local cross validation error at the point of
prediction.

We experimented with different learning set sizes and different noise in class
variable. We used normally distributed zero-mean noise. Noise percentage p %
means that the standard deviation of noise is dc p/100 where dc denotes the dif-
ference between maximal and minimal class value. First we describe experiments
in four artificial domains and then experiments in a more complex population
dynamics domain.

4.1 Artificial Domains

Here we describe experiments in four artificial domains. The first is the domain
called Quad with attributes X and Y and class Z = X2 −Y 2. Attributes X and
Y are uniformly distributed between -10 and 10. Qfilter used LWR predictions
and the qualitative tree given in Figure 1 and explained in Section 2.

The second set of domains consists of three domains, called RoboY1, RoboY2
and RoboY2atrY1. Here we model a planar two-link, two joint robot arm. The
angle in the shoulder joint is denoted by Φ1 and the angle in the elbow joint is
denoted by Φ2. Angle Φ1 is between zero and π, while Φ2 is between −π/2 and
π/2. When the arm is in horizontal position Φ1 and Φ2 are both zero. The first
link, i.e. the link from shoulder to elbow, is extendible with length L1 ranging
from 2 to 10. The second link has fixed length L2 = 5. The first learning problem
is to predict y-coordinate of the first link end, i.e. Y 1 = L1 sin(Φ1). This problem
is called RoboY1. For Qfilter we used the qualitative tree given in Figure 3.

The second learning problem is to predict y-coordinate of the second link end,
i.e. Y 2 = L1 sin(Φ1)+5 sin(Φ1 +Φ2). Here we helped the learners with a derived
attribute Φsum = Φ1 + Φ2, i.e. the deflection of the second link from the hori-
zontal. We experimented with two versions of this learning problem. In domain
RoboY2 we used the attributes L1, Φ1, Φ2 and ΦSum. In domain RoboY2atrY1
we also used the correct Y 1 as an attribute. We generated examples where an-
gles Φ1 and Φ2 and link length L1 are uniformly distributed in their possible

Improving Numerical Prediction with Qualitative Constraints 393

0 10 20 30 40

Noise percentage
0.0

0.5

1.0

1.5

2.0

2.5

QFilter MSE
LWR MSE

Fig. 4. Noise curve in domain RoboY1 with 100 learning examples: on x- axis is
noise percentage and on y-axis is LWR (line with circles) and Qfilter (dotted line with
triangles) mean squared error.

ranges. Qualitative tree used with domain RoboY2atrY1 is given in Figure 3.
Qualitative tree used with domain RoboY2 has four leaves, with the same root
node as qualitative tree for domain RoboY2atrY1, but with Y 1 replaced by the
qualitative tree for Y 1.

We experimented with different learning set sizes and different noise in class
variable. We used a test set of 200 examples without noise. Table 1 gives the
comparison of LWR and Qfilter mean squared errors (MSE) with 100 learning
examples and various noise levels. All the results are averages on 10 sets of
randomly selected learning and test examples. With all four learning problems
the improvement of Qfilter with respect to LWR is obvious. Qfilter usually re-
duces LWR MSE by more than 20 %. The MSE reduction usually increases with
increased noise. Figure 4 shows a typical noise curve in domain RoboY1.

We also experimented with different learning set sizes. For an illustration, we
give the results with learning from examples with no noise in domain RoboY1
in Table 1. When we used only 10 or 20 learning examples the Qfilter reduction
of error is relatively small, since none of the learners is able to generalize well
from such a small learning set. But as the learning set increases, Qfilter can take
advantage of given qualitative knowledge. After a certain learning set size, the
reduction of error decreases with increasing learning set. However, the reduction
in error is usually still visible even when we use relatively large learning set. Of
course this depends on the difficulty of the domain. When a numerical learner
gives predictions that are consistent with a given qualitative tree, Qfilter does
not change them.

4.2 Population Dynamics Domain

The last domain models a dynamic behavior of an aquatic ecosystem that in-
volves populations of zooplankton and phytoplankton, and inorganic nutrient
nitrogen that are denoted by variables Zoo, Phyto and Nut, respectively. The

394 Dorian Šuc and Ivan Bratko

Table 1. Comparison of LWR and Qfilter accuracy. The first table gives MSE with
100 learning examples and various noise levels in all the described domains. Since the
changes in zooplankton are small, the values of MSE given for the domain ZooChange
are multiplied by 103. The second table gives MSE in domain RoboY1 when different
number of learning examples with no noise were used. All the results are averages on
10 sets of learning examples.

Domain class no noise MSE 5 % n. MSE 20 % n. MSE
name variable LWR; Qfilter LWR; Qfilter LWR; Qfilter
Quad Z = X2 − Y 2 98.4 ; 84.7 149.3 ; 114.6 765.6 ; 554.7

RoboY1 Y 1 = L1 sin(Φ1) 0.298 ; 0.196 0.407 ; 0.280 1.924 ; 1.367
RoboY2 Y 2=L1 sin(Φ1)+5 sin(Φsum) 2.618 ; 2.305 3.078 ; 2.612 6.823 ; 5.167

RoboY2atrY1 Y 2 as above, using attr. Y 1 0.940 ; 0.691 1.324 ; 0.968 3.665 ; 2.707
ZooChange ZooCh(t)=Zoo(t+1)−Zoo(t) 0.015 ; 0.008 0.112 ; 0.102 2.269 ; 1.889

Domain 20 learn. ex. MSE 50 l.ex. MSE 100 l.ex. MSE 300 l.ex. MSE
name LWR; Qfilter LWR; Qfilter LWR; Qfilter LWR; Qfilter

RoboY1 3.690 ; 3.421 1.201 ; 0.933 0.298 ; 0.196 0.019 ; 0.018

model assumes closed ecosystem with no inflow and consists of two consump-
tion interactions. Namely, phytoplankton consumes nitrogen, and zooplankton
consumes phytoplankton. This results in complex time behavior of the variables.

Our learning task is to predict the change in zooplankton ZooChange(t), i.e.
the difference between the zooplankton population at the next and the current
time point (ZooCh(t) = Zoo(t + 1) − Zoo(t)), given the values of zooplankton,
phytoplankton, and nutrient at the current time point. We used experimental
data that was kindly provided by Ljupčo Todorovski and Sašo Džeroski who pre-
viously experimented in this domain and give a more elaborate description of the
domain [13]. The experimental data was generated by the following differential
equations model:

˙Nut = 2 − Phyto Nut

˙Phyto = 0.1 − Phyto

7
− Phyto

5
+ 0.7 PhytoNut − 0.5

Zoo Phyto

Phyto + 0.5

˙Zoo = −0.1 Zoo + 0.25
Zoo Phyto

Phyto + 0.5

(3)

In contrast to other experimental domains we do not use a qualitative model
that would completely correspond to the actual numerical behavior of the pop-
ulation dynamics model. Instead we use a heuristic qualitative tree given in
Figure 3. This qualitative tree was obtained by qualitative abstraction of ˙Zoo
in Equation 3 and assumes constant values of the variables between the cur-
rent and the next time point. It is just an approximate qualitative model an
expert might give and has the following interpretation. Since zooplankton feeds
on phytoplankton, a larger phytoplankton population enables a bigger positive
change in zooplankton. The change of zooplankton is also positively related to
the zooplankton population, since the growth rate of a population is positively
related to the size of the population. But if the phytoplankton population is too

Improving Numerical Prediction with Qualitative Constraints 395

small (below 0.33 in qualitative tree in Figure 3) to provide enough food for
zooplankton, then the change in zooplankton will be negatively related to the
zooplankton population.

The data consists of ten traces generated by simulating a numerical model
from ten randomly chosen triples of starting values for variables Zoo, Phyto
and Nut. Each simulation lasts for 100 time steps and gives 100 examples, each
example being described with attributes Nut(t), Phyto(t) and Zoo(t). The class
variable ZooCh was computed as the difference in zooplankton population be-
tween two consecutive points in time, i.e. ZooCh(t) = Zoo(t + 1) − Zoo(t). The
learning examples were randomly selected from the first five traces, and the test
examples were randomly selected from second five traces. We used 100 learning
and 100 test examples. The results in Table 1 are averages of learning from ten
random selections of examples. These results show that even an approximate
qualitative model can help Qfilter to improve numerical accuracy.

In the experiments with Weka [4] implementation of M5 regression and model
trees [2], qualitative errors were even more obvious, as illustrated also in [1]. For
this reason the accuracy improvements of Qfilter with respect to model and
regression trees were usually bigger.

5 Conclusions

We presented a novel approach to numerical machine learning called Qfilter.
Qfilter is a numerical regression method that can take into account qualitative
background knowledge expressed as a qualitative tree with qualitatively con-
strained functions in the leaves of the tree. As qualitative domain knowledge is
often available in practice, Qfilter’s ability to exploit such knowledge should be
beneficial in many applications. One desirable consequence of using such qualita-
tive knowledge is improved accuracy of numerical predictions. Another desirable
property is that the resulting numerical regression model is qualitatively consis-
tent with known qualitative relations in the domain of application.

There are several directions in which Qfilter can be extended. As noted in
Section 3.3, a possible improvement is to use the confidence estimate in nu-
merical prediction provided by the numerical predictor to change less the class
values that have higher confidence estimate. Experiments with using the size of
confidence intervals provided by LWR show that this can additionally improve
Qfilter accuracy. Qfilter as presented in this paper, requires a numerical learner
and it does not provide an explicit model. However, the quadratic programming
approach can easily be extended to induce a piecewise linear model that is con-
sistent with a given qualitative model. Another interesting point is that Qfilter
finds minimal sum of squared changes of class values to achieve consistency with
a given qualitative model. In this respect it gives the error of numerical data
w.r.t. qualitative model or vice versa and provides a bridge between qualitative
and numerical models.

In the experiments in several domains, Qfilter always improved the accuracy
of numerical predictions compared to standard regression methods. Improve-

396 Dorian Šuc and Ivan Bratko

ments in accuracy were observed even in cases when the qualitative constraints
applied were only approximate. In the experiments, the improvements were ob-
served consistently when varying the amount of learning examples and the degree
of noise in the data. In this paper we assumed that qualitative trees are given.
An appealing alternative would be to use induced qualitative trees. QUIN, de-
pending on the noise, often induced similar qualitative trees as used here.

Acknowledgements

The work reported in this paper was partially supported by the European Fifth
Framework project Clockwork and the Slovenian Ministry of Education, Science
and Sport.

References

1. Šuc, D., Vladušič, D., Bratko, I.: Qualitatively faithful quantitative prediction. In:
Proceedings of the 18th International Joint Conference on Artificial Intelligence.
(2003) August, 2003, Acapulco, Mexico.

2. Quinlan, J.: Learning with continuous classes. In: Proc. of the 5th Australian Joint
Conference on Artificial Intelligence, Singapore, World Scientific (1992) 343–348

3. Atkeson, C., Moore, A., Schaal, S.: Locally weighted learning. Artificial Intelligence
Review 11 (1997) 11–73

4. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations, Chapter 8. Morgan Kaufmann, San Francisco
(2000) 265–320

5. Šuc, D.: Machine Reconstruction of Human Control Strategies. PhD thesis, Faculty
of Computer and Information Sc., University of Ljubljana, Slovenia (2001)

6. Šuc, D., Bratko, I.: Induction of qualitative trees. In De Raedt, L., Flach, P., eds.:
Proc. of the 12th European Conf. on Machine Learning, Springer (2001) 442–453

7. Šuc, D., Bratko, I.: Qualitative reverse engineering. In Sammut, C., Hoffmann, A.,
eds.: Proc. of the 19th International Conf. on Machine Learning, Morgan Kaufmann
(2002) 610–617

8. Forbus, K.: Qualitative process theory. Artificial Intelligence 24 (1984) 85–168
9. Kuipers, B.: Qualitative simulation. Artificial Intelligence 29 (1986) 289–338

10. The MathWorks, I.: Matlab software. (2003) http://www.mathworks.com.
11. Coleman, T.F., Li, Y.: A reflective Newton method for minimizing a quadratic

function subject to bounds on some of the variables. SIAM Journal on Optimization
6 (1996) 1040–1058

12. Gill, P.E., Murray, W., Wright, M.H.: Quadratic programming. In: Practical
Optimization. Academic Press, London, England (1981) 177–184

13. Todorovski, L., Džeroski, S.: Using domain knowledge on population dynamics
modeling for equation discovery. In: Proceedings of the 12th European Conference
on Machine Learning, Springer (2001) 478–490

	1 Introduction
	1.1 Qualitative Problems of Numerical Learning
	1.2 Qfilter
	1.3 Relation of Qfilter to Q^2 Learning

	2 Qualitative Trees for Knowledge Representation
	3 Qfilter
	3.1 Idea and Example
	3.2 Details of the Qfilter Algorithm
	3.3 Qfilter for Numerical Prediction

	4 Experimental Results
	4.1 Artificial Domains
	4.2 Population Dynamics Domain

	5 Conclusions
	References

