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Abstract. In this paper, we design a new hash function PARSHA-256.
PARSHA-256 uses the compression function of SHA-256 along with the
Sarkar-Schellenberg composition principle. As a consequence, PARSHA-
256 is collision resistant if the compression function of SHA-256 is col-
lision resistant. On the other hand, PARSHA-256 can be implemented
using a binary tree of processors, resulting in a significant speed-up over
SHA-256. We also show that PARSHA-256 can be efficiently implemented
through concurrent programming on a single processor machine using a
multithreaded approach. Experimental results on P4 running Linux show
that for long messages the multithreaded implementation is faster than
SHA-256.
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1 Introduction

A collision resistant hash function is a basic primitive of modern cryptography.
One important application of such functions is in “hash-then-sign” digital sig-
nature protocols. In such a protocol a long message is hashed to produce a short
message digest, which is then signed. Since hash functions are typically invoked
on long messages, it is very important for the digest computation algorithm to
be very fast.

Design of hash functions has two goals – collision resistance and speed. For the
first goal, it is virtually impossible to describe a hash function and prove it to be
collision resistant. Thus we have to assume some function to be collision resistant.
It seems more natural to make this assumption when the input is a short string
rather than a long string. On the other hand, the input to a practical hash
function can be arbitrarily long. Thus one has to look for a method of extending
the domain of a hash function in a secure manner, i.e., the hash function on the
larger domain is collision resistant if the hash function on the smaller domain
is collision resistant. In the literature, the fixed domain hash function which
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is assumed to be collision resistant is called the compression function and the
method to extend the domain is called the composition principle.

A widely used composition principle is the Merkle-Damg̊ard (MD) principle
introduced in [3, 7]. To the best of our knowledge most known practical algo-
rithms like MD5, SHA family, RIPEMD-160 [4], etc. are built using the MD
composition principle. These functions vary in the design of the compression
function. In fact, most of the work on practical hash function design has concen-
trated on the design of the compression function. This is due to the fact that the
known attacks on practical hash functions are actually based on attacks on the
compression function. See [9] for a survey and history of hash functions. As a
result of the intense research on the design of compression function, today there
are a number of compression functions which are widely believed to be colli-
sion resistant. Some examples are the compression functions of RIPEMD-160,
SHA-256, etc.

As mentioned before, the other aspect of practical hash functions is the speed
of the algorithm to compute the digest. One way to improve the speed is to use
parallelism. Parallelism in the design of hash funcions has been studied earlier.
The compression function of RIPEMD-160 has a built in parallel path [4]. In [2]
the parallelism present in the compression function of the SHA family is stud-
ied. In a recent work, [8] studies the efficiency of parallel implementation of some
dedicated hash functions. In [6], Knudsen and Preneel describe a parallelizable
construction of secure hash function based on error-correcting codes. Another
relevant paper is a hash function based on the FFT principle [11]. Also [1] de-
scribe an incremental hash function, which is parallelizable. However, most of
the work seems to be concentrated on exploiting parallelism in the compression
function. The other way to achieve parallelism is to incorporate it in the composi-
tion principle. One such work based on binary trees is by Damg̊ard [3]. However,
the algorithm in [3] is not practical since the size of the binary tree grows with
the length of the message. One recent paper which describes a practical parallel
composition principle is the work by Sarkar and Schellenberg [10].

In this paper we design a collision resistant hash function based on the Sarkar-
Schellenberg (SS) composition principle. To actually design a hash function, it
is not enough to have a secure composition principle; we must have a “good”
compression function. As mentioned before, research in the design of compres-
sion functions have given us a number of such “good” functions. Thus one way
to design a new hash function is to take the SS composition principle and an al-
ready known “good” compression function and combine them to obtain the new
hash function. This new function will inherit the collision resistance from the
compression function and the parallelism from the composition principle. Note
that the parallelism in the composition principle is in addition to any parallelism
which may be present in the compression function. Thus the studies carried out
in [8, 2] on the parallel implementation of the standard hash functions are also
relevant to the current work. In this paper we use this idea to design a new hash
function – PARSHA-256 – which uses the SS composition principle along with
the compression function of SHA-256.
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PARSHA-256 can be implemented in both sequential and parallel manner. A
fully parallel implementation of PARSHA-256 will provide a significant speed-up
over SHA-256. However, for widespread software use, full parallel implementa-
tion might not always be possible. We still want our hash function to be used
– without significantly sacrificing efficiency. One approach is to simulate the
binary tree of processors with a binary tree of lesser height. Details of this sim-
ulation algorithm can be found in [10]. Another approach is to use concurrent
programming using threads to simulate the parallelism.

We provide a multithreaded implementation of PARSHA-256. The SS com-
position principle is based on a binary tree of processors. In each round some or
all of the processors work in parallel and invoke the compression function. The
entire algorithm goes through several such parallel rounds. Our strategy is to
simulate the processors using threads. The simulation is round by round, i.e.,
for each parallel round a number of threads (corresponding to the number of
processors for that round) are started. All the threads execute the compression
function in a concurrent manner. Also the inputs to the threads are different.
The simulation of a round ends when all the threads have completed their tasks.
This is repeated for all the parallel rounds.

Experimental results on P4 running Linux show that for long messages the
above strategy of concurrent execution leads to a speed-up over SHA-256. This
speed-up varies with the length of the message and the size of the binary tree.
Thus we obtain a new hash function which is collision resistant if the compression
function of SHA-256 is collision resistant; is significantly faster than SHA-256 if
implemented in a full parallel manner, and on certain single processor platforms
for long messages is still faster than SHA-256 if implemented as a concurrent
program using threads.

2 Compression Function and Processor Tree
We describe our choice of the compression function and the processor tree used
for the composition principle.

2.1 Choice of Compression Function
Let h() be the compression function for SHA-256. The input to h() consists of
the following two quantities: (1) A : Sixteen 32-bit words and (2) B : Eight 32-bit
words. In the intermediate stages, A is obtained from the message and B is the
intermediate hash value. The output of h() consists of eight 32-bit words. Thus
the input to h() is 768 bits and the output of h() is 256 bits. In the rest of the
paper we will use n = 768 and m = 256. In our algorithm, the inputs to h() will
be formed differently. However, we do not change the definition of h() and hence
the assumption that h() is collision resistant remains unchanged.

2.2 Processor Tree

We will use a binary tree of processors. For t > 0, we define the processor
tree Tt of height t in the following manner: There are 2t processors, num-
bered P0, . . . , P2t−1. For 0 ≤ i ≤ 2t−1 − 1, the children of processor Pi are
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P2i and P2i+1. The arcs point towards parents, i.e., the arc set of Tt is At =
{(P2i, Pi), (P2i+1, Pi) : 0 ≤ i ≤ 2t−1 − 1}. Thus the arcs coming into P0 are from
P1 and P0 itself. We define I = {0, . . . , 2t−1 − 1}, L = {2t−1, . . . , 2t − 1} and
P = {0, . . . , 2t − 1}. Figure 1 shows T3.
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Fig. 1. Processor Tree with t = 3.

The input to the processors are binary strings and the behaviour of any
processor Pi is described as follows:

Pi(y) = h(y) if |y| = n;
= y otherwise.

}
(1)

Thus Pi invokes the hash function h() on the string y if the length of y is n;
otherwise it simply returns the string y. We note that in the digest computation
algorithm the length of y will always be n, m or 0.

3 A Special Case

In this section, we describe a special case with a suitable message length and
a processor tree with t = 3 and without the use of initialization vector. The
purpose of this description is to highlight the basic idea behind the design. In
Section 4, we provide the complete specification of PARSHA-256. The special case
described here is intended to help the reader to better appreciate the different
parameters of the general specification.

Let x be the message to be hashed with length L = 2t(p + 2)(n − m) − (n −
2m) for some integer p ≥ 0. Consider the processor tree T3 having processors
P0, . . . , P7. During the hash function computation, the message x will be broken
up into disjoint substrings of lengths n or n − 2m. These substrings will be
provided as input to the processors in the different rounds. Let us denote by
u0, . . . , u7 the substrings of x which are provided to the processors P0, . . . , P7 in a
particular round. The computation will be done in (p+4) parallel rounds. In each
round some or all of the processors work in parallel and apply the compression
function to its input to obtain its output. Let us denote by z0, . . . , z7 respectively
the outputs of the processors P0, . . . , P7 in a particular round. The description
of the rounds is as follows.
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1. In round 1, each processor Pj , with 0 ≤ j ≤ 7, gets as input an n-bit
substring uj of the message x and produces an m-bit output zj .

2. In rounds 2 to (p + 1) the computation proceeds as follows.
(a) Processors P0, . . . , P3 each get an (n − 2m)-bit substring of the message

x. These substrings are u0, . . . , u3. Processor Pj (0 ≤ j ≤ 3) concate-
nates the m-bit strings z2j and z2j+1 of the previous round to uj to form
an n-bit input. For example, P0 concatenates z0, z1 to u0; P1 concate-
nates z2, z3 to u1 and so on. Note that all the intermediate hash values
z0, . . . , z7 of the previous rounds are used up.

(b) Processors P4, . . . , P7 each get an n-bit substring of the message as input,
i.e., the strings u4, . . . , u7 are all n-bit strings.

(c) Each of the processors invoke the compression function on their n-bit
inputs to produce an m-bit output.

3. In round (p + 2), processors P0, . . . , P3 each get an (n − 2m)-bit string, i.e.,
the strings u0, . . . , u3 are each (n − 2m)-bit strings. None of the processors
P4, . . . , P7 get any input. Each processor Pj (0 ≤ j ≤ 3) then forms an n-bit
string as described in item 2a above. These strings are hashed to obtain
m-bit outputs z0, . . . , z3.

4. In round (p+3), processors P0 and P1 each get an (n− 2m)-bit string. (The
other processors do not get any input.) These processors then form n-input
using the strings z0, . . . , z3 as before. The n-bit strings are hashed to produce
two m-bit strings z0 and z1.

5. In round (p + 4) only processor P0 gets an (n − 2m)-bit string. The m-
bits outputs z0, z1 of the round (p+3) are concatenated to this (n−2m)-bit
string to form an n-bit input. This input is hashed to obtain the final message
digest.

Figure 2 shows the working of the algorithm. Note that the total number of
bits that is hashed is equal to

2t(n) + p(2t−1(n − 2m) + 2t−1(n)) + (n − 2m)(2t−1 + · · · + 1).

A routine simplification shows that this is equal to the length L of the message
x. Hence the entire message is hashed to produce the m-bit message digest. Now
we consider the modifications required to handle the general situation.

3.1 Arbitrary Lengths

The message length that we have chosen is of a particular form. In general we
have to tackle arbitrary length messages. This requires that the original message
be padded with 0’s to obtain the length in a desirable form.

3.2 Processor Tree

The special case described above is for t = 3. Depending upon the availability of
resources, one might wish to use a larger tree. We have provided the specification
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Fig. 2. Example for the special case.

of PARSHA-256 using the tree height as a parameter. Suppose the height of the
available processor tree is T . However, the length of the message might not be
large enough to utilize the entire processor tree. In this case, one has to utilize a
subtree of height t ≤ T , which we call the effective height of the processor tree.

3.3 Initialization Vector

The description of the special case does not use an initialization vector (IV).
As a result there are invocations of the compression function where the input
is formed entirely from the message bits. This implies that any collision for the
compression function immediately provides a collision for the hash function. To
avoid this situation, one can use an initialization vector as part of the input to
the invocations of the compression function. This ensures that to find a collision
for the hash function, one has to find a collision for the compression function
where a portion of the input is fixed.

Using an IV is relatively simple in the Merkle-Damg̊ard composition scheme.
The IV has to be used only for the first invocation of the compression function.
For the tree based algorithm, the IV has to be used at several points. It has
to be used for all invocations of the compression function in the first round
and all invocations of the compression function by leaf level processors in the
subsequent rounds. The disadvantage of using an IV is the fact that the number of
invocations of the compression functions increases. Further, this value increases
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as the length of the IV increases. To allow more flexibility to the user we provide
for three different possible lengths for the IV. The effect of the length of IV on
the number of parallel rounds and the number of invocations of the compression
function is discussed in Section 5.

4 PARSHA-256 Specification

In this section we provide the detailed technical specification of the new hash
function PARSHA-256. This includes the padding, formatting of the message and
the digest computation algorithm. The choice of the compression function and
the SS composition principle is also a part of these specifications.

4.1 Parameters and Notation

1. n = 768 and m = 256.
2. Compression function h : {0, 1}n → {0, 1}m.
3. Message x having length |x| = L bits.
4. Height of available processor tree is T .
5. Effective height of processor tree is t.
6. Initialization vector IV having length |IV| = l ∈ {0, 128, 256}.
7. Functions δ(i) and λ(i): δ(i) = 2i(2n − 2m − l) − (n − 2m);

λ(i) = 2i−1(2n − 2m − l).
8. q, r and b are defined from L and t as follows:

If L > δ(t), then write L − δ(t) = qλ(t) + r,
where r is the unique integer from the set {1, . . . , λ(t)}.
If L = δ(t), then q = r = 0.

9. b =
⌈

r
2n−2m−l

⌉
.

10. Number of parallel rounds : R = q + t + 2.
11. The empty string will be denoted by NULL.

The initialization vector IV of length l is specified as followed. The specification
of SHA-256 describes a 256-bit initialization vector IV. If l = 256, then IV = IV;
if l = 128, then IV is the first 128 bits of IV; and if l = 0, then IV = NULL.

4.2 Formatting the Message

The message x undergoes two kinds of padding. In the first kind of padding,
called end-padding, zeros are appended to the end of x to get the length of the
padded message in a certain form. This padding is defined in Step 5 of PARSHA-
256 in Section 4.4. The other kind of padding is what we call IV-padding. If
l > 0, then IV-padding is done to ensure that no invocation of h() gets only
message bits as input.

We now describe the formatting of the message into substrings. Let the end-
padded message be written as U1||U2|| . . . ||UR, where for 1 ≤ i ≤ R − 1, Ui =
ui,0|| . . . ||ui,2t−1 and ui,j , UR are strings of length 0, n − 2m or n − l as defined
in Equation (2).
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|ui,j | =




n − l if (i = 1) or (2 ≤ i ≤ q + 1 and j ∈ L);
n − l if i = q + 2 and 2t−1 ≤ j ≤ 2t−1 + b − 1;
0 if i = q + 2 and 2t−1 + b ≤ j ≤ 2t;
0 if q + 2 < i < R and i ∈ L;
n − 2m if 2 ≤ i ≤ q + 2 and j ∈ I;
n − 2m if q + 2 < i < R and 0 ≤ j ≤ Ki − 1;
0 if q + 2 < i < R and Ki ≤ j ≤ 2t−1 − 1.

|UR| =
{

n − 2m if b > 0;
0 otherwise.




(2)

Here

Ki = 2s−1 + ks (3)

where s = R − i and ks =
⌊

2t−s−1+b−1
2t−s

⌋
. For 1 ≤ i < R and 0 ≤ j ≤ 2t − 1,

the input to processor Pj in round i is a string vi,j and the output is zi,j . These
strings are defined as follows.

zi,j = Pj(vi,j);
vi,j = ui,j ||IV if i = 1 or j ∈ L;

= zi−1,2j ||zi−1,2j+1||ui,j if 1 < i < R and j ∈ I.


 (4)

For l = 0, the correctness of the above formatting algorithm can be found in [10].
The same proof also holds for the case l > 0 and hence we do not repeat it here.

4.3 Computation of Digest

The digest computation algorithm is described as follows.
ComputeDigest(x, t)
Inputs : message x and effective tree height t.
Output : m-bit message digest.

1. for 1 ≤ i ≤ R − 1
2. for j ∈ P do in parallel
3. zi,j = Pj(vi,j);
4. enddo;
5. enddo;
6. if b > 0 then w = P0(zR−1,0||zR−1,1||UR); else w = zR−1,0;
7. z = h(w||binn−m(L));
8. return z.

The function bink(i) is defined in the following manner: For 0 ≤ i ≤ 2k − 1,
bink(i) denotes the k-bit binary representation of i.

Remark 1. In rounds 1 to (q + 1) all the processors invoke the compression
function on their n-bit inputs. However, in rounds (q+2) to (q+t+1) only some
of the processors actually invoke the compression function. The compression
function is invoked only if the input to the processor is an n-bit string. Otherwise
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the processor simply outputs its input (see equation (1)). This behaviour of the
processors is controlled by the formatting of the message. The precise details are
as follows: Let i be the round number and s = R−i. In round i = q+2, processors
P0, . . . , P2t−1+b−1 invoke the compression function; in round q+2 < i < q+t+2,
processors P0, . . . , PKi−1 invoke the compression function, processor Pj (if any)
where 2s−1 + ks − 1 < j < 2s−1 + ls − 1, ls = �((b + 2t−s − 1)/2(t−s))� simply
outputs its m-bit input. All other processors in these rounds are inactive.

4.4 Digest Generation and Verification

We are now in a position to define the digest of a message x. Suppose that we
have at our disposal a processor tree of height T . Then the digest z of x is defined
in the following manner.
PARSHA-256(x, T )
Inputs : message x and height T of available binary tree.

1. if L ≤ δ(0) = n − l, then return h(h(x||0n−l−L||IV)||binn−m(L));
2. if δ(0) < L < δ(1), then x = x||0δ(1)−L; L = δ(1);
3. Determine t as follows :

t = T if L ≥ δ(T );
= i if δ(i) ≤ L < δ(i + 1), 1 ≤ i < T ;

4. Determine q, r and b from L and t; (see Section 4.1)
5. x = x||0b(2n−2m−l)−r;
6. z = ComputeDigest(x, t);
7. output (t, z).

Clearly the digest z depends upon the height of the tree t. Hence along with z,
the quantity t is also provided as output. Note that the height t of the tree used
to produce the digest may be less than the height T of the tree that is available.
The reason for this is that the message length L may not be long enough to
utilize the entire tree. Thus t is the effective height of the tree used to compute
the digest. During verification, Step 3 of PARSHA-256 is not executed, since the
effective height of the tree is already known.

This raises the following question: What happens if the verifier does not have
access to a tree of height t? In [10], it is shown that any digest produced using a
tree of height t can also be produced using a tree of height t′ with 0 ≤ t′ < t. The
same algorithm will also work in the present case and hence we do not repeat
it here. Moreover, in this paper we provide a multithreaded implementation of
algorithm ComputeDigest() where the processors are implemented using threads.
This also shows that access to a physical processor tree is not necessary for digest
computation.

5 Theoretical Analysis

In this section we perform a theoretical analysis of collision resistance and speed-
up of PARSHA-256. The speed-up is with respect to SHA-256, which is built using
the Merkle-Damg̊ard composition principle.
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5.1 Collision Resistance

We first note that the composition scheme used in the design of PARSHA-256
is the parallel Sarkar-Schellenberg scheme described in [10]. Hence we have the
following result.

Theorem 1 (Sarkar-Schellenberg [10]). If the compression function h() of
SHA-256 is collision resistant then so is PARSHA-256.

If no initialization vector is used, i.e., if l = 0, then the ability to obtain a collision
for h() immediately implies the ability to obtain a collision for PARSHA-256.
Hence we can state the following result.

Theorem 2. If l = 0, then h() is collision resistant if and only if PARSHA-256
is collision resistant.

What happens if l > 0? In this situation the initialization vector IV is non-trivial.
The intuitive idea is to increase the collision resistance of the hash function
beyond that of the compression function. If there is no IV, then a collision for
the compression function immediately leads to a collision for the hash function.
However, if an IV is used, then the adversary has to find a collision for the
compression function under the condition that a certain portion of the input is
fixed. Intuitively, this could be a more difficult task for the adversary. On the
other hand, Dobbertin [5] has shown that for MD4 the use of IV does not lead to
any additional protection. Still the use of IV is quite common in hash function
specification and hence we also include it in the specification of PARSHA-256.

5.2 Speed-Up over SHA-256

Let the end-padded length L of the message x be such that L = γ(n − m) for
some positive integer γ. To hash a message x of length L, SHA-256 requires γ
invocations of h() and hence the time required to hash x is γTh, where Th is
the time required by one invocation of h(). (We are ignoring the last invocation
of h() where the length of the message is hashed; this step is required by both
SHA-256 and PARSHA-256.) We now compare this to the number of invocations
of h() and the number of parallel rounds required by PARSHA-256.

Recall from Section 4.1 that the number of parallel rounds required by
PARSHA-256 is R. Thus the time required for parallel execution of PARSHA-
256 is RTh. The number of invocations of h() by PARSHA-256 is same as the
number of invocations of h() by PHA in [10].

Proposition 1. The number of invocations of h() by PARSHA-256 on a message
of length L is equal to (q + 2)2t + 2b − 2.

The parameters q and b depend on L, t, l, n and m. We have the following result.

Proposition 2. L
λ(t) − 1 < q + 2 < L

λ(t) .
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Table 1. Comparison of RF and IF for L = 2ρ(n − m).

l RF IF
0 ≈ 2−t + t

2ρ ≈ 1
128 ≈ 1.14 × 2−t + t

2ρ ≈ 1.14
256 ≈ 1.33 × 2−t + t

2ρ ≈ 1.33

Note that λ(t) depends on t, l, n and m. For convenience of comparison we assume
γ = 2ρ for some positive integer ρ. Also λ(t) = 2t−1(2n−2m− l). Hence we have

2ρ−t

1 − l
2(n−m)

− 1 < q + 2 <
2ρ−t

1 − l
2(n−m)

. (5)

We define two ratios to compare PARSHA-256 and SHA-256. The first ratio is
the round factor RF which compares the number of parallel rounds required
by PARSHA-256 to the number of rounds required by SHA-256. The lesser the
value of RF the more is the speed-up attained by PARSHA-256 over SHA-256. The
second ratio is the invocation factor IF which compares the number of invocations
of the compression function h() made by PARSHA-256 to SHA-256. These two
ratios are defined as follows.

RF = q+t+2
2ρ ;

IF = (q+2)2t+2b−2
2ρ .

}
(6)

Note that both RF and IF depend on l. Table 1 provides the values of RF and
IF under different values of l. For practical implementations the value of t will
be small (typically between 3 and 8). The number of processors used is 2t and
hence ideally we should have the round factor RF to be 2−t. For moderately
long messages (around 1Mbyte) this is true for l = 0. For l > 0 the RF is more.
However, for all l, the round factor RF decreases with increase in message length.
Also for a fixed length L (i.e., a fixed ρ), the factor 2−t

RF decreases as t increases
which implies that for a fixed length the efficiency of speed-up decreases with
increasing t. However, the actual speed-up increases as t increases.

For l = 0, the number of invocations of h() made by PARSHA-256 is equal
to the number of invocations of h() made by SHA-256. For l > 0, the number
of invocations made by PARSHA-256 is more than that made by SHA-256. This
is due to the use of IV. Thus a strictly sequential simulation of PARSHA-256
will require more time than SHA-256. In the next section, we show that for long
messages a multithreaded implementation of PARSHA-256 on a single processor
machine can lead to a speed-up over SHA-256.

6 Multithreaded Implementation

We implement the algorithm to compute PARSHA-256 using threads. The pro-
cessors are implemented using threads and the simultaneous operation of the
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processors is simulated by concurrent execution of the respective threads. There
are R parallel rounds in the algorithm.

Each round consists of two phases – a formatting phase and a hashing phase.
In the formatting phase, the inputs to the processors are formed using the mes-
sage and the outputs of the previous invocations of h(). Once this phase is com-
pleted, the hashing phase starts. In the hashing phase all the processors operate
in parallel to produce the output. We use two buffer sets – the input and the
output buffer sets. The input buffer set consists of 2t strings of length n each.
Similarly, the output buffer set consists of 2t strings of length m each. Thus each
processor has its own input buffer and output buffer. In the formatting phase,
the input buffer sets are updated using the message and the output buffers. In
the hashing phase, the input buffers are read and the output buffers are updated.
During implementation we declare the buffers to be global variables. This avoids
unnecessary overhead during thread creation.

The formatting phase prepares the inputs to all the processors. This phase
is executed in a sequential manner. That is, first the input to processor P0 is
prepared, then the input to processor P1 is prepared and so on for the required
number of processors. After the formatting phase is complete, the hashing phase
is started. The exact details of processor invocation are given as follows.

Rounds 1 to q + 1 :
P0, . . . , P2t−1 each invoke the compression function.

Round q + 2 :
P0, . . . , P2t−1+b−1 each invoke the compression function.

Round i with q + 2 < i < R :
P0, . . . PKi−1 each invoke the compression function.

Round R :
if b > 0, then P0 invokes the compression function.

Here Ki is as defined in Equation (3). Note that in rounds q + 2 to R at most
one processor may additionally output the m-bit input that it receives in the
previous round. (See Remark 1 for further explanation.)

Each processor is simulated using a thread. In the hashing phase of each
round, the required threads are started. Each thread is given an integer j, which
identifies the processor number and hence the input and the output buffers.
Also each thread gets the address of the start location of the subroutine h().
The subroutine h() is implemented in a thread safe manner, so that conflict free
concurrent execution of the same code is possible. The management strategy for
the input and output buffers described above ensure that there is no read/write
conflict for the buffers even during concurrent execution. The hashing phase is
completed only when all the started threads successfully terminate. This also
ends one parallel round of the algorithm. Finally the algorithm ends when all
the parallel rounds are completed.

There is another way in which concurrent execution can be further utilized.
As described before there are two phases of each round – the reading/formatting
phase and the hashing phase. It is possible to introduce concurrency in these two
phases in the following manner. Suppose the system is in the hashing phase of
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Table 2. Details of different test platforms.

Silicon Graphics O2 P4
Number of CPU 1 1
Processor MIPS R12000A Intel Pentium 4
Processor Speed 400MHz 1.40 GHz
Main Memory 512 MB 256 MB
OS IRIX 6.5 RedHat Linux 8.0

a particular round. At this point it is possible to concurrently execute the read-
ing/formatting phase of the next round. The advantage is that in the next round
the hashing phase can be started immediately, since the reading/formatting
phase of this round has been completed concurrently with the hashing phase
of the previous round. In situations where memory access is slow, this method
will provide speed improvements. On the other hand, to avoid read/write con-
flict, we have to use two sets of buffers, leading to a more complicated buffer
management strategy. For our work, we have chosen not to implement this idea.

7 Experimental Results

First we note that if PARSHA-256 is simulated sequentially then the time taken
is proportional to the number of invocations of h(). From Table 1, we know that
for a strict sequential execution PARSHA-256 will be roughly as fast as SHA-256
when l = 0 and PARSHA-256 will be 1

IF times slower than SHA-256 when l > 0.
Also for full parallel implementation the speed-up of PARSHA-256 over SHA-256
is determined by the factor RF in Table 1.

In this section we compare the performance of the multithreaded implemen-
tation of PARSHA-256 with SHA-256. The experiments have been carried out on
two platforms (see Table 2). The algorithms have been implemented in C and
the same code was executed on both the platforms. The order of bytes in a long
on the two platforms are different; this was the only factor taken into account
while running the program.

Remark 2. The compression function h() for SHA-256 is also the compression
function of PARSHA-256. We implemented h() as a subroutine and this subrou-
tine was invoked by both SHA-256 and PARSHA-256. Thus the comparison of
the two implementation is really a comparison of the two composition princi-
ples. Any improvement in the implementation of the compression function h()
will improve the speed of both SHA-256 and PARSHA-256 but the comparative
performance ratio would roughly remain the same.

To provide a common platform for comparison, the same background machine
load was maintained for the execution of both SHA-256 and PARSHA-256. For
comparison purposes we have calculated the difference in clock() between the
start and end of the program for both SHA-256 and PARSHA-256. Extensive
experiments were carried out for comparison purpose and a summary of the
main points is as follows.
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– On P4 running Linux, the following was observed. For long messages of
around 1 Mbyte or more, the multithreaded implementation of PARSHA-256
was faster by a factor of 2 to 3 for all values of l.

– On SG, the speed of both the algorithms was roughly same for l = 0 and
128. For l = 256, the speed of PARSHA-256 was roughly 0.85 times the speed
of SHA-256.

– For short messages, the multithreaded implementation was slower. This is
possibly due to higher thread management overhead.

– The gain in speed decreases as l increases. This is due to the increase in the
number of invocations of the compression function as shown in Table 1.

– The gain in speed increases with increase in message length. However, the
rate of increase is slow.

As an outcome of our experiments, we can conclude that on P4 running Linux
and for long messages, the multithreaded implementation of PARSHA-256 is
roughly 2 to 3 times faster than SHA-256.

8 Conclusion

In this paper, we have presented a new hash function PARSHA-256. The hash
function is built using the SS composition principle and the compression func-
tion of SHA-256. Since the SS composition principle is parallelizable, our hash
function is also parallelizable. A full parallel implementation of PARSHA-256 will
show a significant speed-up over SHA-256. In this paper, we have described a
concurrent implementation of PARSHA-256 on a single processor machine. Ex-
perimental results show that for long messages the concurrent implementation
is still faster than SHA-256.

The basic idea explored in the paper is that it is possible to obtain secure and
parallelizable hash functions by combining the SS composition principle with a
“good” compression function. We have done this using the compression function
of SHA-256. Using other “good” compression functions like RIPEMD-160 or
other SHA variations will also yield new and fast parallel hash functions. We
believe this task will be a good research/industrial project with many practical
applications.
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A Test Vector

Our implementation of PARSHA-256 is available at http:
www.isical.ac.in/˜crg/software/parsha256.html.

The test vector that we use is the string : (abcdefgh)128. (Note that the cor-
responding files for little and big endian architectures are going to be different.)
Each of the characters represent a byte and the entire string is of length 1 Kbyte.
We run PARSHA-256 for t = 3 and for l = 0, 128 and 256. Denote the resulting
message digests by d1, d2 and d3. Each di is a 256 bit value and we give the hex
representations below.

d1 is as follows.

4d4c2b13 3e516dc1 35065779 536fd4bf
74f98189 bc6b2a92 10803d38 77e3b656

d2 is as follows.

e554c47b 1538c9db 5cbff219 2d620fd3
ae21d04a 5ae6fa50 150888cc da6cf783

d3 is as follows.

459142c5 fcd6eff6 839d6740 177b54d5
2e8bc987 a7438438 a588441a 7113e8d3
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