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Abstract. This paper presents Abalearn, a self-teaching Abalone pro-
gram capable of automatically reaching an intermediate level of play
without needing expert-labeled training examples, deep searches or ex-
posure to competent play.
Our approach is based on a reinforcement learning algorithm that is risk-
seeking, since defensive players in Abalone tend to never end a game.
We show that it is the risk-sensitivity that allows a successful self-play
training. We also propose a set of features that seem relevant for achiev-
ing a good level of play.
We evaluate our approach using a fixed heuristic opponent as a bench-
mark, pitting our agents against human players online and comparing
samples of our agents at different times of training.

1 Introduction

This paper presents Abalearn, a self-teaching Abalone program directly inspired
by Tesauro’s famous TD-Gammon [14], which used Reinforcement Learning (RL)
methods to learn by self-play a Backgammon evaluation function. We chose
Abalone because the game’s dynamics represent a difficult challenge for RL
methods, particularly for methods of self-play training. It has been shown [8]
that Backgammon’s dynamics are crucial to the success of TD-Gammon, because
of its stochastic nature and the smoothness of its evaluation function. Abalone,
on the other hand, is a deterministic game that has a very weak reinforcement
signal: in fact, players can easily repeat the same kind of moves and the game
may never end if one doesn’t take chances.

Exploration is vital for RL to work well. Previous attempts to build an agent
capable of learning how to play games through reinforcement either use expert-
labeled training examples [5] or exposure to competent play (online play against
humans [3] or learning by playing against a heuristic player [5]). We propose a
method capable of efficient self-play learning for the game Abalone that is based
on risk-sensitive RL [7]. We also provide a set of features and state represen-
tations for learning to play Abalone, using only the outcome of the game as a
training signal.
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Table 1. Complexity of several games.

Game Branch States Source
Chess 30–40 1050 [4]

Checkers 8–10 1017 [10]
Backgammon ±420 1020 [18]

Othello ±5 < 1030 [20]
Go 19×19 ±360 10160 [11]
Abalone ±80 < 361 [1]

The rest of the paper is organized as follows: section 2 briefly analyses the
game’s complexity. Section 3 refers and explains the most significant previous
RL efforts in games. Section 4 details the training method behind Abalearn and
section 5 describes the state representations used. Finally, section 6 presents
the results obtained using a heuristic player as benchmark, as well as results of
games against other programs and human expert players. Section 7 draws some
conclusions about our work.

2 Complexity in the Game Abalone

The rules of Abalone are simple to understand: to win, one has to push off the
board 6 out of the 14 opponent’s stones by outnumbering him/her1. Despite
this apparent simplicity, the game is very popular and challenging [1]. Table 1
compares the branching factor and the state space dimension of some zero-sum
games. The data was gathered from a selection of papers that analyzed those
games.

These are all estimated values, since it is very difficult to determine rigorously
the true values of these variables. Abalone has a branching factor higher than
Chess, Checkers and Othello, but does not match the complexity of Go. The
branching factor in backgammon is due to the dice rolls and is the main reason
why other search techniques have to be used for this game.

The problem in Abalone is that when the two players are defensive enough,
the game can easily go on forever, making the training more difficult (since it
weakens the reinforcement signal).

3 Related Work

In this section we present a small survey on programs that learn to play games us-
ing RL. The most used method is Temporal Difference Learning, or TD-Learning.
Samuel’s checkers player [9] already used a form of temporal difference learn-
ing, as well as Michie’s Tic-tac-toe player [6]. They both pre-date reinforcement
learning as a field, but both basically use the same ideas.
1 For further information about the games rules and strategies, please refer to the

Official Abalone Web-site: www.abalonegames.com.
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3.1 The Success of TD-Gammon

Tesauro’s TD-Gammon [16] caused a small revolution in the field of RL. TD-
Gammon was a Backgammon player that needed very few domain knowledge,
but still was able to reach master-level play [15]. The learning algorithm, a
combination of TD(λ) with a non-linear function approximator based on a neural
network, became quite popular.

Besides predicting the expected return of the board position, the neural net-
work also selected both agent and opponent’s moves throughout the game. The
move selected was the one for which the function approximator gave the higher
value.

Modeling the value function with a neural network poses a number of difficul-
ties, including what the best network topology is and what the input encoding
should look like. Tesauro used a number of backgammon-specific features in ad-
dition to the other information representing the board to increase the informa-
tion immediately available to the neural network. He found that this additional
information gave another performance improvement.

TD-Gammon’s surprising results were never repeated to other complex board
games, such as Go, Chess and Othello. Many authors [11,2,8] have discussed
Backgammon’s characteristics that make it perfectly suitable for TD-learning
through self-play. Among others, they emphasize: the speed of the game (TD-
Gammon was trained by playing 1.5 million games), the smoothness of the
game’s evaluation function which facilitates the approximation via neural net-
works, and the stochastic nature of the game: the dice rolls force exploration,
which is vital in RL.

Pollack and Blair show that a method initially considered weak – training a
neural network using a simple hill-climbing algorithm – leads to a level of play
close to the TD-Gammon level [8], which sustains that there is a bias in the
dynamics of Backgammon that inclines it in favor of TD-learning techniques.
Although Tesauro does not entirely agree with Pollack and Blair [17], it is quite
surprising that such a simple procedure works at all.

3.2 Exposure to Competent Play

Learning from self-play is difficult as the network must bootstrap itself out of
ignorance without the benefit of exposure to skilled opponents. As a consequence,
a number of reported successes are not based on the networks’ own predictions,
but instead they learn by playing against commercial programs, heuristic players,
human opponents or even by simply observing recorded games between human
players. This approach helps to focus on the state space fraction that is really
relevant for good play, but places the need of an expert player, which is what
we want to obtain in the first place.

The Chess program KnightCap was trained by playing against human oppo-
nents on an internet chess server [3]. As its rate improved, it attracted stronger
and diverse opponents, since humans tend to choose partners of the same level
of play. This was crucial to KnightCap’s success, since the opponents guided
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KnightCap throughout its training (similar to the dice rolls in backgammon,
which facilitated exploration of the state space). Thrun’s program, NeuroChess
[19], was trained by playing against GNUChess, a heuristic player, using TD(0).

Dahl [5] proposes an hybrid approach for Go: a neural network is trained to
imitate local game shapes made by an expert database via supervised learning.
A second net is trained to estimate the safety of groups of stones using TD(λ),
and a third net is trained, also by TD(λ)-Learning to estimate the potential of
non-occupied points of the board.

4 Abalearn’s Training Methodology

Temporal difference learning (TD-learning) is an unsupervised RL algorithm
[12]. In TD-learning, the evaluation of a given position is adjusted by using the
differences between its evaluation and the evaluations of successive positions.

Sutton defined a whole class of TD algorithms which look at predictions of
positions which are further ahead in the game and weight them exponentially
less according to their temporal distance by the parameter λ.

Given a series of predictions, V0, ..., Vt, Vt+1, then the weights in the evalua-
tion function can be modified according to:

∆wt = α (Vt+1 − Vt)
t∑

k=1

λt−k∇wVk (1)

TD(0) is the case in which only the one state preceding the current one is
changed by the TD error (λ = 0). For larger values of λ, but still λ < 1, more
of the preceding states are changed, but each more temporally distant state is
changed less. We say that earlier states are given less credit for the TD error
[13].

Thus, the λ parameter determines whether the algorithm is applying short
range or long range prediction. The α parameter determines how quickly this
learning takes place.

A standard feed-forward two-layer neural network represents the agent’s eval-
uation function over the state space and is trained by combining TD(λ) with
the Backpropagation procedure. We used the standard sigmoid as the activation
function for the hidden and output layers’ units. Weights are initialized to small
random values between −0.01 and 0.01.

Rewards of +1 are given whenever the agent pushes an opponent’s stone off
the board or whenever it wins the game. When the agent loses the game or when
the opponent pushes an agent’s stone the reward is –1, otherwise it is 0 2.
2 Another option would be to give a positive reward only at the end of the game

(when six stones have been pushed off the board). The agent would be able to learn
to “sacrify” stones in order to improve its position. This option has not been used
in the present paper, in part because we believe that a value function that take
into account sacrifices must be much more difficult to approximate. This may be an
interesting direction for future work.
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One of the problems we encountered was that self-play was not effective be-
cause the agent repeatedly kept playing the same kind of moves, never ending
a game. When training is based on self-play, the problem of exploration is very
important because the agent may restrict itself to a small portion of the state
space and become weaker and weaker, because the opponent is itself. This char-
acteristic is not specific to the Abalone but applies to any agent that learns by
self-play.

One way to favor exploration of the state space is to use an ε-greedy policy.
During training, the agent follows an ε-greedy policy, selecting a random action
with probability ε and selecting the action judged by the current evaluation
function as having the highest value with probability 1−ε. The drawback of this
solution is that it introduces noise in the policy “blindly” i.e. without taking
into account the value of the current state.

The solution was to provide the agent with a sensitivity to risk during learn-
ing. Mihatsch and Neuneier [7] recently proposed a method that can help accom-
plish this. Their risk–sensitive RL algorithm transforms the temporal differences.
In this approach, κ ∈ (−1, 1) is a scalar parameter which specifies the desired
risk–sensitivity. The function

χκ : x �→
{

(1 − κ)x if x > 0,
(1 + κ)x otherwise (2)

is called the transformation function, since it is used to transform the temporal
differences according to the risk sensitivity. The risk sensitive TD algorithm
updates the estimated value function V according to

Vt(st) = Vt−1(st) + αχκ[R(st, at) + γVt−1(st+1) − Vt−1(st)] (3)

When κ = 0 we are in the risk–neutral case. If we choose κ to be positive
then we overweight negative temporal differences

R(st, at) + γV (st+1) − V (st) < 0 (4)

with respect to positive ones. That is, we overweight transitions to states where
the immediate return R(s, a) happened to be smaller than in the average. On the
other hand, we underweight transitions to states that promise a higher return
than in the average. In other words, the agent is risk-avoiding when κ > 0 and
risk-seeking when κ < 0. We discovered that negative values for κ lead to an
efficient self-play learning (see section 6).

When a neural network function approximator is used with Risk-Sensitive
Reinforcement Learning, the TD(λ) update rule for parameters becomes:

wt+1 = wt + αχκ(dt)
t∑

k=1

λt−k∇wV (sk; w) (5)

with
dt = R(st, at) + γV (st; w) − V (st−1; w)
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Fig. 1. The architecture used for Abalearn 2 encodes: the number of stones in the
center, in the middle, in the border and pushed off the board (left) and the same for
the opponent’s stones. Abalearn 3 adds some basic features of the game (right).

5 Efficient State Representation

The state representation is crucial to a learning system, since it defines every-
thing the agent might ever learn. In this section, we describe the neural network
architectures we implemented and studied.

Let us first consider a typical architecture that is trained to evaluate board
positions using a direct representation of the board. We call the agent using this
architecture Abalearn 1. It is a basic and straightforward state representation,
since it merely describes the contents of the board: it maps each position in the
board to -1 if the position contains an opponent’s stone, +1 if it contains an
agent’s stone and 0 if it is empty. It also encodes the number of stones pushed
off the board (for both players).

We wish the network to achieve a good level of play. Clearly, this task can
be better accomplished by exploiting some characteristics of the game that are
relevant for good play. We used a simple architecture that encodes the number
of stones in the center, in the middle, in the border and pushed off the board (see
Figure 1); and the same for the opponent’s stones. The state is thus represented
by a vector of 8 features, plus a bias input unit set to 1. We called this agent
Abalearn 2. This network is quite a simple feature map, but it is capable of
learning to play Abalone, as we will see in the next section.

We then incorporated into a new architecture (Abalearn 3) some extra hand-
crafted features, illustrated in Figure 1. Abalearn 3 adds some relevant (although
basic) features of the game to the previous architecture. We added: protection
(number of stones totally surrounded by stones of the same color), the average
distance of the stones to the center of the board and the number of stones
threatened (see Figure 1).

6 Results
In this section we present the results of two training methods. Common param-
eter values in both methods are: α = 0.1, γ = 0.9. Unless specified, the value of
the λ parameter was 0.7.
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Fig. 2. Comparison between some reference networks, sampled after 10, 250 and 2750
training games (average of 500 games) shows that learning is succeeding.

Method I. This method applies standard TD(λ) using Abalearn 2, described in
the previous section. In method I, the agent plays 1000 games against a random
opponent in order to extract some basic knowledge (mainly learning to push
the opponent’s stones off the board). After that phase, we train the agent using
self-play. This method never succeeds when using self-play training from the
beginning.
Method I(a). This method is the same as Method I. Only the state represen-
tation changes to Abalearn 3. This method is necessary to prove the benefit of
the added features in Abalearn 3 with respect to Abalearn 2.
Method II. We wished to obtain an agent capable of efficient and automatic
self-play learning. Method II accomplishes this. It applies the risk-sensitive ver-
sion of TD(λ) using self-play and Abalearn 3, also described in the previous
section. Exploration is important especially at the beginning of the train, so we
used a decreasing ε: after each game t, εt+1 = 0.99 × εt, with ε0 = 0.9.
Testing Methods. The most straightforward method for testing our agents
is by averaging their win rate against a good heuristic3 player. The heuristic
function sums the distance to the center of the board of each stone (subtracts
if it’s an opponent stone). We also tested our agents by playing some games
against the best Abalone program and by making them play at the Abalone
Website against human experts.

6.1 Method I: Standard TD(λ)

We tested our networks against three networks sampled during previous train-
ing. Figure 2 shows the results. Each curve represents an average over 500 games.
Each network on the X-Axis plays against Net 10, Net 250 and Net 2750 (net-
works sampled after 10, 250 and 2750 training games respectively). As we can
3 We use a simple Minimax search algorithm.
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Fig. 3. Performance of the agents when trained against different kinds of opponents.

Table 2. Comparison between the two methods (Win Rate against Heuristic Player).

Training Games Method I Method I(a)
500 48% 68%
1000 52% 72%
2000 54% 76%
3000 71% 79%

see, it is easy for the networks to win Net 10. On the other hand, Net 2750 is
far superior to all the others.
Exposure to Competent Play. A good playing partner offers knowledge to
the learning agent, because it easily leads the agent through the relevant fractions
of the state space.

In this experiment, we compare agents that are trained by playing against a
random opponent, a strong minimax player and by self-play. Figure 3 summarizes
the results. Each point corresponds to an average over 500 games against the
heuristic opponent. We can see that a skilled opponent is more useful than a
random opponent, as expected.
The Benefit of the Features. Table 2 compares the two state representations:
it presents the win percentage against a heuristic player over 100 testing games,
using method I and I(a). The agent trained with method I(a) uses the state
representation with added features (see section 5) and after only 1000 games of
training, presents a better performance than the agent trained with method I.
This proves the features added were relevant to learning the game and yielded
better performances.

6.2 Method II: Self-play with Risk-Seeking TD(λ)

Figure 4 shows the results of training for four different risk sensitivities: κ = −1
(the most risk-seeking agent), κ = −0.8, κ = −0.3 and κ = 0 (the classical risk-
neutral case). We trained and tested 10 agents. We can see that performance is
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Fig. 4. Performance of the risk-sensitive RL agents when trained by self-play for various
values of risk-sensitivity. Self-play is efficient for negative values of risk-sensitivity.

 0

 1

 2

 3

 4

 5

 6

 10  100  1000

M
at

er
ia

l A
dv

an
ta

ge
 a

ga
in

st
 H

eu
ris

tic
 P

la
ye

r

Training Games (K=−1)

Stones Lost
Stones Won

Fig. 5. Improvement in performance of the risk-seeking self-playing agent (κ = −1).

best when κ = −0.8 and κ = −1. We verified that after 10000 games of self-play
training with κ = −1 performance kept the same (see Figure 5, which plots the
results for the first 2000 games). By assuming that losses are inevitable, the agent
ignores most of the negative temporal differences and the weights associated to
the material advantage are positively rewarded.

We trained the agent with κ = 0 and it didn’t learn to push the opponent’s
stones, thereby losing most games agianst the heuristic player, except for 1 out
of 10 runs of the experiment. This is because the lack of risk-sensitivity leads
to highly conservative policies where the agent learns to maintain its stones in
the center of the board and avoids to push opponent’s stones. This experiment
illustrates the importance of risk-sensitivity in self-play learning: in method I(a),
performance is worse (see Table 2).

Performance against the best program. We wanted to evaluate how TD-
learning fares competitively against other methods. ABA-PRO, a commercial
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Table 3. Abalearn using method I with fixed 1-ply search depth only loses when the
opponent’s search depth is 6-ply. Method II performs better.

Method I Depth=1 vs.: Stones Won Stones Lost Moves First Move
ABA-PRO Depth=4 0 0 31 ABA-PRO
ABA-PRO Depth=5 0 0 23 ABA-PRO
ABA-PRO Depth=6 0 2 61 ABA-PRO
Method II Depth=1 vs.: Stones Won Stones Lost Moves First Move
ABA-PRO Depth=4 0 0 29 ABA-PRO
ABA-PRO Depth=5 0 0 21 ABA-PRO
ABA-PRO Depth=6 0 0 42 ABA-PRO

Table 4. Abalearn playing online managed to win intermediate players.

Abalearn Method I vs.: Stones Won Stones Lost First Move
ELO 1448 (weak intermediate) 6 1 Human Player
ELO 1590 (strong intermediate) 3 6 Human Player
ELO 1778 (expert) 0 6 Human Player
Abalearn Method II vs.: Stones Won Stones Lost First Move
ELO 1501 (intermediate) 2 0 Human Player
ELO 1500 (intermediate) 6 1 Human Player
ELO 1590 (strong intermediate) 6 1 Human Player
ELO 1590 (strong intermediate) 6 3 Human Player
ELO 1590 (strong intermediate) 6 4 Human Player
ELO 1590 (strong intermediate) 6 4 Human Player

application, that is one of the best Abalone computer players built so far [1]
relies on sophisticated search methods and hand-tuned heuristics that are hard
to discover. It also uses deep, highly selective searches (ranging from 2 to 9-ply).
Therefore, we pitted Abalearn trained as described before against ABA-PRO.

Table 3 shows some results obtained varying the search depth of ABA-PRO
and maintaining our agent performing a fast 1-ply search4. The free-version is
limited to 6-ply search.

As we can see, Abalearn only loses 2 stones when its’ opponent search depth
is 6. This shows that it is possible to achieve a good level of play using our
training methodology. Once again, method II performs better (never loses).

Performance against Human Experts. To better assess Abalearn’s level of
play, we made it play online at the Abalone Official Server. As in all other games,
players are ranked by their ELO.

Table 4 shows the results of some games played by Abalearn online against
players of different ELOs. Method I won a player with ELO 1448 by 6 to 1
and managed to lose by 3 to 6 against an experienced 1590 ELO player. When

4 When the game reaches a stage where both players repeat the same moves for 20 con-
secutive times, we end the game (tie by repetition). We carried out this experiment
manually because we didn’t implement an interface between the two programs.
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playing against a former Abalone champion, Abalearn using method I lost by
6 to 0, but it took more than two hours for the champion to beat Abalearn,
mainly because Abalearn defends very well and one has to try to ungroup its
stones slowly towards a victory.

Method II is more promising because of its incorporated extra features5. We
have tested it against players of ELO 1501, 1500 and 1590 (see Table 4).

7 Conclusions

This paper describes a program, Abalearn, that learns how to play the game of
Abalone using the TD(λ) algorithm and a neural network to model the value
function. The relevant information given to the learning agent is limited to the
reinforcement signal and a set of features that define the agent’s state. The
programs learns by playing against itself.

We showed that the use of a Risk-Sensitive version of the TD(λ) algorithm
allows the agent to learn by self-play. The performance level of Abalearn is eval-
uated against a heuristic player, a commercial application and human players.
In all cases Abalearn shows a promising performance. The best agent wins about
90% of the games against the heuristic player and ties against strong opponents.
Our agent only uses a single-step lookahead. One possible direction for further
work is to integrate search with RL as Baxter et al. have shown [2].
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