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Abstract. In this paper, we present differential attacks on the self-
synchronizing stream cipher KNOT. Our best attack recovers 96 bits
of the secret key with time complexity of 262 and requires 240 chosen
ciphertext bits.

1 Introduction

KNOT is a self-synchronizing (also called asynchronous) stream cipher (SSSC)
proposed by Joan Daemen, René Govaerts and Joos Vandewalle [4] in 1992. In
that paper, the authors discussed the design of hardware and software optimized
asynchronous stream ciphers and proposed KNOT as an example of such designs.
KNOT uses a 96-bit secret key and has a 128-bit internal state.

This paper presents differential attacks on KNOT. Differential attacks are
cryptanalytic tools that can be applied against many kinds of secret key cryp-
tosystems. In particular, it was successfully applied to many block ciphers in-
cluding DES [2], RC5 [6, 7] and other DES-like cryptosystems [1]. The principle
of a differential attack is to introduce controlled perturbations in the input of
an encryption or decryption function and to observe the corresponding modifi-
cations induced on the output. This might allow an attacker to retrieve secret
information (for instance subkeys or internal state values).

In this paper, we will modify the ciphertext fed into the decryption func-
tion of KNOT and observe the corresponding plaintext. Hence our attack is a
chosen ciphertext attack. In Section 2 we present general concepts about self-
synchronizing stream ciphers. Section 3 describes the cipher KNOT. Then, Sec-
tion 4 presents a basic attack on KNOT with time complexity 269 that requires
239 chosen ciphertext bits. This differential attack is improved in Section 5 in
order to obtain time complexity 262 and data complexity 240.

2 Self-synchronizing Stream Ciphers

A self-synchronizing stream cipher is one in which the keystream bit is a function
of the key and a fixed number m of previous ciphertext bits. This parameter m
is called the memory of the cipher.

Let xt denote plaintext bit number t, yt the corresponding ciphertext bit and
wt the corresponding keystream bit. The encryption can be described as

yt = xt ⊕ wt
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Fig. 1. Canonical representation of a self-synchronizing stream-cipher

where the keystream bit is computed as

wt = F (yt−1, . . . , yt−m,K)

F denotes the keystream function and K the secret key. Without loss of general-
ity, the encryption and decryption function of a self-synchronizing stream cipher
can be presented as in Fig. 1.

The basic idea behind SSSCs is to encrypt each plaintext bit with an encryp-
tion function depending only on the secret key and the previous m ciphertext
bits. Therefore each ciphertext bit can be correctly deciphered as long as the pre-
viousm ciphertext bits have been successfully received. This self-synchronization
mechanism has many advantages from an engineering point of view. For instance,
it may be helpful in contexts where no lower layer of protocol is present to as-
sure error-correction. In particular, it prevents long bursts of error when a bit
insertion or deletion occurs during the transmission of the ciphertext, which may
be a problem, for instance when using a block cipher. From a security point of
view, such ciphers also have some advantages compared to other kind of secret
key cryptosystems.

First, since each plaintext bit influences the entire subsequent ciphertext,
SSSCs are more likely to be resistant against attacks based on plaintext statis-
tical properties or plaintext redundancies. In the case of synchronous additive
stream ciphers, some ciphertext-only attacks have been proposed (see [5]) based
only on partial information about the plaintext. In various cases, the entropy of
the plaintext is greatly decreased, for instance when a 7-bit ASCII representation
is used or when it contains English text.

Furthermore, self-synchronizing stream ciphers are more likely than asyn-
chronous ones to detect single digit modifications in the ciphertext. While such
a modification only implies a single digit error in the deciphered plaintext for a
synchronous additive stream cipher, up to m ciphertext bits may be incorrectly
decrypted in the case of a SSSC. This mechanism provides additional security
against active attacks. However, insertion, deletion or replay of ciphertext is still
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possible against a SSSC and is very difficult to detect. This shows that, in spite of
their nice properties, SSSCs cannot guarantee data integrity and authentication
without the use of additional mechanisms.

The most commonly used SSSCs are based on block ciphers used in 1-bit
Cipher FeedBack (CFB) mode [9]. Such modes are usually quite inefficient in
terms of encryption speed, since one block cipher operation is needed in order
to encrypt one bit. Moreover, it has been shown that reducing the number of
rounds in order to increase encryption speed is not always a good idea [10].

The literature about SSSC is very limited compared to the literature about
synchronous additive stream ciphers. However, general properties and design
criteria for SSSCs have been studied by Maurer [8]. Besides, in [4], the authors
discuss the design of SSSCs from an engineering point of view and propose
KNOT as an example of such efficient ciphers. An improved version of KNOT,
called ΓΥ was also proposed by Daemen in [3]. Unfortunately, the attacks we
propose in this paper are based on specific properties of KNOT and hence do not
apply to ΓΥ . Therefore, we will focus only on KNOT in the following sections.

3 Description of KNOT

3.1 Overview of the Cipher

In [4], the authors propose to build efficient SSSCs in analogy with a block
cipher function. In order to limit the gate delay during the computation of
the keystream function, they suggest to use a construction with several simple
rounds, similar to what is widely done in the context of block cipher design. Such
a structure should also allow an efficient pipelining. For example, in KNOT, they
propose to use a keystream function with 8 rounds that use only basic boolean
operations. After each round, the size of the internal state decreases in order to
eventually produce 1 output bit starting from the m input bits of the keystream
function.

This multi-stage construction is chosen in order to protect the cipher against
differential attacks. Hence, these stages must guarantee that no difference in
the input of the keystream function will propagate to the outputs with non-
negligible probability. These properties concerning difference propagation have
been analyzed by the designers of KNOT. They claim that no difference pattern
in the inputs of the keystream function will imply a difference pattern in the
outputs with probability greater than 2−16.

To improve confusion and diffusion properties on ciphertext and key bits,
they propose to use a finite state machine in the upper stage instead of a simple
shift register. In KNOT, this machine is based on the structure of a nonlinear
register with a key-dependent evolution. This evolution mechanism has some
special properties in order for the self-synchronization mechanism to work cor-
rectly. Furthermore, the ciphertext bit is introduced at different positions in this
machine, in order to modify very quickly the internal state when a difference in
the ciphertext is introduced. This machine is described more precisely in Sec-
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Fig. 2. The KNOT keystream function

tion 3.2. The general structure of KNOT keystream function can be represented
as in Fig. 2.

3.2 The Finite State Machine

Let Q denote the finite state machine used in the keystream function of the
cipher KNOT. Q has 128 memory cells which values depend on the 96-bit secret
key K and the last 96 ciphertext bits introduced in the machine. Thus, the
content of Q at time t can be expressed as

Q(t) = G(yt, . . . , yt−95|k0, . . . , k95)

where yt denotes the ciphertext bit at time t and ki denotes the i-th key bit.
The structure of Q is based on a nonlinear shift register. Accordingly, Q may

be seen as a 96-bit register where some of the memory cells have been duplicated.
Hence, memory cells of Q are sorted into 96 sets denoted as Q1, . . . , Q96 where
each set Qi may be seen as an extension of the i-th cell of the analog nonlinear
shift register (see Fig. 3).

Each set Qi contains ni cells. Let Qi,j denote its j-th cell. Thus

Qi = {Qi,j , 0 ≤ i ≤ ni}

If a standard shift register was used, a single digit difference in the input
introduced at time t − 95 would imply only one differing cell at time t, that is
the rightmost cell of the register. This might be a problem when considering
differential attacks. This was avoided in KNOT by duplicating the rightmost
cells in the register. Therefore Q can be seen as a nonlinear shift register where
the rightmost cells have been expanded.

In analogy with a shift register, the value of each memory cell in Q is updated
using only memory cells located on the left of this cell. More precisely, Qi is
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Fig. 3. The finite state machine Q with Expansion of the rightmost cells

updated at each instant using only the value of sets Qj with j < i. This updating
is actually key-dependent, which means the new value of Qi is computed using
also several secret key bits. Hence

Qi(t) = Hi(Q1(t− 1), . . . , Qi−1(t− 1)|k0, ..., ki−1)

Let zt
0, . . . , z

t
95 denote the input bits of the keystream function at time t,

where zt
95 is the oldest input and zt

0 is the latest input. These input bits are
related to the ciphertext bits by

zt
i = yt−i

When no confusion is possible, we will get rid of the dependence on t and note
z0, . . . , z95 these inputs. Thus, the content of the finite state machine Q can also
be expressed as

Q(t) = G(zt
0, . . . , z

t
95|k0, . . . , k95)

In order to have a progressive elimination of oldest input bits, each Qi does not
actually depend on all input bits. In fact, the value of cells in Qi depends only
on

– The first i secret key bits, k0, . . . , ki−1
– The last i ciphertext bits introduced, z0, . . . , zi−1

This can be summarized by

Qi(t) = Gi(zt
0, . . . , z

t
i−1|k0, . . . , ki−1)
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To guarantee the propagation of differences in KNOT, these functions Gi were
chosen of a particular form:

Gi(zt
0, . . . , z

t
i−1|k0, . . . , ki−1) = zt

i−1 ⊕G′
i(z

t
0, . . . , z

t
i−2|k0, . . . , ki−1)

Thus, if zt
i−1 is flipped, all cells in Qi are also flipped. Actually, this property

holds only for i < 96. The behavior of the update function G96 is different.
Indeed, flipping z95 does not always cause cells of Q96 to flip as well. Thus
different ciphertexts may yield the same internal state, which is an essential
point of the key recovery attack we propose in this paper.

A precise description of the update function of Q is given in Table 1. The
explicit value of each Gi function could be directly derived from this table. For
each Qi,j , the update function is denoted by

Qt
i,j = fi(ai, bi, ci, di)

where fi is a 4-entry boolean functions chosen among

g(a, b, c, d) = a+ b+ c(d+ 1) + 1
h(a, b, c, d) = a(b+ 1) + c(d+ 1)

3.3 The Pipelined Stages

When computing the new keystream bit using the keystream function, the con-
tent of Q is updated first. This is followed by 8 rounds of transformations in
order to decrease the size of the internal state, until one output bit is produced.
In KNOT, these round transformations are not key-dependent. Internal values
can be represented by 7 registers R1, . . . , R7 which value is computed from Q
using the functions described in Table 2.

Update functions ψ and τ are defined by

ψ(X) = Y : yi = g(x6i, x6i+3, x6i+1, x6i+2)
τ(X) = Y : yi = g(x5i, x5i+3, x5i+1, x5i+2)

where the indices of x are taken modulo the length ofX and the boolean function
g is the same as the one used in the update function of Q. The 8-th round consist
in the computation of the keystream bit by

wt = R7(0) +R7(1)(R7(2) + 1) + 1

where R7(0), R7(1), R7(2) are the first 3 bits of register R7.
These register are only used as intermediate values in the computation of the

keystream bit. They cannot be considered part of the internal state of the cipher
since they are not re-used afterwards. Therefore the effective size of the internal
state of KNOT (excluding the secret key bits) is only 128 bits.
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Table 1. The update function of Q
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3.4 Known Weakness of KNOT

In his PhD thesis [3], Joan Daemen reported that “the output of KNOT has a
detectable imbalance”. We checked this bias experimentally and observed that
the keystream produced for a uniformly distributed input is biased by ε � 2−9.
Indeed, the probability of observing 1 as output is 1

2 (1 + ε).
This bias results from an imbalance in the last stages of the keystream func-

tion. More precisely, when expressing the output as a function of intermediate
register R5 as

wt = θ(Rt
5(0), . . . , Rt

5(15))

where Rt
5(i) is the i-th bit of register R5 at time t, we observe that θ can be

written as the exclusive or of 10 terms. The first term is the constant 1, the other
9 terms are polynomials of degree 2 or higher in the Rt

5(i).
Therefore each term has probability 3

4 to have value 1 and a bias of about 2−9

in the output is expected. By exhaustive search, we observed that the output is
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Table 2. State-transition functions

Stage Length Name State-transition
1 64 R1 ψ(Q)
2 64 R2 τ(R1)
3 32 R3 ψ(R2)
4 32 R4 τ(R3)
5 16 R5 ψ(R4)
6 16 R6 τ(R5)
7 8 R7 ψ(R6)

1 for 32832 out of the 65536 possible inputs of the function θ. Then assuming
that the content of register R5 is balanced, we expect a bias

ε = 2 × 32832
65536

− 1 =
1
29

This observation gives a distinguisher on the cipher requiring about (29)2 =
218 pairs of plaintext-ciphertext bits.

4 A Key Recovery Attack

In this section, we propose a chosen ciphertext attack. The basic idea behind our
attack is that introducing two different ciphertext sequences in the finite state
machine Q may induce a collision with non-negligible probability on its whole
internal state when the difference between these ciphertexts has a particular
form. Therefore, equality of the keystream bits produced by these ciphertexts
occurs with probability slightly bigger than 1

2 .
Thus, by observing the keystream produced for chosen ciphertexts, we are

able to recover some secret information concerning the internal values of Q.
Then, this information allows us to recover the secret key with less computation
than an exhaustive search.

4.1 Obtaining Collisions on Q

In order to obtain collisions on the internal state of the finite state machine Q,
we compute the value of the keystream function for two different inputs Z and Ẑ
of the form Z = (z0, . . . , z94, 0) and Ẑ = (z0, . . . , z94, 1). Concretely, this is done
by introducing two sequences of 96 ciphertext bits in the finite state machine
that only differ by the first bit introduced. After the 96-th bit is introduced, we
observe the internal state of the system. These inputs yield two internal states
we denote by Q and Q̂. The two corresponding keystream bits produced are
denoted by w and ŵ.

All sets Qi can be computed by a function Gi of the form

Qi = Gi(z0, . . . , zi−1|k0, . . . , ki−1)
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It appears that no set Qi for i ≤ 95 depends on z95. Since all other input bits
are the same in both executions, the only memory cells that might be different
between Q and Q̂ are the ones in Q96.

Thus, to obtain a collision between Q and Q̂, it suffices to find a collision be-
tween Q96 and Q̂96. The authors of [4] claimed that each set Qi can be generally
computed at time t as

Qt
i = zt

i−1 ⊕G′
i(z

t
0, . . . , z

t
i−2|k0, . . . , ki−1) (1)

Actually, we observed that this property does not hold for i = 96. More precisely,
unlike all other update functions, the updating of Q96 does not depend linearly
on Q95. At time t, all cells of Q96 can be computed as:

Qt
96,i = Qt−1

95,j .X ⊕ Y , 0 ≤ i ≤ 15

for some j.X and Y are two binary values that depend only on the secret key and
the content of Qt−1

0 , . . . , Qt−1
94 . From (1), it follows that Qt−1

95 linearly depends
on the flipped input bit z95, while X and Y only depend on the other input bits
z0, . . . , z94.

Hence, in spite of the flipped input z95, memory cells of Q96 may still have
the same value, depending on the value of X and therefore on the value of the 95
other input bits. We assumed each event is balanced and occurs with probability
1
2 . Thus, each cell in Q96 is equal in both executions with probability 1

2 .
Since Q96 contains 16 cells, Q and Q̂ are equal with probability

(
1
2
)16 =

1
216

The existence of such collisions implies that w and ŵ will be equal with a
bias ε = 2−16. This observation gives a distinguisher on the cipher. However,
collisions can be used more efficiently to recover some secret information about
the internal state of Q.

4.2 Recovering Internal State Values

In the previous section, we showed how to obtain internal state collisions on Q
for two different ciphertexts introduced. Such collisions occur at time t when
the internal state of the finite state machine at time t − 1 has some particular
properties. Thus, using these collisions, we are able to recover some secret infor-
mation about the internal state of Q. Observing the properties of memory cells
in Q96 regarding to this, we divide them in two parts

– First part: Q96,0, . . . , Q96,7
The updating of these cells depends only on sets Qi with 90 ≤ i ≤ 95. These
sets are located in the rightmost part of Q. Thus, the equality of these 8
cells in both executions at time t depends on all other input bits z0, . . . , z94.
We will assume that each of these events occur with probability 1

2 .
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– Second part: Q96,8, . . . , Q96,15
The updating of these cells depends on Q95 and Q94, but also on several Qi

located further on the left in Q. It can be shown that the equality for each
of these 8 cells at time t depends respectively on the value of Q69, . . . , Q76
at time t− 1. More precisely, equalities occur when Qt−1

69,0 = 1,. . . ,Qt−1
76,0 = 1.

These events only depend on input bits z1, . . . , z76 and we will assume each
equality occurs with probability 1

2 .

According to these observations, we fix the values of z1, . . . , z76. With proba-
bility 2−8, this will induce a collision on the Second Part of Q96. Then, we try all
possible values for the 19 remaining input bits (z0 and z77, . . . , z94). This does
not change anything concerning the Second Part, but, in addition, we also get a
collision on the First Part of Q96 with probability 2−8.

Observing the number of equalities in the keystream bits produced, we should
be able to observe the expected bias and thus to detect when a collision on Q
occurs. Obtaining such a collision means that the values chosen for z1, . . . , z76
yield value 1 for the cells of Q69, . . . , Q76. Besides, relation (1) shows that these
internal values only depend on the first 76 secret key bits.

Hence, by observing some internal collisions on Q, we recover the internal
values of 8 cells in the finite state machine for known inputs. These values only
depend on the first 76 key bits, which allows us to mount a key recovery attack.

4.3 Practical Realization of this Attack

In order to recover some secret information concerning the internal state of Q, we
want to observe a bias ε = 2−8 in the number of equal keystream bits produced.
Besides, 19 ciphertext bits are randomized so we get a number of experiences
Ω = 219. Since

Ω >
1
ε2

we generally consider that this bias can be efficiently detected.
Unfortunately, these Ω experiences are not independent. It appears that

among the 19 ciphertext bits we randomize, 2 bits have no influence on the
occurrence of internal state collisions:

– the latest input to the keystream function, z0.
This ciphertext bit is not immediately introduced in Q96. Thus, collisions
between Q and Q̂ will occur or not, independently of the value of z0.

– the second oldest input bit, z94.
Collisions on the First Part of Q96 at time t depend on the value of several
internal values at time t − 1 that do not actually depend on z94. Thus this
input bit has no effect on the occurrence of collisions.

Therefore, only 217 independent experiences can be obtained. Randomizing
z0 and z94 will only cause some repeated experiences as regards to collisions.
With only 217 experiences, the statistical bound is very tight and it is likely that
false alarms will be launched when trying to detect collisions.
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However, the initial 219 experiences can be grouped in 217 sets of 4 repeated
experiences, depending on the remaining 17 randomizable bits. If the fixed 76
ciphertext bits yield a collision in the Second Part of Q96, a collision on the
First Part of Q96 and hence on Q should occur with probability 2−8. In case
of full collision, 4 keystream equalities should be observed in the corresponding
group of experiences. Otherwise, no internal state collisions are possible and we
expect balanced results concerning keystream equalities. Denoting by 0 the case
of keystream equality and 1 the other case, the following distribution is expected
in each group:

Table 3. Expected Distributions

Events (0, 0, 0, 0) (0, 0, 0, 1) ... (1, 1, 1, 1)
Collisions 1

28 + (1 − 1
28 ) 1

16 (1 − 1
28 ) 1

16 ... (1 − 1
28 ) 1

16
No Collision 1

16
1
16 ... 1

16

The event (0,0,0,0) should be largely over-represented in case of a collision
on the Second Part of Q96. The bias is still about ε = 2−8 and the number of
possible tests is Ω = 217. However, such a bias is easier to detect on a 16-valued
distribution than on a bi-valued one.

Using this technique, internal state collisions on Q can be efficiently detected.
Therefore, some secret information about the internal values of Q is recovered
as described in the previous section.

4.4 Recovering the Key

The recovered values in the internal state yield some verifiable equations on key
bits k0, . . . , k75. Therefore, when enough equations of this type are obtained, an
exhaustive search on these 76 key bits is possible, using these equations as a
stopping condition on the search. Generally, it is necessary to obtain at least 76
equations for such an exhaustive search to work. However, each collision found
as described in the previous section gives only 8 conditions on key bits. Thus,
10 collisions at least are needed.

Moreover, finding such a collision requires to run the keystream function with
M chosen ciphertext bits, where

M = 219 × 2 × 96 × 1
psucc

and the probability of collision on the Second Part psucc is roughly equal to 2−8.
Thus

M = 234.6

Hence the data complexity of our attack is 10 × M = 239. Basically, the
exhaustive search on the 76 secret key bits has a complexity of 276. In fact, it is
obviously better to verify the conditions on Q69 first in order to guess only 69
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key bits. After the size of the key space is reduced using these conditions on Q69,
the other key bits can be successively guessed. Using this basic optimization, our
attack has a time complexity of 269.

5 An Improved Key Recovery Attack

In this section, we present a way to make our attack more efficient. We describe
how to obtain more useful information about the internal state of Q, in order to
decrease the complexity of the exhaustive search on the secret key bits.

The basic idea is to recover information about cells located further on the left
in Q, using the internal state collisions we found in the previous section. This
information will depend on less key bits, which will make the exhaustive search
faster. Basically, we are able to recover some internal values of Q62,0 similarly
to what we previously obtained on Q69,0, . . . , Q76,0.

In the previous section, we showed how to detect when these 8 cells have
simultaneously value 1. In fact, it is very easy to use this attack to observe when
Q69,0 has value 1 by randomizing 7 additional input bits z70, . . . , z76 as well.
Flipping these input bits does not change the value of Q69,0.

If Q69,0 = 1, the octet (Q69,0, . . . Q76,0) is (1, . . . , 1) once among the 27 experi-
ences. Otherwise, this event never happens. Since it can be detected as previously,
we finally learn the value of

Q69 = G69,0(z0, . . . , z68|k0, . . . , k68)

for any ciphertext. Each query to this function requires the same amount of data
as the research of a collision. Therefore it requires 234.6 chosen input bits to be
introduced in the keystream function.

To obtain some information about the internal state, we observe

a0 = G69(z0, 0, z2, . . . , z68|k0, . . . , k68)
a1 = G69(z0, 1, z2, . . . , z68|k0, . . . , k68)

Using various properties of the propagation of ciphertext differences in the
finite state machine, similarly to what we did in the previous section, it can be
shown that a0 �= a1 at time t if and only if Qt−1

63,0 = Qt−2
62,0 = 1. This information

can be used as a stopping condition in the exhaustive search of the first 62 key
bits.

Only a few conditions of this type are needed in order to reduce the key
space. Then additional conditions on Q69,0, . . . , Q76,0 can be used to recover the
correct key bits. The resulting attack has a data complexity of 240 and a time
complexity of 262.

6 Conclusion

In this paper, we present differential attacks on the stream cipher KNOT. The
best attack has time complexity 262 and requires the production of 240 keystream
bits. An open question is to analyze the asynchronous stream cipher ΓΥ proposed
by Daemen as an improved version of KNOT in [3].
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