Using PVS to prove Properties of Systems
Modelled in a Synchronous Dataflow Language*

Sanjai Rayadurgam, Anjali Joshi, and Mats P.E. Heimdahl

Department of Computer Science and Engineering
University of Minnesota, Minneapolis
{rsanjai,ajoshi,heimdahl}@cs.umn.edu

Abstract. We report on our experience with using the PVS theorem
prover as a verification tool for analyzing systems modelled in RSML ¢
— a synchronous dataflow language. RSML™ is a formal specification
language particularly well-suited for specifying requirements of reactive
systems. We advocate a specification-centered approach to system devel-
opment, in which various development activities like prototyping, analy-
sis, verification, testing, and code-generation are based on a formal model
of the system requirements. To support the analysis and verification ac-
tivities, we developed a translator from RSML ™€ to PVS as part of our
toolset. We used these tools to successfully verify properties of the mode
logic of a flight-guidance system specified in RSML™¢ by our industrial
partner, Rockwell Collins Inc. The results from this exercise are encour-
aging. This paper describes our approach to formalizing RSML™¢ in PVS
and discusses briefly the strategies adopted in proving properties as well
as some experiences.

1 Introduction

Software development for critical control systems, such as the software control-
ling aeronautics applications and medical devices, is a costly and time consuming
process. Verification and validation of such systems must be an ongoing process
throughout the development life-cycle. Currently, inspections and testing are the
validation and verification methods used. We advocate that these methods be
complemented with model checking and theorem proving. Also, other early life-
cycle approaches like prototyping and specification simulation helps the analyst
to evaluate and address poorly understood aspects of the system behavior. We
advocate a specification-centered approach to development, in which a formal
model of the system requirements is used to drive these life-cycle activities.

To realize a concrete instantiation of this approach, we have constructed a
framework for developing tools to support specification-centered development,
using RSML™¢ as the requirements specification language. RSML™¢ [15] is a for-
mal specification language particularly well-suited for specifying requirements
of reactive systems. The NIMBUS toolset [14] provides the capability to execute

* This work has been partially supported by NASA contract NCC-01-001.

RSML"€ specifications. We have extended the analysis capabilities of the toolset
by constructing translators to various verification tools such as NuSMV [12] and
PVS [7]. Having the capacity to use different techniques like model-checking
and theorem-proving to analyze the same RSML™® model helps us leverage the
unique advantages of each of these techniques. We have conducted case-studies
using realistic industrial models to validate our approach.

In this report we present our formalization of RSML™¢ in PVS. We have
implemented a translator in the NIMBUS tool and used NiMBUS and PVS to
verify various interesting properties of the mode logic of a realistic flight guidance
system. Our motivation for the translation project and in general for using PVS
as a verification tool was to help us prove classes of properties we could not prove
using model-checking techniques. We also wanted to evaluate: (1) the feasibility
of using a theorem prover as an analysis back-end to a specification tool, (2)
the difficulty of constructing proofs, and (3) the scalability of the approach to
industrial size systems.

In constructing translators to different verification tools our goals for the
translation were driven by the specific capabilities of the tool and the expected
user-interaction with the tools. Thus, when translating to the model-checker [5],
we built in certain conservative abstractions that would make model-checking
feasible by sacrificing some accuracy and expressiveness of the original RSML ¢
specification. This was an acceptable trade-off since model-checking, when fea-
sible, is completely automated and does not require any user interaction.

On the other hand, theorem-proving is essentially an interactive process.
Thus, readability of the translated output and maintaining a close correspon-
dence with the source specification were of importance. Further, there is no need
to abstract away details in the source specification. Thus, the requirements for
the translation were that it should fully capture the semantics of the source
language in an elegant way producing readable PVS specifications.

Our formalization of RSML™€ in PVS is built around the concept of objects as
streams, an idea similar to that of [2]. All entities in the specification — such as,
variables, expressions and assignments — are viewed as state-indexed sequences
of values. The specification, taken in totality, is considered as a set of constraints
on the possible execution traces (histories) of the system. Verification, in this
context, is checking whether the set of possible histories as constrained by the
specification, satisfy a given predicate. Our formalization has the advantage of
retaining both the structure and the semantics of the RSML™ source specifi-
cation in the translated PVS output. With some carefully chosen syntax, this
makes the full power of the theorem prover available to the user at a level of
representation that is in direct correspondence with the source specification. In
our experience this has been of practical significance when constructing PVS
proofs.

Our experience so far has been encouraging. Currently, the proof construction
part is essentially a manual process. Even though the proofs are typically large,
they are straightforward to construct. The complexity of the proofs does not
seem to grow excessively with the increased complexity of the models. Where

the model checking efforts increase exponentially, our experiences indicate that
the effort involved in constructing PVS proofs will exhibit a more linear growth
pattern. We are in the process of empirically testing our hypothesis about the
scalability of PVS proofs.

The rest of the paper is organized as follows. The next section briefly discusses
the related efforts in this area. Section 3 provides an overview of the formal
specification language RSML™¢ and the PVS theorem prover. Section 4 describes
our translation scheme in detail. Section 5 discusses our approach to proving
properties. We then conclude the paper with a brief discussion in Section 6.

2 Related Work

We briefly discuss some of the related works in the area of using theorem proving
for verifying reactive systems.

Owre et al. [13] discuss a systematic way to represent state-machine speci-
fications of reactive systems in PVS, such as specifications written in SCR, [6].
Extending that approach to RSML™¢, however, made reasoning with large sys-
tems a bit cumbersome. This was primarily due to the difficulty in understanding
the mechanically translated PVS output and relating it to the original RSML™¢
specification, a task that was often required during proof construction.

Bensalem et al. [2] discuss a methodology for proving control systems spec-
ified in LUSTRE using PVS. Their approach involves representing LUSTRE ob-
jects as streams in PVS, similar to the one that we describe here. They present
a method for constructing provably correct control programs using LUSTRE and
PVS in combination. An advantage of this approach is that property specifica-
tion is not different from the specification of the system requirements.

TAME [1] is an interface for verifying properties of automata like, I/O au-
tomata, Lynch-Vaandrager timed automata and SCR. It provides a set of tem-
plates for specifying these automata and also a set of specializing strategies for
reasoning about these automata in PVS. An advantage of this approach is that
users can construct proofs using template strategies which are more meaningful
and intuitive in the context of automata verification, without having to under-
stand the underlying PVS steps. In our work, we only have a few hand-crafted
specialized strategies that are used in reasoning about RSML "¢ specifications.
But this has been adequate to construct proofs of non-trivial properties on fairly
complex models. We are currently working on constructing specialized strategies
and investigating auto-generation of model-specific strategies to speed-up the
proof construction process.

3 Framework

Figure 1 shows an overview of our verification framework. The user builds a
behavioral model of the system in the fully formal and executable specification
language RSML¢. The specification is then fed to the NIMBUS simulator which

checks that the specification is well formed and type correct. After the specifica-
tion is checked, the user can translate the specification to the PVS or NuSMV
input languages. The specification can then be analyzed for various properties

Nimbus Proof Strategy|

/

RSML *© >

Simulator PVS input PVS
language

Property /
tication \

NusMv

NuSMV input /v

language

Translator

il

Verification
Result

Fig. 1. Verification Framework.

using the theorem prover. The user can also input proof strategies to aid the
proof process.

3.1 Flight Guidance System

A Flight Guidance System (FGS)! is a component of the overall Flight Control
System (FCS). It compares the measured state of an aircraft (position, speed,
and altitude) to the desired state and generates pitch and roll guidance com-
mands to minimize the difference between the measured and desired state. The
FGS can be broken down to mode logic, which determines which lateral and ver-
tical modes of operation are active and armed at any given time, and the flight
control laws that accept information about the aircraft’s current and desired
state and compute the pitch and roll guidance commands. We will be using a
scaled down version of FGS as a running example in these discussions, but the
equivalent properties to the examples in this paper have been proven on larger
FGS models.

Figure 2 illustrates a graphical view of a FGS in the NIMBUS environment.
The figure shows the hierarchical and parallel state machines representing the
different modes in the FGS. The arrows represent the possible transitions be-
tween states. The primary modes of interest in the FGS are the horizontal and
vertical modes. The horizontal modes control the behavior of the aircraft about
the longitudinal, or roll, axis, while the vertical modes control the behavior of
the aircraft about the vertical, or pitch, axis. In addition, there are a number
of auxiliary modes, such as half-bank mode, that control other aspects of the
aircraft’s behavior.

! We thank Dr. Steve Miller and Dr. Alan Tribble of Rockwell Collins Inc. for the
information on flight control systems and for letting us use the RSML™¢ models they
have developed during our collaboration.

Lateral Modes

Selected

Selected

Selected

Vertical Modes

Selected
Selected

Selected

Fig. 2. Flight Guidance System

3.2 Overview of RSML-€

RSML€ stands for Requirements State Machine Language without Events. It is
based on the Statecharts [8] like language Requirements State Machine Language
(RSML) [11]. It is fully formal and a synchronous data-flow language without
any internal broadcast events, which have been found to be error-prone [10].

An RSML"€ specification consists of a collection of input variables, state vari-
ables, input/output interfaces, functions, macros, and constants; input variables
are used to record the values observed in the environment, state variables are
organized in a hierarchical fashion and are used to model various states of the
control model, interfaces act as communication gateways to the external environ-
ment, and functions and macros encapsulate computations providing increased
readability and ease of use.

STATE_VARIABLE ROLL : Base_State
PARENT : Modes.On
INITIAL_VALUE : UNDEFINED
CLASSIFICATION : State
TRANSITION UNDEFINED TO Cleared IF NOT Select_ROLL()
TRANSITION UNDEFINED TO Selected IF Select_ROLL()
TRANSITION Cleared TO Selected IF Select_ROLL()
TRANSITION Selected TO Cleared IF Deselect_ROLL()
END STATE_VARIABLE

MACRO Select_ROLL() :

TABLE
Is_No_Nonbasic_Lateral_Mode_Active() ;T
Modes = On : T;
END TABLE
END MACRO

MACRO Deselect_ROLL() :

TABLE
When_Nonbasic_Lateral_Mode_Activated() : T x*;
When(Modes = 0ff) % T,
END TABLE
END MACRO

Fig. 3. A small portion of the FGS specification in RSML™¢ .

Figure 3 shows a specification fragment of an RSML ¢ specification of the
Flight Guidance System?. The figure shows the definition of a state variable,
ROLL. ROLL is the default lateral mode in the FGS mode logic. The state variable
ROLL is declared as a child state of Modes and is active when the variable Modes
has the value On—this notion of hierarchical variables provides the same abstrac-
tions and structuring mechanism as the AND and OR states in Statecharts , but
the semantics is much simpler [15].

The conditions under which the state variable changes value are defined in
the TRANSITION clauses in the definition. The condition tables are encoded in

2 We use here the ASCII version of RSML ¢ since it is much more compact than the
more readable typeset version.

the macros, Select_ROLL and Deselect_ROLL. The use of macros not only im-
proves the readability of the specifications but also helps localize errors and
future changes. The conditions are represented in the AND-OR table format. The
tables are adopted from the original RSML notation—each column of truth val-
ues represents a conjunction of the propositions in the leftmost column (a ‘*’
represents a “don’t care” condition). If a table contains several columns, we take
the disjunction of the columns; thus, the table is a way of expressing conditions
in a disjunctive normal form.

Frequently we might need to refer to values of the variables at a certain point
in the variable history. RSML™¢ provides a construct for doing this, as shown in
the following example.

MACRO Were_Modes_Off() :
PREV_STEP (Modes) = Off
END MACRO

In the above example, PREV_STEP (Modes) refers to the previous value of the
state variable Modes.

Data-flow Semantics: RSML™€ transitions are purely condition-based and free of
internal events—as soon as the guards in a variable definition can be evaluated,
it will take on its new value. The variables are partially ordered based on the data
dependency induced by the guard conditions—a similar semantics is adopted in
the programming language LUSTRE [2]. Data-flow semantics removes complex
issues caused by internal events, such as infinite triggering events or analysis of
micro-steps [4], from the language.

Use of Undefined wvalues: Startup behavior and behavior in the face of sensor
failures pose particular challenges when specifying control systems—under these
circumstances we simply do not know what the state of the environment might
be. RSML™¢ supports modeling of this uncertainty by providing the concept of
Undefinedness. One can explicitly specify the initial value of variables at startup
to be Undefined, such as ROLL=UNDEFINED in Figure 3. Also, when a parent
variable takes on a new value, each child variable of the parent value that was
just changed are no longer relevant and must not be used—these child variables
are Undefined. RSML™¢ supports both explicit and implicit Undefinedness.

3.3 Properties of interest for theorem proving

Most of the FGS properties could be expressed as state invariants for verification.
State invariants are suitable for model checking and indeed around 290 FGS
properties have been successfully model checked for the largest FGS model [5].
However, there were also some other types of interesting properties, like the FGS
mode confusion properties [3], some of which cannot be model checked. As an
example, consider the following property:

Any two states that do not have the same modes, have different mode
annunciations.

This property compares two arbitrary states, with no particular values specified
for modes or mode annunciations, other than saying that the values are either
same or different [9]. This property cannot be expressed in the temporal logics
used by conventional model-checkers. Proving such mode confusion properties
was a motivation for the current work in exploring the application of a theorem
prover like PVS.

3.4 Overview of PVS

PVS [7] (Prototype Verification System) provides an environment for effective
proof construction in addition to writing specifications. Its input language is
based on simply-typed higher-order logic with function, record and product types
and recursive type definitions. The language provides a powerful mechanism to
specify and use sub-types. The powerful type system means that type-checking a
PVS specification is in general an undecidable problem. Type-checking could re-
quire guidance to the theorem prover from the user in dismissing type correctness
conditions. PVS specifications are organized into theories that can be parame-
terized. The primitive proof steps are composed of efficient decision procedures,
rewriting rules and BDD based propositional simplifications.

4 Translating from RSML™€ to PVS

We considered two competing approaches for representing RSML™¢ specifications
in PVS.

The first approach is to view the state-space as a cross product of the domains
of system variables. The specification is viewed as a collection of constraints de-
termining the set of possible initial states and the set of possible transitions
between states. Then, the transitive closure of the initial states under the tran-
sition relation constitutes the reachable state-space of the system. The system
will satistfy a certain property of interest if it can be established that every
reachable state satisfies this property. This view is usually adopted when one
is verifying state-based specifications using model-checkers like SMV or the u-
calculus model-checker of PVS. Owre et al. [13] discuss such an approach to
translate requirement specifications written in SCR to PVS.

The second approach is to consider state as a point of observation of certain
quantities of interest in the system. The system variables represent quantities of
interest, i.e., they are mappings from states (the observation points) to values
of those quantities (at those observation points). When the system responds
to changes in its environment, it moves to a new observation point, i.e., to a
new state. So each state has an associated (finite) history of observations up
to that point. In this view, the system specification is a set of constraints on
the histories of observations at each state. If we think of constraints as Boolean
valued quantities constructed using system variables, then the specification lists
a set of such quantities that are given to be true in every state. Properties of
interest that one wants to prove are also similar to constraints but one has to

establish that these are true. Bensalem et al. [2] adopt such an approach for
proving properties of control system specified in LUSTRE using PVS.

In an earlier version of our translation we adopted the former approach to
translate RSML™¢ specifications to PVS. However, we found that it was difficult
to construct proof of properties in PVS for large systems using such an approach.
Part of the difficulty arose from the fact that one had to carry around the
complete state construct in proofs, even though, much of the reasoning and
proof steps involved only a few variables at any given time. Also, the translated
output was quite difficult to comprehend. The latter approach, which we adopted
subsequently, overcomes these shortcomings.

In the current approach, objects defined in RSML¢ are treated as sequences
of values over states in PVS, also called streams. Operations over values are
uniformly lifted to operations over streams by applying the operation to values
at each state. The resulting translation to PVS retains a close correspondence
with the original RSML™¢ specification making it easy to understand and follow.
In the next two subsections we discuss the translation scheme in detail.

4.1 Translation Foundation

As the first step to translation, we defined a library rsmine.pvs containing def-
initions for various constructs of the RSML™¢ language in PVS. These RSML ¢
constructs include the basic types, operations to lift RSML ™€ objects to streams,
RSML€ specific operations, and so on. This PVS library will then be imported
into every translated RSML¢ specification, so that the basic definitions can be
reused across all specifications. Due to space constraints, we present only the
most relevant aspects of the translation scheme here.

Undefined and Defined Values: In RSML ¢ variables may be undefined in
certain configurations (global states) of the system. To capture this notion, we
uniformly lift all RSML¢ types to include a null element. Defined values are
accessed using a C-like address/contents (&/*) syntax:

rType[T: TYPE]: DATATYPE

BEGIN

null : undef?
&(*x: T) : def?
END rType

A generic function ext extends operation on T-values to null-extended-T-
values by applying the operation to the contents when the value is defined and
otherwise returning null.

States and History States: As explained earlier, states are just points of
observations of quantities of interest in the system. The only properties that
we require of states are that: 1) There is some starting point for observations -
initial state, and 2) There is a unique history for each state - previous state. In
our theory, we define State as a natural number: the initial state being zero and
n being the predecessor of n 4+ 1, and zero being the predecessor of itself.

State: TYPE = nat
init: State = 0

RSML€ specifications may use certain types of history operations on objects
like variables and interfaces. These operations may access values of variables at
certain points in their history (for example, when the value changed the second
previous time). To uniformly translate such expressions, we define a single history
operation on States called last. This is a higher order recursive function, which
results in a state transformer, i.e., the result is a mapping from a state to a
(previous) state. It returns the zth last state at which the take function was
true.

prev(s: State): State = pred(s)

history?(s: State)(x: State):bool= x <= s

Filter: TYPE = [State -> bool]

last(take: Filter, z: posnat) (s:State): RECURSIVE (history?(s)) =
IF s = init OR (z = 1 AND take(s)) THEN s
ELSE last(take, IF take(s) THEN z - 1 ELSE z ENDIF) (prev(s))
ENDIF

MEASURE s

Objects as Streams: RSML € objects are implemented as streams that map
State to (null-extended) values:

Object: TYPE = [State -> rType[T]]

In certain contexts, objects may have to be constrained to be defined (or
undefined) at every state. The predicates defined? and undefined? are used
for this purpose. The object UNDEFINED returns null at each state. The L operator
lifts the RSML¢ constants to streams.

L(x: T): (constant?[T]) = LAMBDA s: &(x)

The RSML"€ entities, state variables and input variables and the return types
of functions and macros, are simply objects of the appropriate type; constants
are constant objects of their respective types; and, conditions (such as those
guarding assignments to variables) are defined Boolean objects.

rSTVAR__: TYPE = Object[T]
rINVAR__: TYPE = Object[T]
rFUNCT__: TYPE = Object[T]
rMACRO__: TYPE = Object[bool]
rFIELD__: TYPE = (defined?[T])
rCONST__: TYPE = (constant?[T])
rCOND__ : TYPE = (defined?[bool])

Messages in RSML™¢ are data received and sent by the system at the inter-
faces and such data are always defined. We represent Messages from RSML° as
records in PVS, with fields having rFIELD__[T] type for the appropriate type T.

RSML™¢ Basic Types: The RSML¢ types, BOOLEAN, REAL, INTEGER have
equivalent types in PVS. RSML™€ type TIME is simply of type nonnegative real
in PVS. TIME is an intrinsic object in RSML™¢ that is always defined and is
monotonically increasing with respect to State.

RSML-€ Specific Operations: Here we define a few RSML ¢ specific opera-
tions on objects. Equality comparison is a safe-operation even if one or both of
its operands are Undefined. That is its result will always be defined. We use the
symbolic operator == to distinguish it from the normal equality operator =.

==(objl, obj2: Object[T]): (defined?[bool]) =
LAMBDA (s: State): &(objl(s) = obj2(s))

The unary operator PREV yields an object that gives the value of its operand
in the previous state:

PREV(obj: Object[T]): Object[T] = LAMBDA (s: State): obj(prev(s))

We require a binary BECAME? operation on objects, with the intuitive mean-
ing “did the first object’s value change to that of the second object in this
state?”. Also required is a unary CHANGED? that simply checks if the object’s
value changed in this state.

BECAME? (objl, obj2: Object[T]): (defined?[bool]) =
LAMBDA s: &(obj1(s) /= PREV(obj1)(s) AND obji(s) = obj2(s));

CHANGED? (obj: Object[T]): (defined?[bool]) =
LAMBDA (s: State): &(obj(s) /= PREV(obj)(s));

With this formulation, one could express SCR style operators like QT (expr),
@F (expr) and @QC(expr) as BECAME?(expr, true), BECAME? (expr, false)
and CHANGED? (expr) respectively. Also note that these could be used to de-
termine history states in a general fashion, such as, the nth last time variable A
changed. The function PREV_STATE takes an object representing a condition and
the step count to compute the appropriate history state:

PREV_STATE(c: Object[bool], z: posnat):[s:State -> (history?(s))] =
last(* o (c == L(TRUE)), =z)

A LUSTRE style followed-by operator (->) is useful in expressing initial state
values for RSML ¢ entities. We overload the ANDTHEN infix operator in PVS for
this purpose, which conveys the intuitive meaning of followed-by:

ANDTHEN (objl, obj2: Object[T]): Object[T] =
LAMBDA (s: State): IF s = init THEN obj1(s) ELSE obj2(s) ENDIF

Similarly, we also overload the WHEN infix operator in PVS to express parent
state constraint. The expression (A WHEN B) will have the value of A when the
condition B is true in a state and otherwise be undefined:

WHEN(obj: Object[T], p: (defined?[bool])): Object[T] =
LAMBDA (s: State): IF *(p(s)) THEN obj(s) ELSE UNDEFINED(s) ENDIF

Guards and Guarded Expressions: Computation in RSML¢ specifications
is expressed in terms of guarded assignments to variables. An assignment is
triggered if its corresponding guard evaluates to true. Thus, for consistency (or
to avoid non-determinism), the guards of different assignments of a variable
must be disjoint at each state. Also, for completeness, the disjunction of the

guards of all assignments of a variable must be a tautology. The construct, COND

. ENDCOND in PVS, is typically used to capture such guarded expressions.
It is equivalent to a series of if-then-else expressions, except that it generates
disjointedness and completeness constraints as type-correctness obligations to be
proved by the user. One could lift this construct state-wise to streams (and thus
to RSML€ objects) by evaluating the guard and the expressions at each state.
The RSML € library for PVS defines operators [| |1, >>, /\ and ELSE?, such
that,

Ll c..o>> ..o /\ ... /\ ELSE? >> ... |]

is equivalent to lifting,
COND ... => ..., ..., ELSE -> ... ENDCOND

to RSML "¢ objects, state-wise. The translator can be set to generate default
ELSE? cases that just stutter previous state values. This is useful when the

specification is written assuming the implicit behavior of “no change in value
when none of the guards are true”.

4.2 RSML € to PVS translation

On the basis of the translation foundation discussed above, we will now illustrate
the actual translation of various RSML™¢ constructs. The rsmline.pvs library
will be imported into the translated PVS specification. The basic construct in
RSML€ is the variable and the transition relation defined on the variable—the
translation of these constructs is discussed in detail below.

Type definitions: Basic RSML € types are defined in the rsmline.pvs library.
RSML™€ enumerated types are defined in a straightforward way in PVS.
TYPE_DEF Base_State {Cleared, Selected}
translates to

Base_State: TYPE = {Cleared, Selected}

Variable Declarations: Input variable declarations create equivalent PVS def-
initions for the type, if necessary. The expected_min and expected_max specifi-
cations, if they exist, are not declared, but just translated as constants wherever

those are used. The unit and classification definitions are ignored since they are
primarily present for documentation purposes.

IN_VARIABLE FD_Switch: Switch
INITIAL_VALUE : UNDEFINED
CLASSIFICATION: MONITORED

END IN_VARIABLE

translates to
FD_Switch: rINVAR__[Switchl]

The state variable declarations are handled in a similar way as the input
variables. The declaration for the state variable ROLL from figure 3 translates to

ROLL: rSTVAR__[Base_State]

Functions and Macros: Functions and macros are both defined as functions,
with macros being functions returning Boolean values. The macro Deselect_ROLL
from figure 3 translates to

Deselect_ROLL: rFUNCT__[BOOLEAN] =
When_Nonbasic_Lateral_Mode_Activated
OR
BECAME? ((Modes == L(0ff)), L(TRUE))

State Variable Assignments: The bulk of the computation in an RSML™¢
specification is in the assignments and their guard conditions expressed as AND/OR
tables. While there could be no cycles in the dependency among variable values
at a given state in a correct RSML™¢ specification, assignment expressions and
guards may frequently refer to one or more history state values of any number
of variables. Thus, variable histories are defined by a set of mutually recursive
equations. This mutual recursion cannot be directly represented in PVS. This
problem is also addressed in the [2] as the feedback loop problem. To handle the
mutual recursion, we split the definitions for variables into three parts:

— Declaration of the variable
— Defining equation for the variable
— Assertion that the variable is equal to the value given by its defining equation.

The declarations of variables is explained earlier. For the rest of the definition:
First the guard conditions are translated to individual condition objects. While
this is not necessary, it makes the translator output readable and easy to follow.
If the assignment is given as a transition from one state to another, it is internally
rewritten to an assignment form where the guard includes the previous state as
a constraint. As an example, the first guard condition for the ROLL state variable
from figure 3,

TRANSITION UNDEFINED TO Cleared IF NOT Select_ROLL()
translates to

ROLL__T1: <rCOND =
(NOT Select_ROLL)
AND
(PREV(ROLL) == UNDEFINED)

The transition relation needs to consider the hierarchical relationship between
variables. The transition relation for child variables needs to check if the parent
variable has the right value. If the parent has the right value, the child variable
is relevant and its transition relation is evaluated normally. If the parent variable
has the wrong value, then the child will be undefined. This is captured using the
WHEN operator.

The complete definition of the ROLL state variable is translated as,

ROLL__DEF: rFUNCT__[Base_State] =

(UNDEFINED

ANDTHEN ([| ROLL__T1 >> L(Cleared)
/\ ROLL__T2 >> L(Selected)
/\ ROLL__T3 >> L(Selected)
/\ ROLL__T4 >> L(Cleared)
/\ ELSE? >> PREV(ROLL)
1]
WHEN (Modes == L(0On))))

ROLL__DECL: AXIOM ROLL = ROLL__DEF

Finally, an axiom is generated to assert that the variable is equivalent to the
value given by its defining equation. However, this axiom could seldom be used
as an auto-rewrite unconditionally, for this could easily cause rewrite loops. So,
two additional conditional equations - one for the initial state and one for the
non-initial states - are generated, which could be used as auto-rewrites in proof
strategies:

s: VAR State
ROLL__INIT: AXIOM (s = init) IMPLIES ROLL(s) ROLL__DEF(s)
ROLL__NEXT: AXIOM (s /= init) IMPLIES ROLL(s) = ROLL__DEF(s)

While the indiscriminate use of axioms could lead to inconsistent specifica-
tions, the type-correctness of RSML™¢ specifications is sufficient to guarantee
that this is not the case with the translated PVS output. In particular, RSML™¢
language disallows cyclic dependency among variables.

The input variable assignments are handled similar to the state variable
assignments. Although input variables have a different syntax and their assign-
ments appear under handlers for input interfaces, the PVS translation produced
is similar to that of state variables. In other words, input variables are treated
very much like top-level state variables in the PVS interpretation.

Messages, Interface Declarations and Handlers: The translator can be
set to skip interfaces altogether when one is interested in reasoning about the
specification independent of input and output. In that case the input variables
are all left unconstrained so that they may assume any value at each step.

Messages are declared to be of a record type in PVS. The interfaces are
declared to be constants of the type of the messages handled. The interface
message separation times are translated to constant objects wherever they are
used. The input interface handlers define the values of the input variables and
thus provide the transition conditions for the input variable assignments.

One-Input Interface Assumption: In RSML™¢ step computation is assumed
to take place when and only when an input is received by one of the input re-
ceivers. Also, it is assumed that two input receivers do not receive messages from
the environment at the same instant and that input values do not change before
computation is completed. Thus, the trigger for computation of a step is receipt

of a single message. It is implicitly assumed that there is a system clock inter-
face, which periodically receives clock ticks, so that even if there are no other
receivers, computation still proceeds. To capture the one-input assumption when
there is more than one receiver, a system input variable INPUT? is declared,
whose possible range of values are the different input receivers in the specifica-
tion. Its value at each state is understood to be the receiver that triggered the
step computation for that state.

5 Proving Properties

Currently, the proof construction is essentially a manual process. The most com-
mon properties we encountered during the verification of the flight-guidance
mode logic were state invariants (p is true is always true) or transition invari-
ants (if p is true in the current state, p will be true in the next state). While
proofs for transition invariants begin with a CASE split for the init and next
states, those for state invariants begin with instantiation of a simple induction
schema over states. After the first steps, the proofs of the subgoals, follow a
similar pattern in both types of proofs, the details of which follow. The subgoals
that one has to address typically could involve the current (or previous) state
either in the init or the next state configuration. Most proofs do not require
reasoning beyond one previous state in the history. However, RSML™¢ allows
the use of state history of any bounded length, and, therefore, there could be
specifications for which proofs may require reasoning beyond one history state.
Below, we discuss briefly how to proceed with a proof after we have instantiated
an induction schema, so that we have two subgoals to dismiss: one to show that
the property holds in the initial state and one to show that is holds in the next
state.

Example Proof: Our motivation for using the theorem proving approach were
the mode confusion properties. Though they are really interesting properties,
they have rather involved proofs. For the purpose of illustration, we will consider
here a simple state invariant that we may wish to verify on a toy model of
the Flight Guidance System. Though this property is clearly suited for model
checking, we use it here as a simple example to explain the general proof process.
The proofs for the mode confusion properties [9] follow a similar pattern.

At_lLeast_One_Lateral_Mode_Active : THEOREM
verify(Mode_Annunciations_Cln IMPLIES
(Is_ROLL_Selected OR Is_HDG_Selected))

Informally, the property states, as the name implies, that whenever modes
are turned on, at least one lateral mode is active. In more realistic models, there
would be several of those modes, some classified as lateral and some classified as
vertical. The proof of this property for our much larger models, follows a similar
sequence of steps.

Invocation of basic auto-rewrite strategies (described later) followed by sim-
plification, reduces the goal to:

{1} FORALL (s: State):
IMPLIES (*(Modes(s)) = On,
OR((ROLL(s) &(Selected)), (HDG(s) = &(Selected))))

Since this is a state invariant, we decide to induct on state s. This yields two
subgoals: 1) s is an init state, and 2) s is a next state. The nit branch can be
dismissed trivially by invoking Modes__INIT which asserts that Modes = Off in
the init state. Since the left-hand-side of the implication is false, the subgoal will
be immediately dismissed.

The next state branch, after skolemization and simplification, becomes:

[-1] IMPLIES(*(Modes(j'1)) = On,
OR((ROLL(j'1) = &(Selected)),(HDG(j!1) = &(Selected))))
{-2} #*(Modes(1 + j'1)) = On

{1} (ROLL(1 + j'1) = &(Selected))
{2} (HDG(1 + j!'1) = &(Selected))

Note that [—1] formula in the antecedent is the induction hypothesis. State
(j'1) is the previous state and (1 + j!1) is the current state® in the induc-
tion process. Proceeding with the proof, we may now instantiate the transition
relation for the ROLL (or, symmetrically, HDG) state variable assignments in the
current state and simplify to obtain:

{-1} ROLL(1 + j!'1) =
IF *(ROLL__T1(1 + j!1)) THEN &(Cleared)
ELSE IF *(ROLL__T2(1 + j'1)) THEN &(Selected)
ELSE IF *(ROLL__T3(1 + j'!'1)) THEN &(Selected)
ELSE IF *(ROLL__T4(1 + j!1)) THEN &(Cleared)
ELSE ROLL(j!1)
ENDIF
ENDIF
ENDIF
ENDIF
[-2] IMPLIES(*(Modes(j!1)) = On,
OR((ROLL(j!1) = &(Selected)),(HDG(j!1) = &(Selected))))
[-3] *(Modes(1 + j!1)) = On

[1] (ROLL(1 + j!'1) = &(Selected))
[2] (HDG(1 + j!'1) = &(Selected))

Now, the value of ROLL in the current state depends on the guard conditions
satisfied. Dismissing the conditions one by one, CASE splitting as required,
would result in a sub-goal like the following:

3 For clarity of presentation we talk of previous /current states, instead of current/next
states to avoid confusing with init/next states

[-1] #*(When_HDG_Switch_Pressed(1 + j!1))
{-2} *(ROLL(1 + j'!'1)) = Cleared
[-3] *(Modes(1 + j!1)) = On

[11 HDG(j'!'1l) = &(Selected)

[2] *(ROLL(j!'1)) = Cleared

[3] ROLL(j!'1) = null

[4] (ROLL(1 + j!1) = &(Selected))
[5] (HDG(1 + j!'1) = &(Selected))

Instantiation of the transition relation on ROLL led to the value of Cleared for
the variable in the current state. At this point, it is clear that more information
from the specification is necessary to proceed further with proof construction:
we have not yet reasoned with the value of HDG variable in the current state. We,
therefore, instantiate the transition relation for HDG in current state and intro-
duce it into the sequent. Dismissing the various guard conditions for HDG__NEXT
and further simplification of the consequent formulas, yields HDG = Selected
for the current state, which is one of the consequents. This completes the outline
of the proof of the invariant.

As mentioned earlier, the most common properties we encountered during
the verification of the FGS were state and transition invariants. The proofs were
fairly straightforward, though long. Most proofs followed a structure similar to
the one explained above, where the analysis faces with two cases:

init State Invoke the StateVar_INIT condition to dismiss the proof branch.
These sub-goals are trivial to dismiss.

next State Invoke the StateVar_ NEXT transition condition on one of the
State variables involved in the property. Since the transition condition is
composed of COND statement, each branch, corresponding to each transi-
tion would have to be dismissed to obtain the value assigned for the state
variable in the next state. If after simplification of the transition condition,
the proof is not yet complete, we may have to deal with one of the following
cases:

1. A subgoal is reached, whose consequent is provable but requires addi-
tional information to prove it. In this case, it may be necessary to invoke
new initial/transition conditions on some other relevant state variables
on which the value of the present state variable depends. We then repeat
the above process.

2. A subgoal is reached, in which one of the newly introduced antecedents
is false. This may again require introduction of more information into
the proof branch through the initial/transition conditions to discharge
the subgoal by contradiction.

3. A subgoal is reached, which is unprovable. This would typically point to
a scenario in which the property being analyzed is false. The counter-
example, could typically be easily gleaned from the formulas in the se-
quent. However, some familiarity with the system being verified may be
necessary to determine that a sub-goal is unprovable.

The At_Least_One_Lateral Mode_Active example proof described above is
for a scaled down version of the FGS. This version of FGS is about 900 lines
of PVS code, when translated from the RSML™¢ specification. The complete
proof is 93 proof steps and runs in approximately 6 seconds on a 1.5 GHz Linux
workstation with 1.5 GB main memory. The largest FGS model that we have
worked on is about 3900 lines of translated PVS code. In this version of FGS,
there are five lateral modes instead of the two in our example property. The
At Least _One Lateral Mode_Active proof for this version of FGS is 380 proof
steps and runs in approximately 40 seconds on the same machine. We also con-
structed around six elaborate proofs analyzing the mode logic of the FGS. One
of those proofs, which is especially interesting, could not be verified using model
checking techniques.

One of the authors was involved in constructing these proofs manually. The
author had no prior experience in theorem proving before starting this exercise.
An interesting observation from this exercise is that the effort involved in con-
structing these proofs, although large, increases roughly linearly with the size of
the model. The experience so far has been very encouraging as we were successful
in constructing non-trivial proofs of useful properties of a critical system model
used in the avionics industry. We are cautiously optimistic that the theorem
proving approach may well scale up to much larger systems than what we can
handle using model-checking techniques.

6 Discussion

In our experience, the proofs we dealt with, have been typically long, but straight-
forward to understand. To make the translation specific details transparent to
the user and increase readability of the sub-goals, we invoke the RSML™¢ spe-
cific definitions from the library file as lazy, eager or macro auto-rewrites in
PVS. Those are automatically brought in whenever the ASSERT primitive is used
in the proof. To further reduce the tediousness of constructing proofs, we have
attempted to construct certain non-trivial strategies that are specific to proofs
of properties for RSML™¢ models, as well as, generating model-specific strate-
gies along with the translation. As a first step, we identified simple patterns of
rule invocations and encoded these patterns as strategies. For example, a simple
strategy EXPAND_SIMP is frequently used in these proofs. This strategy expands
certain definitions and simplifies the result using a few other rewrite rules and
lemmas. Simple strategies, such as this, have helped greatly in reducing the
length of the proofs and remove the intermediate clutter while rendering the
proof more readable. Since extensive automation is the goal of all our analysis
work, the next step is to pursue construction of more powerful strategies that
are both language and model specific. In the example proof discussed earlier, it
is rather straightforward to determine that one has to introduce ROLL and HDG
transition relations to complete the proof. But generating this automatically
as a strategy from the specification is rather involved. It requires identifying
patterns in the sub-goal and invoking the right set of rules and lemmas, while

at the same time, providing a fine-grained control to the user in choosing the
proof steps to apply. Experience from our preliminary work in this area seems
to suggest that such automated strategy generation is difficult. Manual proof
construction provides a certain level of flexibility that lets the user determine
the level of detail to which the specification must be drilled down during proof
construction on a per subgoal basis. This flexibility has been critical for keeping
the proofs readable and manageable. Construction of more powerful strategies
seem to trade-off some of this flexibility. Our current efforts are directed towards
finding the right balance between the two for typical proofs for RSML™¢ models.

In conclusion, in this paper we presented a method for formalizing a syn-
chronous dataflow language in PVS, based on which a mechanical translator
was implemented. A salient feature of the translation scheme is that it reflects
the structure and the semantics of the source specification, which has been useful
in proof construction. We have been successful in verifying non-trivial proper-
ties of the mode logic in a flight-guidance system. Some of these properties could
not be model-checked. We also observed that the proof complexity did not grow
exponentially with the size of the model.

References

1. Myla Archer, Constance Heitmeyer, and Steve Sims. TAME: A PVS interface
to simplify proofs for automata models. In User Interfaces for Theorem Provers,
1998.

2. S. Bensalem, P. Caspi, C. Parent-Vigouroux, and C. Dumas. A methodology for
proving control systems with Lustre and PVS. In Proceedings of the Seventh Work-
ing Conference on Dependable Computing for Critical Applications (DCCA 7),
1999.

3. Ricky W. Butler, Steven P. Miller, James N. Potts, and Victor A. Carreno. A
formal methods approach to the analysis of mode confusion. In 17 th AIAA/IEEE
Digital Avionics Systems Conference, October 1998.

4. W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J.D.
Reese. Model checking large software specifications. [EEE Transactions on Soft-
ware Engineering, 24(7):498-520, July 1998.

5. Yunja Choi and Mats Heimdahl. Model checking RSML™€ requirements. In Pro-
ceedings of the 7th IEEE/IEICE International Symposium on High Assurance Sys-
tems Engineering, October 2002.

6. P. Clements. Software Cost Reduction through Disciplined Design. 1984 Naval
Research Laboratory Review, Washington D.C., 1985. Available as National Tech-
nical Information Service order number AD-A1590000, pp. 79-87, July 1985.

7. J. Crow, S. Owre, J. Rushby, et al. A tutorial introduction to PVS. In WIFT 95:
Workshop on Industrial-Strength Formal Specification Techniques, 1995.

8. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231-274, June 1987.

9. Anjali Joshi, Steve P. Miller, and Mats P.E. Heimdahl. Mode confusion analysis of
a flight guidance system using formal methods. In To appear in Digital Avionics
Systems Conference, 2003.

10. Nancy G. Leveson, Mats P.E. Heimdahl, and Jon Damon Reese. Designing Speci-
fication Languages for Process Control Systems: Lessons Learned and Steps to the

11.

12.
13.

14.

15.

Future. In Seventh ACM SIGSOFT Symposium on the Foundations on Software
Engineering, volume 1687 of LNCS, pages 127 145, September 1999.

N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. Requirements Speci-
fication for Process-Control Systems. IEEE Transactions on Software Engineering,
20(9):684-706, September 1994.

NuSMV: A New Symbolic Model Checking. Available at http://nusmv.irst.itc.it/.
S. Owre, J. Rushby, and N. Shankar. Analyzing tabular and state-transition re-
quirements specifications in PVS. Technical Report SRI-CSL-95-12, SRI Interna-
tional, June 1995.

Jeffrey M. Thompson and Mats P.E. Heimdahl. An integrated development envi-
ronment prototyping safety critical systems. In Tenth IEEE International Work-
shop on Rapid System Prototyping (RSP) 99, pages 172-177, June 1999.

Michael W. Whalen. A formal semantics for RSML™°. Master’s thesis, University
of Minnesota, May 2000.

