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Abstract. We present a new method for upper bounding the maxi-
mum differential probability and the maximum linear hull probability
for 2 rounds of SPN structures. Our upper bound can be computed for
any value of the branch number of the linear transformation and by in-
corporating the distribution of differential probability values and linear
probability values for S-box. On application to AES, we obtain that the
maximum differential probability and the maximum linear hull probabil-
ity for 4 rounds of AES are bounded by 1.144× 2−111 and 1.075× 2−106,
respectively.

1 Introduction

Differential cryptanalysis [2] and linear cryptanalysis [12] are the most well-
known methods of analysing the security of block ciphers. Accordingly, the de-
signer of block ciphers should evaluate the security of any proposed block cipher
against differential cryptanalysis and linear cryptanalysis and prove that it is
sufficiently invulnerable against them.

SPN(Substitution and Permutation Network) structure is one of the most
commonly used structure in block ciphers. SPN structure is based on Shannon’s
principles of confusion and diffusion [3] and these principles are implemented
through the use of substitution and linear transformation, respectively. AES [6,
14], Crypton [11], and Square [5] are block ciphers composed of SPN structures.

The security of SPN structures against differential cryptanalysis and linear
cryptanalysis depends on the maximum differential probability and the maxi-
mum linear hull probability. Hong et al. proved the upper bound on the maxi-
mum differential and the maximum linear hull probability for 2 rounds of SPN
structures with highly diffusive linear transformation [7]. Kang et al. generalized
their result for any value of the branch number of the linear transformation [8].

In [10], Keliher et al. proposed a method for finding the upper bound on
the maximum average linear hull probability for SPN structures. Application of
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their method to AES yields an upper bound of 2−75 when 7 or more rounds
are approximated. In [9], it was proposed that the improved upper bound on
the maximum average linear hull probability for AES when 9 or more rounds
are approximated is 2−92. In [15], Park et al. proposed a method for upper
bounding the maximum differential probability and the maximum linear hull
probability for Rijndael-like structures. Rijndael-like structure is a special case
of SPN structures. By applying their method to AES, they obtain that the
maximum differential probability and the maximum linear hull probability for 4
rounds of AES are bounded by 1.06 × 2−96.

In this paper, we present a new method for upper bounding on the maximum
differential probability and the maximum linear hull probability for 2 rounds of
SPN structures. Our upper bound can be computed for any value of the branch
number of the linear transformation and by incorporating the distribution of
differential probability values and linear probability values for S-box.

On application to AES, we obtain that the maximum differential probability
and the maximum linear hull probability for 4 rounds of AES are bounded by
1.144 × 2−111 and 1.075 × 2−106, respectively.

2 Backgrounds

One round of SPN structures generally consists of three layers of key addition,
substitution, and linear transformation. On the key addition layer, round sub-
keys and round input values are exclusive-ored. Substitution layer is made up of
n small nonlinear substitutions referred to as S-boxes, and the linear transfor-
mation layer is a linear transformation used in order to diffuse the cryptographic
characteristics of the substitution layer. A typical example of one round of SPN
structures is given in Figure 1.

Fig. 1. One round of SPN structure.

On r rounds of SPN structures, the linear transformation of the last round,
generally, is omitted, because it has no cryptographic significance. Therefore, 2
rounds of SPN structures is given in Figure 2.

S-boxes and linear transformations should be invertible in order to decipher.
Therefore we assume that all S-boxes are bijections from Zm

2 to itself. More-
over, throughout this paper, we assume that round subkeys are independent and
uniformly distributed.
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Fig. 2. 2 rounds of SPN structure.

Let S be an S-box with m input and output bits. Differential and linear
probability of S are defined as in the following definition:

Definition 1. For any given a, b, Γa, Γb ∈ Zm
2 , define differential probability

DPS(a, b) and linear probability LPS(Γa, Γb) of S by

DPS(a, b) =
#{x ∈ Zm

2 |S(x) ⊕ S(x ⊕ a) = b}
2m

and

LPS(Γa, Γb) =
(

#{x ∈ Zm
2 |Γa · x = Γb · S(x)}

2m−1 − 1
)2

,

respectively, where x ·y denotes the parity(0 or 1) of bitwise product of x and y.

a and b are called input and output differences, respectively. Also, Γa and Γb

are called input and output mask values, respectively. The strength of an S-box
S against differential cryptanalysis is determined by the maximum differential
probability, maxa�=0,b DPS(a, b). The strength of an S-box S against linear crypt-
analysis depends on the maximum linear probability, maxΓa,Γb �=0 LPS(Γa, Γb).

Definition 2. The maximum differential probability p and the maximum linear
probability q of S are defined by

p = max
a�=0,b

DPS(a, b)

and
q = max

Γa,Γb �=0
LPS(Γa, Γb),

respectively.

The maximum differential probability p and the maximum linear probability
q for a strong S-box S should be small enough for any input difference a �= 0
and any output mask value Γb �= 0.
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Definition 3. Differentially active S-box is defined as an S-box given a nonzero
input difference and linearly active S-box is defined as an S-box given a nonzero
output mask value.

Since all S-boxes in substitution layer are bijective, if an S-box is differen-
tially/linearly active, then it has a non-zero output difference/input mask value.

For SPN structures, there is a close relationship between the differential
probability and the number of differentially active S-boxes. When the number of
differentially active S-boxes is large, the differential probability becomes to be
small, and when the number of differentially active S-boxes is small, the differ-
ential probability becomes to be big. Therefore, the concept of branch number
was proposed [5]. We call it the branch number from the viewpoint of differential
cryptanalysis, the minimum number of differentially active S-boxes of 2 rounds
of SPN structures. Also, we call it the branch number from the viewpoint of
linear cryptanalysis, the minimum number of linearly active S-boxes of 2 rounds
of SPN structures.

The linear transformation L : (Zm
2 )n −→ (Zm

2 )n can be represented by an
n×n matrix M = (mij). We have L(x) = Mx, where x ∈ (Zm

2 )n and the addition
is done through bitwise exclusive-or. For the block ciphers E2 [13] and Camellia
[1], mij ∈ Z2 and the multiplication is trivial. For the block cipher Crypton [11],
mij ∈ Zm

2 and the multiplication is the bitwise logical-and operation. For the
block cipher Rijndael [6], mij ∈ GF (2m) and the multiplication is defined as the
multiplication over GF (2m).

It is easy to show that L(x) ⊕ L(x∗) = L(x ⊕ x∗) and DPL(a, L(a)) = 1 [4].

Definition 4. Let L be the linear transformation over (Zm
2 )n. The branch num-

ber of L from the view point of differential cryptanalysis, βd, is defined by

βd = minx�=0{wt(x) + wt(L(x))},

where, wt(x) = wt(x1, x2, . . . , xn) = #{1 ≤ i ≤ n|xi �= 0}.
Throughout this paper, we define wt(x) = wt(x1, x2, . . . , xn) = #{1 ≤ i ≤

n|xi �= 0} when x = (x1, x2, . . . , xn). If x ∈ Zm
2 , then wt(x) is the Hamming

weight of x.
It can be proved that, if mij ∈ Z2, then LPL(M tΓb, Γb) = 1. Therefore,

we know that LPL(Γa, (M−1)tΓa) = 1. Also, if mij ∈ GF (2m), then it can
be proved that LPL(Γa, CΓa) = 1, for some n × n matrix C over GF (2m) [8].
Therefore, we can define the branch number βl from the view point of linear
cryptanalysis as follows:

βl =

{
minΓa �=0{wt(Γa) + wt((M−1)tΓa)}, if mij ∈ Z2, 1 ≤ i, j ≤ n,
minΓa �=0{wt(Γa) + wt(CΓa)}, if mij ∈ GF (2m), 1 ≤ i, j ≤ n.

3 Security of 2 Rounds of SPN Structures

In this section, we give an upper bound on the maximum differential probability
for 2 rounds of SPN structure. We also give an upper bound on the maximum
linear hull probability.
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The following lemma can be considered as a generalized Cauchy-Schwarz
inequality.

Lemma 1. Let {x
(j)
i }n

i=1, 1 ≤ j ≤ m, be sequence of real numbers. Then the
following inequality is satisfied.

n∑
i=1

|x(1)
i x

(2)
i · · ·x(m)

i | ≤
(

n∑
i=1

|x(1)
i |m

) 1
m
(

n∑
i=1

|x(2)
i |m

) 1
m

· · ·
(

n∑
i=1

|x(m)
i |m

) 1
m

.

Proof. We will prove the result by using mathematical induction. For m = 2,
the result is trivial. Assume that the result holds for m − 1. We have, by the
Hölder’s inequality, that

n∑
i=1

|x(1)
i · · ·x(m−1)

i x
(m)
i | ≤

(
n∑

i=1

|x(1)
i · · ·x(m−1)

i | m
m−1

)m−1
m
(

n∑
i=1

|x(m)
i |m

) 1
m

.

By the induction hypothesis, the right hand side is bounded by
(

n∑
i=1

|x(1)
i |m

) 1
m

· · ·
(

n∑
i=1

|x(m−1)
i |m

) 1
m
(

n∑
i=1

|x(m)
i |m

) 1
m

.

Thus, the result is proved.

From Lemma 1, we get the following lemma.

Lemma 2. Let {x
(j)
i }n

i=1, 1 ≤ j ≤ m, be sequence of real numbers. Then the
following inequality is satisfied.

n∑
i=1

|x(1)
i · · ·x(m)

i | ≤ max {
n∑

i=1

|x(1)
i |m, · · · ,

n∑
i=1

|x(m)
i |m}.

Theorem 1. Let βd be the branch number of the linear transformation L from
the viewpoint of differential cryptanalysis. Then, the maximum differential prob-
ability for 2 rounds of SPN structure is bounded by

max


 max

1≤i≤n
max

1≤u≤2m−1

2m−1∑
j=1

{DPSi(u, j)}βd , max
1≤i≤n

max
1≤u≤2m−1

2m−1∑
j=1

{DPSi(j, u)}βd


.

Proof. Let a = (a1, · · · , an), b = (b1, · · · , bn) be the input difference and output
difference, respectively, for 2 rounds of SPN structure. Since DPL(α, L(α)) = 1,
the differential probability DP2(a, b) is given as

DP2(a, b) =
∑

x

(
n∏

i=1

DPSi(ai, xi)

)
 n∏

j=1

DPSj (yj , bj)


 ,
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where y = L(x), x = (x1, · · · , xn), and y = (y1, · · · , yn). Without loss of gener-
ality, we assume that a1 �= 0, · · · , ak �= 0, ak+1 = 0, · · · , an = 0, b1 �= 0, · · · , bl �=
0, bl+1 = 0, · · · , bn = 0. Note that if α = 0, β �= 0 or α �= 0, β = 0, then
DPSi(α, β) = 0. Hence, it is enough to consider the following x(and y = L(x))
only in the above summation.

x1 �= 0, · · · , xk �= 0, xk+1 = 0, · · · , xn = 0,

y1 �= 0, · · · , yl �= 0, yl+1 = 0, · · · , yn = 0.

We let the solutions of the above system be as follows:

t x1 · · · xk y1 · · · yl

1 x
(1)
1 · · · x

(k)
1 y

(1)
1 · · · y

(l)
1

2 x
(1)
2 · · · x

(k)
2 y

(1)
2 · · · y

(l)
2

...
...

...
...

...
δ x

(1)
δ · · · x

(k)
δ y

(1)
δ · · · y

(l)
δ

Then the maximum differential probability DP2(a, b) can be written as

DP2(a, b) =
δ∑

t=1

(
k∏

i=1

DPSi(ai, x
(i)
t )

)
 l∏

j=1

DPSj (y(j)
t , bj)


 .

By the definition of branch number, it follows that k + l ≥ βd. We divide the
proof into two cases: k + l = βd and k + l > βd.
(Case 1: k + l = βd). In this case, we have that, for each i(1 ≤ i ≤ k),
x

(i)
1 , · · · , x

(i)
δ are distinct, because L is linear and k + l = βd. If, for some

i(1 ≤ i ≤ k), x
(i)
1 , · · · , x

(i)
δ are not distinct, then there exist a pair (x(i)

J , x
(i)
J′ )

such that x
(i)
J = x

(i)
J′ , where x

(i)
J is i-th component of x and x

(i)
J′ is i-th com-

ponent of x′, respectively. Therefore, i-th component of x ⊕ x′ is equal to zero.
Since L(x)⊕L(x′) = L(x⊕x′), this is a contradiction of the definition of branch
number. We also have that, for each j(1 ≤ j ≤ l), y

(j)
1 , · · · , y

(j)
δ are distinct.

From Lemma 2, DP2(a, b) is bounded by

max

{
δ∑

t=1

{DPS1(a1, x
(1)
t )}βd , · · · ,

δ∑
t=1

{DPSk(ak, x
(k)
t )}βd ,

δ∑
t=1

{DPS1(y(1)
t , b1)}βd , · · · ,

δ∑
t=1

{DPSl(y(l)
t , bl)}βd

}

≤ max


 max

1≤i≤n
max

1≤u≤2m−1

2m−1∑
j=1

{DPSi(u, j)}βd ,

max
1≤i≤n

max
1≤u≤2m−1

2m−1∑
j=1

{DPSi(j, u)}βd


 .
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(Case 2: k+l > βd). In this case, x
(i)
1 , · · · , x

(i)
δ or y

(j)
1 , · · · , y

(j)
δ are not necessarily

dintinct. However, when we consider the subset of solutions such that k + l − βd

components are fixed(x1 = i1, . . . , xp = ip, y1 = j1, . . . , yq = jq), each of the
other βd components has distinct values, where 0 ≤ p ≤ k − 1, 0 ≤ q ≤ l − 1,
and p + q = k + l − βd. We denote this subset of solutions by Ai1,...,ip,j1,...,jq

.
Note that Ai1,...,ip,j1,...,jq could be the empty set. As in the case 1(or by Lemma
2), we obtain that

∑
(x,y)∈Ai1,...,ip,j1,...,jq

(
k∏

i=1

DPSi(ai, xi)

)
 k∏

j=1

DPSj (yj , bj)




= DPS1(a1, i1) · · ·DPSp(ap, ip)DPS1(j1, b1) · · ·DPSq (jq, bq) ×
∑

(x,y)∈Ai1,...,ip,j1,...,jq


 k∏

i=p+1

DPSi(ai, xi)




 k∏

j=q+1

DPSj (yj , bj)




≤ DPS1(a1, i1) · · ·DPSp(ap, ip)DPS1(j1, b1) · · ·DPSq (jq, bq) ×

max


 max

1≤i≤n
max

1≤u≤2m−1

2m−1∑
j=1

{DPSi(u, j)}βd ,

max
1≤i≤n

max
1≤u≤2m−1

2m−1∑
j=1

{DPSi(j, u)}βd




=: pi1,...,ip,j1,...,jq

Thus DP2(a, b) is bounded by

2m−1∑
i1=1

· · ·
2m−1∑
ip=1

2m−1∑
j1=1

· · ·
2m−1∑
jq=1

pi1,...,ip,j1,...,jq

= max


 max

1≤i≤n
max

1≤u≤2m−1

2m−1∑
j=1

{DPSi(u, j)}βd ,

max
1≤i≤n

max
1≤u≤2m−1

2m−1∑
j=1

{DPSi(j, u)}βd


 .

From Cases 1 and 2, the result is proved.

Corollary 1. Let βd be the branch number of the linear transformation L from
the viewpoint of differential cryptanalysis. Then the maximum differential proba-
bility for 2 rounds of SPN structure is bounded by pβd−1, where p is the maximum
differential probability for the S-boxes.
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Proof. By Theorem 1, the maximum differential probability for 2 rounds of SPN
structure is bounded by

pβd−1 × max


 max

1≤i≤n
max

1≤u≤2m−1

2m−1∑
j=1

DPSi(u, j),

max
1≤i≤n

max
1≤u≤2m−1

2m−1∑
j=1

DPSi(j, u)


 = pβd−1.

Theorem 2. Let βl be the branch number of the linear transformation L from
the viewpoint of the linear cryptanalysis. The maximum linear hull probability
for 2 rounds of SPN structure is bounded by

max


max

1≤i≤n
max

1≤u≤2m−1

2m−1∑
j=1

{DPSi(u, j)}βl , max
1≤i≤n

max
1≤u≤2m−1

2m−1∑
j=1

{DPSi(j, u)}βl


.

Corollary 2. Let βl be the branch number of the linear transformation L from
the viewpoint of linear cryptanalysis. Then the maximum linear hull probability
for 2 rounds of SPN structure is bounded by qβl−1, where q is the maximum
linear hull probability for the S-boxes.

Hong et al. proved Corollary 1 and 2 when βl = n+1 or n [7]. Kang et al. proved
them for any value of the branch number of the linear transformation [8].

4 Security of AES

AES is a block cipher composed of SPN structures and its linear transformation
consists of ShiftRows transformation and MixColumns transformation.

Let π : (Z8
2 )16 −→ (Z8

2 )16 be the ShiftRows transformation of AES. Let x =
(x1,x2,x3,x4) = (x11,x12,x13,x14, x21, . . ., x34, x41,x42,x43,x44) be the input of
π. Figure 3 illustrate the ShiftRows transformation π of AES.

Fig. 3. ShiftRows transformation of AES.

Let y = (y1,y2,y3,y4) = (y11,y12,y13,y14, y21, . . ., y34, y41,y42,y43,y44) be the
output of π. It is easy to check that, for any i(i = 1, 2, 3, 4), each byte of yi comes
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from different xi. For example, for y1 = (y11, y12, y13, y14) = (x11, x22, x33, x44),
x11 is a byte coming from x1. Furthermore, x22, x33 and x44 are elements of x2,
x3 and x4, respectively.

The MixColumns transformation of AES operates on the state column by
column, treating each column as a four-term polynomial. Let θ = (θ1, θ2, θ3, θ4)
be the MixColumns transformation of AES. Let y = (y1, y2, y3, y4) = (y11, y12,
y13, y14, y21, . . ., y34, y41,y42,y43,y44) be the input of θ and z = (z1,z2,z3,z4)
= (z11,z12,z13,z14, z21, . . ., z34, z41,z42,z43,z44) be the output of θ, respectively.
Each of θi can be written as a matrix multiplication as follows:




yi1
yi2
yi3
yi4


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 ·




zi1
zi2
zi3
zi4


 .

In the matrix multiplication, the addition is just bitwise exclusive-or and
the multiplication is defined as the multiplication over GF (28). We can consider
each θi as a linear transformation and we know that the branch number of each
θi is 5.

In [15], the upper bound on the maximum differential probability for 2 rounds
of Rijndael-like structure is obtained as follows:

Definition 5. Rijndael-like structures are the block ciphers composed of SPN
structures satisfying the followings:

(i) Their linear transformation has the form (θ1, θ2, θ3, θ4) ◦ π.
(ii) (The condition of π) Each of bytes of yi comes from each different xi,

where x = (x1, x2, x3, x4) is input of π and y = (y1, y2, y3, y4) is output of
π, respectively.

(iii) (The condition of θ = (θ1, θ2, θ3, θ4)) When we consider each of θi as a
linear transformation, the followings hold:

βθ1
d = βθ2

d = βθ3
d = βθ4

d and βθ1
l = βθ2

l = βθ3
l = βθ4

l .

Definition 6. For x = (x1, . . . , xn), the pattern of x, γx, is defined by γx =
(γ1, . . . , γn) ∈ Zn

2 , where, if xi = 0, then γi = 0, and if xi �= 0, then γi = 1.

Theorem 3 ([15]).

DP2(a, b) ≤
{

pwt(γπ(a))(βd−1), if γπ(a) = γb,
0, otherwise.

By Theorem 3, the upper bound on the maximum differential probability for
2 rounds of Rijndael-like structures is pβd−1. By applying Theorem 3 to AES,
it is obtained that the maximum differential probability for 2 rounds of AES is
bounded by 2−24, because βd = 5, p = 2−6. Note that this result depends on the
maximum differential probability of S-box.
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By applying our result to Theorem 3, new upper bound on the maximum
differential probability for 2 rounds of AES can be obtained. We apply Theorem
1 to 2 rounds of AES. Let S be the S-box of AES. If nonzero a ∈ Z8

2 is fixed,
and b varies over Z8

2 , then the distribution of differential probability of S-box,
DPS(a, b) is independent of a, and is given in Table 1. In Table 1, ρi is the
differential probability and πi is the number of occurrences of ρi. If nonzero
b ∈ Z8

2 is fixed, and a varies over Z8
2 , then the same distribution is obtained.

Table 1. The distribution of differential probability for AES S-box.

i 1 2 3
ρi 2−6 2−7 0
πi 1 126 129

From Theorem 1 and Table 1, we have DP θi
2 (a, b) ≤ ∑255

j=1{DPS(1, j)}5 ≈
1.23 × 2−28.

Theorem 4. When γπ(a) = γb, the upper bound of the maximum differential
probability of 2 rounds of AES is as following:

DP2(a, b) ≤ (1.23 × 2−28)wt(π(a)).

Therefore, the maximum differential probability of 2 rounds of AES is bounded
by 1.23 × 2−28.

To compute the upper bound on the maximum differential probability for 4
rounds of AES, we need the following notations:

– x(i) = (x(i)
1 , . . . , x

(i)
4 ) = (x(i)

11 , x
(i)
12 , x

(i)
13 , x

(i)
14 , . . . , x

(i)
41 , x

(i)
42 , x

(i)
43 , x

(i)
44 ): the input

of π at i-th round.
– y(i) = (y(i)

1 , . . . , y
(i)
4 ) = (y(i)

11 , y
(i)
12 , y

(i)
13 , y

(i)
14 , . . . , y

(i)
41 , y

(i)
42 , y

(i)
43 , y

(i)
44 ): the output

of π at i-th round, i.e. the input of θ at i-th round.
– z(i) = (z(i)

1 , . . . , z
(i)
4 ) = (z(i)

11 , z
(i)
12 , z

(i)
13 , z

(i)
14 , . . . , z

(i)
41 , z

(i)
42 , z

(i)
43 , z

(i)
44 ): the output

of θ at i-th round.

Theorem 5. The differential probability for 4 rounds of AES is bounded by
1.144 × 2−111.

Proof. We compute the upper bound on DP4(a, b) for the value of wt(γπ(a)) and
wt(b). Since βd = 5, if wt(γπ(a))+wt(b) ≤ 4, then DP4(a, b) = 0. Therefore, it is
sufficient to compute the upper bound on DP4(a, b), when wt(γπ(a))+wt(b) ≥ 5.

(Case 1: wt(γπ(a)) = 4). By Theorem 4,

DP4(a, b) =
∑
x(2)

DP2(a, x(2))DP2(z(2), b) ≤ max
x(2)

DP2(a, x(2))

≤ (1.23 × 2−28)4 ≈ 1.144 × 2−111.
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(Case 2: wt(b) = 4). By Theorem 4,

DP4(a, b) =
∑
x(2)

DP2(a, x(2))DP2(z(2), b) ≤ max
z(2)

DP2(z(2), b)

≤ (1.23 × 2−28)4 ≈ 1.144 × 2−111.

(Case 3: wt(γπ(a)) = 2 and wt(b) = 3). We assume that γπ(a) = (1, 1, 0, 0) and
γb = (1, 1, 1, 0). Then we can represent DP4(a, b) as follows:

DP4(a, b) =
∑
x(2)

DP2(a, x(2))DP2(z(2), b)

=
4∑

i=1

∑
x(2),wt(z(2))=i

DP2(a, x(2))DP1(z(2), b) =: I + II + III + IV.

We know that wt(y(2)
i ) ≤ wt(x(2)) = wt(γπ(a)) = 2 and wt(z(2)

i ) = wt(x(3)
i ) ≤

wt(b) = 3. Since βθi

d = 5, we obtain that wt(y(2)
i ) = 2 and wt(z(2)

i ) = 3, where
y
(2)
i and z

(2)
i are the nonzero components of y(2) and z(2), respectively. Note that

y
(2)
i is the input mask of θi and z

(2)
i is the output mask of θi. Now, we compute

the value of I. We can represent I as follows:

I =
∑

x(2),γ
y(2)=(1,0,0,0)

DP2(a, x(2))DP2(y(2), b)

+
∑

x(2),γ
y(2)=(0,1,0,0)

DP2(a, x(2))DP2(y(2), b)

+
∑

x(2),γ
y(2)=(0,0,1,0)

DP2(a, x(2))DP2(y(2), b)

+
∑

x(2),γ
y(2)=(0,0,0,1)

DP2(a, x(2))DP2(y(2), b)

=: I1 + I2 + I3 + I4

At first, we compute the value of I1. Since γx(2) = γπ(a) = (1, 1, 0, 0), γz(2) =
(1, 0, 0, 0), and, wt(y(2)

1 ) = 2, from the definition of π, we obtain that x(2) =
(x(2)

11 , 0, 0, 0, 0, 0, 0, x
(2)
24 , 0, 0, 0, 0, 0, 0, 0, 0). Furthermore, since γ

z
(2)
1

= γ
x
(3)
1

,

γ
(3)
z = γ

(3)
y = γb = (1, 1, 1, 0), and, wt(z(2)

1 ) = 3, we obtain that z(2) =
(z(2)

11 , z
(2)
12 , z

(2)
13 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). (x(2)

11 , 0, 0, x
(2)
24 ) and (z(2)

11 , z
(2)
12 ,

z
(2)
13 , 0) are the nonzero input mask and output mask of θ1, respectively. Since

βθ1
d = 5, each of x

(2)
11 , x

(2)
24 , z

(2)
11 , z

(2)
12 , z

(2)
13 is of distinct value. Therefore, we can

establish the following:
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I1 =
∑

x(2),γ
(2)
y =(1,0,0,0)

DP θ1
2 (a∗

1, (x
(2)
11 , 0, 0, 0))DP θ2

2 (a∗
2, (0, 0, 0, x

(2)
24 ))DP2(y(2), b)

≤ P 4
∑
x
(2)
11

DP θ1
2 (a∗

1, (x
(2)
11 , 0, 0, 0)),

where P = 1.23 × 2−28, the upper bound of DP θi
2 (a, b). By applying the same

method, the upper bounds of I2, I3 and I4 can be determined.

I ≤ P 4


∑

x
(2)
11

DP θi
2 (a∗

1, (x
(2)
11 , 0, 0, 0)) +

∑
x
(2)
12

DP θi
2 (a∗

1, (0, x
(2)
12 , 0, 0))

+
∑
x
(2)
13

DP θi
2 (a∗

1, (0, 0, x
(2)
13 , 0)) +

∑
x
(2)
14

DP θi
2 (a∗

1, (0, 0, 0, x
(2)
14 ))


 .

Using the same method, we arrive at the followings:

II ≤ P 4
∑

wt(x(2)
1 )=2

DP θ1
2 (a∗

1, x
(2)
1 )

III ≤ P 4
∑

wt(x(3)
1 )=2

DP θ1
2 (a∗

1, x
(2)
1 )

IV ≤ P 4
∑

wt(x(4)
1 )=2

DP θ1
2 (a∗

1, x
(2)
1 )

Therefore,

DP4(a, b) ≤ I + II + III + IV ≤ P 4
∑
x
(2)
1

DP θi
2 (a∗

1, x
(2)
1 ) = P 4

≤ (1.23 × 2−28)4 ≈ 1.144 × 2−111.

(Case 4: wt(γπ(a)) = 3 and wt(b) = 2). The proof is similar to that of Case 3
and we arrive at the following:

DP4(a, b) ≤ (1.23 × 2−28)4 ≈ 1.144 × 2−111.

(Case 5: wt(γπ(a)) = 3 and wt(b) = 3). The proof is similar to that of Case 3
and we arrive at the following:

DP4(a, b) ≤ (1.23 × 2−28)4 ≈ 1.144 × 2−111.

The distribution of linear probability value LPS(a, b) for AES S-box is given
in the Table 2. In the table, ρi is the linear probability value and φi is the number
of occurence of ρi.

From Theorem 2 and Table 2, we have LP θi
2 (a, b) ≤ ∑255

j=1{LPS(1, j)}5 ≈
1.44 × 2−27. Using the similar method as in Theorem 5, we can compute the
upper bound on the linear hull probability for 4 rounds of AES.
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Table 2. The distribution of linear probability values for AES S-box.

i 1 2 3 4 5 6 7 8 9
ρi ( 8

64 )2 ( 7
64 )2 ( 6

64 )2 ( 5
64 )2 ( 4

64 )2 ( 3
64 )2 ( 2

64 )2 ( 1
64 )2 0

φi 5 16 36 24 34 40 36 48 17

Theorem 6. The linear probability of 4 rounds of AES is bounded by (1.44 ×
2−27)4 ≈ 1.075 × 2−106.

We know that the differential probabilities for r(r ≥ 5) rounds of AES are
smaller than or equal to the maximum differential probability for 4 rounds of
AES.

DP5(a, b) =
∑
x(4)

DP4(a, x(4))DP1(z(4), b) ≤ max
x(4)

DP4(a, x(4)).

Therefore, the upper bound on the maximum differential probability in Theorem
5 is the upper bound for r(r ≥ 5) rounds of AES. Similarly, the maximum linear
hull probability for 4 rounds of AES in Theorem 6 is the upper bound for r(r ≥ 5)
rounds of AES.

5 Conclusion

In this paper, we have obtained a new upper bound on the maximum differential
probability and the maximum linear hull probability for 2 rounds of SPN struc-
ture. Our upper bound can be computed for any value of the branch number of
the linear transformation. By applying this result, we have proved that the max-
imum differential probability for 4 rounds of AES is bounded by 1.144 × 2−111.
Also, we have proved that the maximum linear hull probability for 4 rounds of
AES is bounded by 1.075 × 2−106.
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