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Abstract. This paper describes the integrity static analysis approach developed
to support the justification of commercial off-the-shelf software (COTS) used in
a safety-related system. The static analysis was part of an overall software
qualification programme, which also included the work reported in our paper
presented at Safecomp 2002 [1]. Integrity static analysis focuses on unsafe
language constructs and “covert” flows, where one thread can affect the data or
control flow of another thread. The analysis addressed two main aspects: the
internal integrity of the code (especially for the more critical functions), and the
intra-component integrity, checking for covert channels. The analysis process
was supported by an aggregation of tools, combined and engineered to support
the checks done and to scale as necessary. Integrity static analysis is feasible for
industrial scale software, did not require unreasonable resources and we provide
data that illustrates its contribution to the software qualification programme.

1 Introduction

This paper describes the integrity static analysis approach that was developed to
support the justification of the use of a Commercial-Off-The-Shelf (COTS) industrial
product in a safety-related application. This paper is a continuation of the work
presented at Safecomp 2002 [1]. Integrity static analysis focuses on unsafe language
constructs and “covert” flows, where one thread can affect the data or control flow of
another thread. The system to be analysed was a general purpose C&I system that had
been used in control and protection applications for over 10 years and was going to be
deployed in a new safety application.

The static analysis was part of an overall software qualification programme
motivated by the need to demonstrate confidence in the safety of the system. The
primary motivation of the programme was not to find faults in the software but to
increase the confidence that it was appropriate for the new safety application. The
qualification programme involved several activities, of which static analysis was only
one. In addition to static analysis, it also included:

•  Evaluation of the operating history and review of the hardware and software
problems detected after product release and during operation.

•  Evaluation of the design and lifecycle documentation.
•  Identification of the supporting tools used, and evaluation of their use and

criticality (including compiler assessment).
•  Software criticality analysis, as described in [1].
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•  Dynamic testing and especially stress testing.
The primary task of the static analysis was to check the structural integrity of the

code and hence provide additional evidence of the software quality. This examined
two main aspects:

1. The internal integrity of the code (especially for the more critical functions).
2. The intra-component integrity, checking for “covert channels” where one

software component could affect another by some “back-door” method.
In [1] we described the Software Criticality Analysis (SCA) approach. The SCA

identified the critical software components within the COTS software, and this
information was used to prioritise the safety justification activities for the whole
project. Analysis effort was concentrated where a fault would be more dangerous, i.e.
the components with higher software criticality indices, as assigned by the SCA.

 However, the SCA considered only overt flows in the code, via the call structure
of the procedures and the way in which static variables are shared amongst them.
Where many procedures share a single processor and address space, there are
potentially other covert ways in which one may influence another, and evidence was
needed that these covert channels were not present in practice to justify use of the
SCA. This was addressed by the integrity static analysis described in this paper, and it
was another objective for the approach described here.

Code description. The code comprised a real-time PLC operating system running
on top of a commercial microkernel. It included device drivers for various different
types of hardware, scheduling, message handling and tasking. It consisted of a large
body of mixed C and assembler code totalling about 600 files, and 100k+ lines (non-
comment, non-blank) of C and 20k+ lines of 68000 assembler. The C code had two
components: one of about 100k lines and a second part of about 10k lines. Similarly,
the assembler code had two components. However, while the two C components
differ in size and style (the smaller component had been developed more recently and
was more consistent in style), the two assembler components were almost identical.

The code had extensive field experience. It had been sold to users in various
versions over a number of years. As expected, the code contained some very old
modules that had been in use in many sites for many thousands of operating hours,
and some modules which had recently been changed and which had little or no
operating history. Parts of the code had been automatically translated from a different
language to C. The main reason for changes had been adding new software, e.g. for
new hardware, and maintenance (e.g. fixing existing bugs).

2 Integrity static analysis

2.1 Motivation and objectives

The analysis approach adopted was motivated by two main factors. Firstly, the COTS
system had extensive field experience, and the field data was being analysed as part of
the overall qualification exercise. The field experience is likely to detect most large
and obvious faults that occur during typical execution of the program. However,
specific vulnerabilities of the languages used and the particular domain of application
have a less frequent manifestation that could remain undetected even after many
hours of field experience.



Integrity Static Analysis of COTS/SOUP      3

Secondly, the analyses that could be performed were constrained by feasibility,
resources available and tool capabilities. For example, for a compliance analysis such
as the work done with MALPAS in Sizewell B PPS [2], we would need to develop
and verify a formal specification for a large body of heterogeneous C and assembler
code and follow this by a proof of compliance using a tool like MALPAS. This would
be very time-consuming, and some features such as the use of pointers in the COTS
software make it very difficult to prove compliance. Even if a proof of compliance
were achieved, analysis using MALPAS would not provide complete assurance as the
analysis can only be applied to sequential, non-interruptible code. The COTS software
contained many concurrent threads that could modify data in other threads and hence
potentially invalidate the proof.

These resource and technical constraints led to the decision to perform an integrity
static analysis that focuses the analysis on unsafe language constructs, and “covert”
flows where one concurrent thread can affect the data or control flow of another
thread. The main aspects analysed are listed below (further details in Section 4).

Table 1. Main aspects analysed in the integrity static analysis

Unsafe Language Constructs Covert flows

Function prototype declaration
missing.

Resource sharing violations (semaphores,
interrupts, etc.).

Use of “=” in conditional
expressions.

Violation of program stack and register
constraints (in assembler code).

No return value defined for a non-
void function.

Pointer or array access outside the intended
data structure.

No break between case statements. Run-time exceptions (e.g. divide by zero).
Uninitialised variables (Possibly but not necessarily covert flows).

The assessment of unsafe language constructs identifies potential vulnerabilities in
the C code by looking for deviations from published recommendations for C
programming in safety-related applications [3][4] and use of features of C identified
in the ISO and ANSI standards as ill-defined or dangerous. It also includes checks for
a variety of specific issues, such as the use of commonly misused constructs in C
(such as “=” in conditional expressions).

Covert flow analysis examines the potential interference between different code
functions. The most obvious covert mechanism in C or assembler code is the use of
pointers (including their implicit use in array indexing). An incorrectly calculated
pointer to a variable can give a procedure access to anywhere in the program’s
address space. Similarly, incorrect pointers to functions allow transfer of control to
anywhere in the address space. The sharing of resources on a single processor and
sharing of the stack give rise to other covert mechanisms. Static analysis was used to
support an argument of the absence of these covert channels.

We observe that the existence of these covert mechanisms represents an error in
the code, irrespective of its intended function, i.e. “whatever it is meant to do, it
should not do this”. We can thus carry out these analyses without a formal
specification of the intended function, which is fortunate since this was not readily
available. A written specification would have to be formal to support an automatic
analysis, something we do not expect for legacy code, and domain experts were in
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short supply so code anomalies needed to be assessed where possible without the use
of experts.

Where the static analysis uncovered significant faults, the code was corrected.
Even within the scope of the analysis, limitations in supporting tools and manual
analysis may mean that not all the faults sought will be discovered. We cannot
therefore claim that the resulting code is fault free, and there is no compelling reason
to repeat the analysis on the revised code provided the revisions are done carefully.
However, if the static analysis detects relatively few faults, this does help to boost
confidence in the code as a whole.

2.2 Analysis process

The overall procedure used in the static analysis tasks was as follows:
•  Identification of preliminary findings. Preliminary findings were identified as a

result of tool analysis. In some cases (especially uninitialised variables), these
were further processed by automatic filters that removed some of the more
obvious cases where there was no real problem. These filters were designed to
be conservative so any findings about which doubt remained were passed
through to the next stage.

•  Provisional sentencing. Manual inspection of the preliminary findings assigned
a provisional sentence. This preliminary sentencing was based on code
inspection with limited domain knowledge. Where it did not seem possible to
sentence the finding without extensive domain knowledge, an open sentence
was recorded together with any information that could help the sentencing.

•  Domain expert sentencing. All the findings with a provisional sentence other
than “no problem” were reported to the client. The majority was resolved and
justified. A small residue of findings was accepted as genuine and sentenced for
severity and technical solution.

•  Review of the final sentencing. The analysis team reviewed the domain experts’
sentencing. Clarification of the final sentence was asked for in the cases where
the justification was not clear. The final decision on the solution to adopt was
taken by the domain experts.

3 Tool support

This section describes the tools used to support the analysis. The main tools are
described according to their main features and use in the project, followed by a brief
assessment of our experience with the tools. In addition, we name other general
purpose tools used in the analysis and discuss tool evaluation issues.

3.1 PolySpace

The RTE tool from PolySpace [5] seeks to identify those points in a C program that
will cause a run-time exception. These include both exceptions due to arithmetic
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overflow and the like, identified above as covert channels affecting control flow, and
erroneous pointer and array accesses, which may result in exceptions if the address is
outside physical memory. Unlike the other sources of covert flows in C tied to
particular statements, run-time exceptions can arise at many points in the code and
depend on the variable values at the time of program execution. This makes their
analysis relatively difficult and so the use of a tool to carry out most of the work is
particularly attractive.

RTE uses abstract interpretation [8] to analyse the code. It attempts to show that
each potential run time exception cannot occur by establishing the possible values of
the expressions involved. This requires analysis to determine the possible values of
variables at each point in the code.

When the tool classifies a variable usage as not causing an exception for any value
in the predicted range or as causing an exception for all possible values, the analysis
is completed for that particular occurrence. However, if only some of the possible
values can cause an error (marked as orange), because of the approximations, more
detailed analysis of the code might sometimes show that the error could never occur.
The power of the tool depends on the fraction of all possible exceptions that can be
automatically labelled either red or green. PolySpace refers to this as the selectivity
ratio and reported typical values on large programs in the range 85-95%.

In order to trace the flow of values through the program, PolySpace RTE requires
C source for all procedures except for those in the C standard library. For the system
under investigation, this meant “stubs” had to be created to represent the procedures
provided by the microkernel and for assembly language routines. Tracing value flow
also requires that the semantics of the code should be well defined, which implies
strict adherence to the ANSI syntax. For the purpose of the analysis, the code had to
be changed to be ANSI compliant, where the majority of changes involved the
removal of type information from bit fields in structures.

The primary problem in using the tool was its scalability. Although PolySpace had
analysed other programs of similar size, the larger component of our code defeated
the analysis. This may have been a consequence of the relatively complex task
structure of the system. The smaller component (10k loc) was successfully analysed,
but the selectivity rate was only 50%. We also identified a number of cases where
manual analysis showed the tool to be overly cautious. We understand that better
results have been achieved elsewhere, and the analyser has undergone considerable
development, so we would expect experience with the new version to be better.

3.2 CodeSurfer

CodeSurfer [6] is a Grammatech tool that analyses C programs to construct graphs
showing the data and control flows through the program. The user can then explore
the graphs to obtain an understanding of connections between different program parts.
The analysis and exploration phases are separate, with the analysis phase producing
an intermediate file containing a system dependence graph (SDG) that the browser
program then uses to present different views of the program. Program views vary
from a list of program lines where a particular variable is used, to a slice highlighting
the program lines that can affect the value of a variable at a given point in the code (a
backward slice) or are affected by it (a forward slice). CodeSurfer also provides an
applications programmers’ interface (API) which allows the user to write scripts that
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explore the program graphs and display the results in windows or write them to a file.
CodeSurfer traces data flows through pointers by determining the set of variable
addresses that each pointer may be assigned anywhere in the code, either directly
using the & operator or indirectly by copying addresses from one pointer to another.

We originally used CodeSurfer to extract call graph information for the SCA [1].
Here CodeSurfer was used to support the analysis of variable initialisation.

CodeSurfer expects its input to be ANSI C but is less strict about full compliance
than PolySpace RTE. A number of minor changes had to be made to the supplied
code. The larger component of the software contained too much code for analysis as a
single “project”, the limit being determined by the size of the system dependence
graph rather than the analysis time needed. We therefore had to divide the code into
several projects, analysing them separately and combining the results in a database.

We uncovered a bug in the code flow analysis that left some of the conclusions in
doubt. At the time, although Grammatech were supportive in advising us on how the
tool could be used, we had some difficulties in obtaining information about potential
problems. There is now an on-line mechanism for reporting problems and
suggestions, and a public list of known issues with the tool.

While CodeSurfer has some limitations, it proved to be a useful tool for static
analysis. The scripting mechanism was vital for extracting information from projects,
combining it to give a view of the whole system, and representing it in a form that
could be used to support further analysis.

3.3 Safer C

The primary aim of the Safer C tool is to check compliance of C code with a set of
almost 700 rules. These cover the dangerous constructs identified in [7], the features
of C identified in the ISO and ANSI standards as ill-defined or dangerous, those
MISRA C requirements and guidelines [4] that can be checked mechanically, and
other potential flaws in C code that can be identified by file-by-file analysis with
limited tracking of control and data flow. As well as this rule based checking, Safer C
can derive some code metrics. Finally, it is possible to select a variable and display its
declaration, or do data-flow analysis by highlighting its uses elsewhere in the code.

We used Safer C in the analysis of pointers and arrays, and uninitialised variables.
Once it had been adopted, it made sense to make use of the information provided on
the occurrence of suspicious C constructs (such as the use of “=” rather than “==” in
conditional expressions), so this was added to the approach.

Our approach to pointer analysis was to use Safer C to identify all relevant pointer
uses in the code and to examine each of these by hand. Array access calculations were
not counted as pointer arithmetic in Safer C, but Oakwood Computing added this rule
for us, and the validity of the array indexing was checked manually.

 Safer C adopts the strict ANSI view that static variables are initialised when the
program is loaded, so all the reported uninitialised variables are local. We covered the
explicit initialisation of static variables with CodeSurfer alone. In addition, Safer C
was modified by Oakwood Computing at our request to flag division by non-constant
values (to confirm by code inspection that division by zero would not occur).

Safer C actually consists of a series of analysis and browsing programs that
communicate via an interface that is normally controlled from the visual front end.
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Oakwood Computing provided documentation and guidance on this interface so that
we could run the component tools on a file in batch mode from a DOS command line
and extract the results from the files created. The command lines to analyse each file
in our code body were generated by a perl script.

Safer C accepts a superset of the ANSI C language definition. However, a small
number of code changes was needed to allow the tool to correctly parse and interpret
the files. Because Safer C analyses each file in the source separately, we had no
problems in applying it to the entire body of C code.

The tool makes no claims for the completeness of its uninitialised variable
analysis, but it is not entirely clear what the limits are. When we compared the cases
identified by Safer C and by our CodeSurfer analysis on real code, we found there
were not many cases that Safer C had missed but CodeSurfer had found. We also ran
the Safer C tool on the smaller part of the code and compared its results in detecting
potentially uninitialised variables with the RTE results. The sets of possibly
uninitialised variables identified by RTE and Safer C were different, but both
included the few cases that were accepted as a problem and resulted in software
modifications. A new version of Safer C works on a collection of files for checking
global consistency (rather than only individual files, as the version used here).

3.4 Other tools

The previous sections summarise the capabilities and uses made of the major, special
purpose tools that we employed. We should not lose sight of other, widely spread
tools that played a significant role in the analysis.

Assembler code made up a significant part of the code body. We needed to subject
this to analysis of its pointer and stack use, but there was no special tool support
available for this. Instead, we followed the strategy of mechanically marking all those
lines that could cause a problem and considering each in turn to determine if it did.
Assembler code is relatively simple in structure, and we used perl and grep to
extract the lines of interest. This approach is less effective in C because the language
is more complex (although it was used for identifying resource locking statements).

These string manipulation languages were also invaluable in translating from the
different textual output forms of the various tools into tab or comma separated,
columnar data files that could be read into Microsoft Access database tables.

Access also filled a critical need for tool support. Many analyses involved the
identification of large sets of possible problems that were then resolved by hand. This
manual analysis was supported by Access. Access was also used to merge findings
from different sources and in mechanical sentencing of findings. Some of analysis
was programmed using Visual Basic for Applications within Access.

3.5 Tool evaluation issues

Despite efforts to ensure the C analysis tools chosen would meet our requirements, we
had significant difficulties in applying them to the COTS software. The most serious
of these was scalability. All tools had difficulties coping with dialects of C, which
were inconsistent between tools and needed code changes. All tools failed to identify
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some instances of anomalies they were designed to detect. A standard set of
“benchmark programs” would be valuable in providing a basis for evaluation of static
analysis tools prior to their use on a project. The benchmarks could cover such issues:

•  limits in code size
•  analysis time (and how it varies with size)
•  analysis resources (memory and file storage-—and how they vary with size)
•  reliability in detecting anomalies (for different types of anomaly)
•  “signal to noise ratio” (how many anomalies reported with a single cause)
•  likelihood of “false positives” (anomaly reported where none exists)

4 Activities of the integrity static analysis

This section describes the analysis of the C and the assembler code by discussing the
main activities of the integrity static analysis, their objectives and techniques.

4.1 Resource locking

This analysis aimed at identifying all points in the code where some resource was
claimed and checking that the resource was released (without excessive delay) on all
possible program paths through the code. This prevents cases where a low criticality
section claimed some “resource” that was never subsequently released, which could
prevent a critical code section from being able to access this resource and cause a
software failure. As a secondary effect, this analysis demonstrated the absence of
failures due to exhaustion of resources, and some types of deadlock or livelock due to
unreleased resources. The analysis process may be summarised as follows:

•  Identify possible occurrences of “locking”.
•  For each one, search for a corresponding “unlocking” on all paths.
The domain experts identified a set of code statements as defining the locking or

unlocking of a resource. We assumed that this list was complete and included all
locking and unlocking statements and consequently all resource locking constructs.

In the case of C code, resource locking statements were identified using a textual
search. In order to identify the corresponding unlocking statement, the neighbouring
code for each “locking” code statement was examined. At this stage, we examined the
branching structure of the code, as in some instances multiple unlocking is required.
Further examination of the code was performed in order to validate the analysis.

In the C code, there were often many lines between disabling and enabling
interrupts. This made it impossible to judge is enabling was taking place within a
short space of time without domain knowledge. We provided the domain experts with
a list of matched instances of interrupts disabled and enabled, ordered by the number
of lines of code in the disabled section. This list could be used for further review.

For the assembler code, we began by cutting down the amount of code that needed
to be reviewed by using a perl script. The script identified and annotated the sections
of the code that contained the resource locking statements. The extraction process
removed comments and irrelevant code. The remaining code displayed locking and
unlocking statements, calls to subroutines, program branches and operations that
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affect the stack. In more complex cases there may be splits in the program flow before
the resource is unlocked. In this case each flow path had to be inspected to check that
the locked resource had a matching release statement. In addition any calls to routines
within the locking statements needed to be checked to ensure that they did not
introduce excessive delay, and that program flow always returned the calling routine.

4.2 Stack allocation

The stack is a global resource for a task, shared by all procedures. The stack pointer is
initialised and space for the stack is allocated at system start-up. It then grows and
shrinks as procedures are entered and exited. If the wrong variables are addressed, a
wide range of erroneous behaviours could occur. For example, if the stack of an
adjacent task were overwritten, it might execute arbitrary areas of code or data in the
memory with extremely unpredictable results, usually resulting in a rapid crash.

The C source code was assumed to be free of stack allocation problems as stack
frames and variable references are generated by the compiler, and correct use of the
stacked procedure arguments is enforced by function prototypes. The focus of the
stack analysis was therefore the assembler code, although we also considered cases
where C and assembler code routines interact.

The first objective of the analysis was to assess stack integrity for assembler
procedures to ensure the data region accessed by the stack always remained within
bounds. The second objective was to check that register integrity was preserved when
C calls were made from assembler code. The C compiler guarantees that some
registers’ values are preserved after the call, but the remaining registers could be
destroyed. The register integrity check therefore confirmed that the vulnerable
registers were saved on the stack prior to a C routine call and correctly restored
afterwards, or that the registers changed by the C call did not affect subsequent
assembler behaviour.

In order to assess stack integrity, the assembler sources were scanned using a perl
script to identify assembler files that contain stack manipulation instructions, i.e.
those that reference the stack pointer register explicitly and implicitly. A reduced
assembler program was produced (similar to that produced for the resource locking
analysis) that highlighted the stack manipulation instructions. The reduced assembler
was inspected to check that the stack integrity criteria were satisfied.

A similar approach was used for the register integrity analysis where assembler
code calls a C routine. C routine calls were all identified by a
label.<procedure_name>.  A simple script was used to identify the assembler files that
call C routines and the code sections before and after the call. These code sections
were analysed manually to check that the registers were correctly saved and restored.

In cases where a C routine was called and there was no stacking of registers, the
code was inspected to check if the potentially corrupted registers were relied upon
after the C call. There was a difficulty in checking whether any parents in the
assembler call tree were also affected. However, in some cases it could be
demonstrated there were no parents (e.g. it handed control back to the microkernel).
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4.3 Pointer and array use

In this system, all the code shares a single address space. This means that all code has
access to any data structure if it generates the appropriate address. This can happen as
a result of a fault in an address calculation, which results in the generation of an
address beyond the data areas that the code apparently accesses. As well as pointer
dereferences, this includes access to arrays determined by index calculations.

“Wild” reads will have an impact only on the procedure generating the read, and so
do not affect the assessment of criticality. “Wild” writes, on the other hand, allow
apparently low criticality code to affect high criticality code. Hence, when an
assignment to a pointer occurs, we need to know that the procedure doing the
assignment is expected to access the address to which the pointer is being assigned.
This means tracing back through the calculation of the pointer value. Pointers are
often initialised with the address of a variable. Subsequent pointer references are valid
and so are unproblematic. The most common way to create a wild pointer is through a
faulty address calculation. Manipulations to pointers also include “casting” to a
pointer of a different kind. This may allow access to adjacent data storage if the
resulting type is larger than the original type. Subsequent address calculations will
also have a different element size that could lead to the calculation of an out of range
reference even if the pointer is subsequently cast back to a correctly sized object.

The analysis of the assembler code started by the identification of the code to
analyse. A perl script was used to parse the code into label, operator and operand
fields. Once we identified the lines where calculated addresses are used for writing,
we associated each with a claim that the procedure is allowed to write to the address
of the instruction. We then manually propagated the claim back through the previous
instructions. The propagation stops when the truth of the claim can be determined.
This is typically when we have a constant address. Alternatively, we might reach a
label that has no transfers of control to it from the assembler code. These labels are
normally defined as external symbols that can be called from C. In principle, these
need to be considered call by call to check that appropriate pointer values are being
passed from the C code. In most cases, the function prototype would show that the
address of a structure was being passed, and it was possible to show that the offsets
from the base address being used by the assembler code lay within the structure.
Provided all calls were in the scope of the function prototype (which was checked by
the Safer C analysis) we could then be sure that the pointer use was safe.

The analysis of the C code was divided in two parts. The smaller part of the code
(~10kloc) was supported by PolySpace RTE, and the main part by Safer C.

The PolySpace tool categorises potential sources of pointer errors in the code (and
run-time errors in general) as green, orange or red, with red representing certain
failure points and orange representing possible failure points. The objective of this
analysis was to look in detail into the red and orange sections of code, resolve the red
findings if any, and establish that the orange sections do not result in failures. The
code was then examined to find a justification for the absence of error. (The process
was similar for all RTE supported checks).

The analysis of the main part of the C code was supported by the Safer C tool. In
addition to pointer arithmetic, the analysis also considered assignment of a structure
or structure component to a pointer that might have been initially allocated to a
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smaller structure (widening and narrowing). In addition, we looked at all array
accesses to check that the index variable was within the bounds of the array.

4.4 Uninitialised variables

Uninitialised variables are a well-established source of software failures. Although
their most direct effects are on the procedures which use them, their consequences can
cross the boundaries between software of different criticalities, by causing run-time
exceptions (through numeric overflow or underflow, or by generating an address that
is not present in the hardware) or by direct corruption of another procedure by writing
through a pointer derived using an uninitialised value.

Local variables are allocated on the stack in C and will contain whatever was
previously placed in their stack frame until explicitly assigned. The C standard
requires global and file static variables to be cleared by the compiler, but a null value
is not necessarily appropriate and there is no guarantee that they will be re-initialised
if the system is restarted, so we expect an explicit assignment to these variables too.
We therefore checked that all global variables were explicitly initialised. The analysis
of the smaller part of the code was supported by RTE. The main part of the code was
analysed using a combination of Safer C and CodeSurfer. Both are capable of
identifying uninitialised local variables, although the extent of the analysis is different
in each case. Each tool led to a large number of findings, which were followed up by
a range of mechanical and manual analyses to find the actual problems.

5 Analysis results

5.1 Summary of static analysis results

The integrity static analysis involved a combination of tool based and manual analysis
that examined 100 000 lines of C and 20 000 lines of assembler code for typical
vulnerabilities of real-time software. In this analysis, all the C code that was active (or
used) in the application was analysed (around 70% of the main part and 100% of the
smaller part). The unused code was justified as not interfering as a result of the SCA
[1]. The analysis effort was ~3 person days/kloc.

The performance of this process is summarised in the Table 2, where “preliminary”
are the findings identified by the tools, “reported” those reported to the domain
experts, and “sentenced” those sentenced as other than “no problem”.

Table 2. Number of finding per kilo line of code

Finding Approx. findings per kilo line of code
Preliminary 100
Reported 10
Sentenced 1

The sentenced findings were classified as follows (in order of increasing severity):
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•  70% were found to be “minor violations”. These have no impact on safety or on
system operation but are a violation of good practice.

•  13% were found to be “significant violations” where the code is safe in its
current version (cannot cause a run-time problem), but represents a violation of
good practice or a potential fault, which could be activated by maintenance.

•  17% were classified as “minor safety”. All minor safety issues should be
addressed through code changes in the software.

In Table 3 we compare the results of the static analysis with the other sources of
evidence undertaken in the overall validation programme.

The additional analysis consisted of evaluation of lifecycle documents, evaluation
of supporting tools and dynamic testing, especially stress testing. From the results, we
can see that our static analysis revealed a majority of the findings (55.6% of the total
findings). On the other hand, the analysis does not necessarily find the most safety-
critical faults: it only found a third of the “minor safety” faults. Most of the major
faults were found by field experience prior to the static analyses being undertaken.

The separate field experience analysis indicates that only a small percentage of
field-detected faults are simple logic errors (i.e. detectable by static analysis of code
structure). The majority of faults were due to:

•  hardware/software mismatch (e.g. failure to modify the software for new
hardware)

•  timing problems (e.g. incorrect timing, incorrect time-outs etc.)
•  protocol problems (e.g. between processors interface devices, etc.)

Table 3. Findings of the overall qualification programme (percentage over total findings)

Major/

critical
safety

Minor
safety

Significant
violation

Minor
violation

All

Integrity static analysis 0 9.5 7.1 39 55.6

Additional analysis 2.4 10 0 5.9 18.3

Field experience 14.9 11.2 0 0 26.1

Total 17.3 30.7 7.1 44.9 100

Generally speaking these analyses identified different classes of faults from those
found by our static analysis, and these fault classes were the ones that resulted in
significant failures. This is not surprising, as static analysis will contain a significant
proportion of “lurking” problems that might not cause any failure until the code is
modified. Furthermore, static analysis came after these field experience faults had
been found, so they had been corrected by the time static analysis took place.

5.2  Effects of faults on reliability and safety

While no fault is desirable, faults may be tolerable if there is a low probability of
occurrence. Since the software has been subjected to at least 3x106 hours of operation,
the remaining faults will tend to have a low (or zero) probability of activation. There
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is a theory for estimating the worst case MTTF given an estimate of residual faults
(N) and operating time (T) [9]: MTTF>eT/N, where e is the exponential constant.
Under the most optimistic assumptions (perfect fault reporting and correction) about
90 residual safety-related faults and 3x106 hours of operation would give a worst case
estimate for the MTTF for the software of around 105 hours for dangerous failures. If
the shutdown process has to operate for 100 hours with a probability of failure during
that interval of 10-3 the MTTF should be 105 hours (or around 10 years). The result
could however be less if the software had been subjected to significant upgrades and
extensions, rather than simple bug fixes.

Field data was also analysed to demonstrate that all modules used in the safety-
related application are stable and have accumulated sufficient operating experience
without modification or bug-fixes. This gives a direct indication of time to failure for
the selected modules. Both analyses give some confidence that the MTTF for the
most safety-critical functions will exceed the target level of 105 hours.

6 Conclusion

This paper described the static analysis process used to assess the integrity of the
source code of a COTS system (comprising 100k lines of C and 20k of assembler).
This provided additional evidence of the software quality as a contribution to the
overall validation programme for the COTS system. The analysis addressed the
internal integrity of the code and intra-component integrity.

Integrity static analysis is feasible for industrial scale software and even for
heterogeneous code, this type of analysis does not require unreasonable resources.
However, the analysis process needs to be supported by tools to automate the analyses
and to manage, classify and track the analysis findings.

The analysis made a major contribution to the safety justification of the industrial
COTS system—finding over half the faults detected in the qualification programme
for the COTS software. It also showed that most faults had little impact on safe
operation—hence increasing confidence that the software was suitable for a safety
related application.

All the C analysis tools had limitations, such as limits to the amount of code that
could be analysed, inability to analyse some dialects of C and inability to detect some
code anomalies. The use of diverse tools for the same analysis boosts confidence in
the results. While it was possible to dismiss some anomalies reported by the tools
automatically, a combination of automatic and manual analysis is needed to resolve
most of the reported anomalies. Most of the manual analysis can be done without
domain knowledge, just by intelligent code reading. However, the final resolution
requires domain expertise.

We propose that static analysis has an important role to play within an approach to
the assurance of COTS products. In the case where full verification of the complete
system is not mandatory, static analysis can be used to justify the partitioning of the
system, specialising on a small class of faults or specialising on certain behaviours.
Implementing this strategy will need to take into account the pragmatic issues of
scale, complexity and tool availability highlighted in this paper. The focus of the
strategy should be driven by both the capabilities of the emerging technology—the
static analysis landscape is developing rapidly—and by the need to focus on classes of
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faults that are important in practice and that affect real-time behaviour. The selection
of tools to support the analysis should be supported by common benchmarks for static
analysis.
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